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Abstract. In this manuscript, we investigate the approximation of common fixed points for two nonself
asymptotically nonexpansive mappings within the framework of CAT(0) spaces. We establish both weak
and strong convergence theorems for a two-step iterative scheme that is tailored to the geometric structure
of CAT(0) spaces.
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1. Introduction

Fixed point theory is a fundamental topic in mathematics with broad applications in engineering,
economics, and biology. Fixed points of nonexpansive mappings and their generalizations play a key
role in solving problems in image restoration, signal processing, machine learning, and motion control.
The theory also provides powerful tools for analyzing various types of differential equations of the
form

0 ∈ du
dt

+ T (t)u

can be tackled with fixed point approach (see, e.g., Bruck [1]).
In this paper, N stands for the set of natural numbers. We will also denote by F (T ) := {x ∈ K :

Tx = x} the set of fixed points of T , and by F := F (T1) ∩ F (T2), the set of common fixed points of two
mappings T1 and T2.
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A mapping T is called asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) such
that lim

n→∞
kn = 1, and for all x, y ∈ K and all n ∈ N,

d(Tnx, Tny) ≤ knd(x, y).

A mapping T is called uniformly L−Lipschitzian if for some L > 0,

d(Tnx, Tny) ≤ Ld(x, y)

for all x, y ∈ K and n ∈ N.
A mapping T is said to be nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K.
A mapping T : X → X is called semi-compact if, for every bounded sequence {xn} ⊂ X such that

{Txn} converges, there exists a subsequence {xnk
} that converges in X . This condition is weaker than

compactness but still imposes a kind of continuity behavior on bounded sequences.
Let P : X → K be a nonexpansive retraction of X ontoK.
A nonself-mapping T : K → X is called asymptotically nonexpansive if there exists a sequence

{kn} ⊂ [1,∞) such that lim
n→∞

kn = 1, and

d(T (PT )n−1x, T (PT )n−1y) ≤ knd(x, y)

for all x, y ∈ K and n ∈ N. Similarly, T is called uniformly L−Lipschitzian if for some L > 0,

d(T (PT )n−1x, T (PT )n−1y) ≤ Ld(x, y)

for all x, y ∈ K and n ∈ N.
In what follows, we fix x1 ∈ K as the starting point of the process under consideration and take

sequences {αn}, {βn} ⊂ (0, 1). Agarwal, O’Regan and Sahu [3] introduced the iteration process

yn = (1− βn)xn + βnT
nxn,

xn+1 = (1− αn)Tnxn + αnT
nyn, , n ∈ N,

(1.1)

It has been shown that this process is independent of the classical Mann and Ishikawa iteration
schemes, and it converges faster than both. Clearly, the process above deals with a single self-mapping
Tn.

The case involving two mappings in iteration processes has also remained under study. Das and
Debata [4] proposed and investigated a two-mapping scheme. See also Takahashi and Tamura [5],
and Khan and Takahashi [6], for further developments.

The two-mapping case that is, the task of approximating common fixed points of two-mappings has
notable importance because of its direct connection with minimization problems. For more details,
see Takahashi [7]. A significant generalization of the class of nonexpansive self-mappings is the
class of asymptotically nonexpansive self-mappings, introduced by Goebel and Kirk [8]. The concept
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of asymptotically nonexpansive nonself-mappings was later introduced by Chidume, Ofoedu and
Zegeye [2] in 2003, as a further generalization.

In fact, they studied the iteration process for these mappings

xn+1 = P
(
(1− αn)xn + αnT ((PT )n−1xn)

)
, n ∈ N. (1.2)

The study of nonself asymptotically nonexpansive mappings has attracted considerable attention in
the literature (see, e.g., [9–13]).

As a matter of fact, if T is a self-mapping, then P is an identity mapping. In addition, if T : K → X

is asymptotically nonexpansive and P : X → K is a nonexpansive retraction, then PT : K → K is
asymptotically nonexpansive. For all x, y ∈ K and n ∈ N, it follows that

‖(PT )nx− (PT )ny‖ = ‖P (T (PT )n−1x)− P (T (PT )n−1y)‖

≤ ‖T (PT )n−1x− T (PT )n−1y‖

≤ kn‖x− y‖.

(1.3)

It has been shown that PT is an asymptotically nonexpansive. However, the converse statement does
not necessarily hold. To address this limitation, Zhou et al. [14] introduced the following generalized
definition.

Definition 1.1 ( [14]). LetK be a nonempty subset of a real normed linear space E. Let P : X → K be the

nonexpansive retraction of X intoK.

(i) A nonself-mapping T : K → X is called asymptotically nonexpansive with respect to P if there exists a

sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ kn‖x− y‖, ∀x, y ∈ K, n ∈ N.

(ii) A nonself-mapping T : K → X is said to be uniformly L-Lipschitzian with respect to P if there

exists a constant L ≥ 0 such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ L‖x− y‖, ∀x, y ∈ K, n ∈ N.

Furthermore, by studying the following iterative process:

x1 ∈ K, xn+1 = P ((1− αn)xn + αnT (PT1)
n−1xn), n ∈ N, (1.4)

where {αn} be a sequence in [0, 1] satisfying the condition 0 < a ≤ αn ≤ b < 1, n ≥ 1, for some
constant a, b.

Zhou et al. [14] established both strong and weak convergence theorems for common fixed points of
asymptotically nonexpansive nonself-mappings with respect to P in uniformly convex Banach spaces.
As a result, the main findings of Chidume, Ofoedu and Zegeye [2] were deduced.
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It is important to note that a topological space X is said to have the topological fixed point property
(TFPP) if every continuous mapping T : X → X has a fixed point.

It iswell-known that this property is a topological invariant. SupposeX andY are twohomeomorphic
spaces, with X having the fixed point property. Let H : X → Y be a homeomorphism, such that
H(X) = Y , and suppose F : Y → Y is continuous. Define G = H−1 ◦ F ◦H : X → X , which is also
continuous. Then, there exists x ∈ X such that Gx = x, and consequently, for y = Hx, we have y = Fy.

Retractions also preserve the fixed point property. A subset K of X is said to be a retract if there
exists a continuous mapping P : X → K such that Px = x for all x ∈ K, and P is called a retraction [2].
Note that if P is a retraction, then P 2 = P and Pz = z for every z ∈ Range(P ).

Suppose Y is a retract of X and let F : Y → X be continuous. Using any retraction R : X → Y , the
mapping F can be extended to a continuous mapping G = F ◦R : X → X . Any fixed point of Gmust
also be a fixed point of F . Therefore, if X has the TFPP, the same holds for all its retracts. For more
details on TFPP, refer to Goebel [16].

Chidume, Ofoedu and Zegeye [2] obtained the following strong and weak convergence theorems
for asymptotically nonexpansive nonself-mappings.

Theorem 1.2 ( [2]). Let X be a real uniformly convex Banach space and let C be a nonempty closed convex

subset of X . Let T : C → X be a completely continuous and asymptotically nonexpansive map with sequence

{kn} ⊂ [1,∞) such that
∞∑
n=1

(k2n − 1) <∞

and F (T ) 6= ∅. Let {αn} ⊂ (0, 1) be such that ε ≤ 1 − αn ≤ 1 − ε for all n ≥ 1 and some ε > 0. From an

arbitrary x1 ∈ C, define the sequence {xn} by (1.4). Then {xn} converges strongly to some fixed point of T .

Theorem 1.3 ( [2]). Let X be a real uniformly convex Banach space which has a Fréchet differentiable norm

and let C be a nonempty closed convex subset of X . Let T : C → X be an asymptotically nonexpansive map

with sequence {kn} ⊂ [1,∞) such that
∞∑
n=1

(k2n − 1) <∞

and F (T ) 6= ∅. Let {αn} ⊂ (0, 1) be such that ε ≤ 1 − αn ≤ 1 − ε for all n ≥ 1 and some ε > 0. From an

arbitrary x1 ∈ C, define the sequence {xn} by (1.4). Then {xn} converges weakly to some fixed point of T .

In 2006, Wang [11] generalized the iteration process (1.4) as follows: for x1 ∈ C,

yn = P
(
(1− βn)xn + βnT2(PT2)

n−1xn
)
,

xn+1 = P
(
(1− αn)xn + αnT1(PT1)

n−1yn
)
, n ≥ 1,

(1.5)
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where T1, T2 : C → X are asymptotically nonexpansive nonself-mappings and {αn}, {βn} are real
sequences in [0, 1). He studied the strong and weak convergence of the iterative scheme (1.5) under
proper conditions. Meanwhile, the results of [11] generalized the results of [2].

In 2009, Thianwan [13] proposed a new two-step iteration scheme for two asymptotically nonexpan-
sive nonself-mappings in a uniformly convex Banach space. Both weak and strong convergence results
were established for this scheme.

Let X be a normed space, C ⊂ X be a nonempty convex subset, and P : X → C be a nonexpansive
retraction of X onto C. Let T1, T2 : C → X be given mappings. Then for an arbitrary x1 ∈ C, the
following iteration scheme is studied:

yn = P
(
(1− βn)xn + βnT2(PT2)

n−1xn
)
,

xn+1 = P
(
(1− αn)yn + αnT1(PT1)

n−1yn
)
, n ≥ 1,

(1.6)

where {αn} and {βn} are appropriate real sequences in [0, 1).
The iterative scheme (1.6) is called the projection-type Ishikawa iteration for two asymptotically

nonexpansive nonself- mappings. Note that if T1 = T2 and βn = 0 for all n ≥ 1, then the iteration
scheme (1.6) reduces to the simpler form (1.4), as previously introduced.

In 2023, Kratuloek et al. [33] studied and approximated common fixed points of two asymptotically
nonexpansive nonself-mappings in the context of CAT(0) spaces. They provided three examples and
conducted numerical experiments to demonstrate the implementation of the approximation schemes.

LetK be a nonempty closed convex subset of a CAT(0) spaceX with retractionP . Let T1, T2 : K → X

be two nonself asymptotically nonexpansive mappings with respect to P . For x1 ∈ K, the iteration
scheme is given by

yn = (1− βn)xn ⊕ βn(PT1)
nxn,

xn+1 = (1− αn)(PT1)
nyn ⊕ αn(PT2)

nyn, n ≥ 1,
(1.7)

where {αn} and {βn} are sequences in [0, 1].
Inspired and motivated by these facts, we introduce and study a new class of iterative schemes in

this paper. The scheme is defined as follows:
Let X be a complete CAT(0) space, C ⊂ X be a nonempty convex subset, and P : X → C be a

nonexpansive retraction of X onto C, and T1, T2 : C → X given mappings. Then for an arbitrary
x1 ∈ C, the following iteration scheme is studied:

yn = P ((1− βn)xn ⊕ βnT2(PT2)n−1xn),

xn+1 = P ((1− αn)yn ⊕ αnT1(PT1)
n−1yn), n ≥ 1,

(1.8)

where {αn} and {βn} are appropriate real sequences in [0, 1).
The iterative scheme (1.8) is called the projection-type Ishikawa iteration for two asymptotically

nonexpansive nonself-mappings.
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The purpose of this paper is to construct an iteration scheme for approximating common fixed points
of two asymptotically nonexpansive nonself-mappings and to prove some strong andweak convergence
theorems for such mappings in a CAT(0) space.

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a map η : [0, l]→ X such that
η(0) = x, η(l) = y, and d(η(t), η(t′)) = |t− t′| for all t, t′ ∈ [0, l]. The image α of η is called a geodesic
segment joining x and y, denoted by [x, y].

A space (X, d) is a geodesic space if every two points in X can be joined by a geodesic. If each pair
has exactly one geodesic, the space is uniquely geodesic. A subset Y ⊆ X is convex if it includes all
geodesic segments joining its points.

A geodesic triangle ∆(x1, x2, x3) in (X, d) consists of three points and a geodesic segment between
each pair. A comparison triangle ∆̄(x1, x2, x3) in R2 satisfies dR2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}.

Definition 2.1. A geodesic space (X, d) is called a CAT(0) space if for any triangle ∆ ⊂ X and any x, y ∈ ∆,

the inequality

d(x, y) ≤ d(x̄, ȳ)

holds, where x̄, ȳ are corresponding points in the comparison triangle.

It is well-known that any complete, simply connected Riemannian manifold having nonpositive
sectional curvature is a CAT(0) space. Other examples of CAT(0) spaces include pre-Hilbert spaces,
R-trees (see Bridson and Haefliger [17]), Euclidean buildings (see Brown [18]), the complex Hilbert
ball with a hyperbolic metric (see Goebel and Reich [19]), and many others.

Definition 2.2. A geodesic triangle ∆(p, q, r) in (X, d) is said to satisfy the CAT(0) inequality if for any

u, v ∈ ∆(p, q, r) and for their comparison points ū, v̄ ∈ ∆̄(p̄, q̄, r̄), one has

d(u, v) ≤ dR2(ū, v̄).

Based on Definition 2.1, one can see that all geodesic triangles in a CAT(0) space satisfy the CAT(0)
inequality. For further details on CAT(0) spaces, we refer the readers to standard texts such as Bridson
and Haefliger [17]. It is well-known that every CAT(0) space is uniquely geodesic.

Note that if x, y1, y2 are points of a CAT(0) space and if y0 is the midpoint of the segment [y1, y2] (we
write y0 = 1

2y1 ⊕
1
2y2), then the CAT(0) inequality implies

d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2. (2.1)

In fact, a geodesic metric space is a CAT(0) space if and only if it satisfies inequality (2.1) above. This
inequality is known as the CN inequality of Bruhat and Tits [20]. As a consequence of this inequality,
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CAT(0) spaces possess many interesting properties such as a non-convex function (resp. set) can be
viewed as a convex function (resp. set) [21].

The following discussion focuses on the notion of asymptotic centers and associated results. LetK
be a nonempty closed convex subset of a CAT(0) space X , and let {xn} be a bounded sequence in X .
For each x ∈ X , the asymptotic radius of the sequence {xn} at the point x is defined by

r(x, {xn}) = lim sup
n→∞

d(xn, x).

The following is the formal definition of r ≡ r(K, {xn}) := inf {r(x, {xn}) : x ∈ K} , and
A ≡ A(K, {xn}) := {x ∈ K : r(x, {xn}) = r} . The quantity r is called the asymptotic radius, and the
set A is called the asymptotic center of the sequence {xn} relative toK.

It is well known that ifX is a complete CAT(0) space andK ⊆ X is a closed convex subset, then the
asymptotic center A(K, {xn}) consists of exactly one point.

A sequence {xn} in a CAT(0) spaceX is said to be ∆−convergent to a point x ∈ X if x is the unique
asymptotic center of every subsequence of {xn}. A bounded sequence {xn} is said to be regular with
respect toK if for every subsequence {x′n} ⊂ {xn}, the following equality holds:

r(K, {xn}) = r(K, {x′n}).

The concept of ∆−convergence is formally defined as follows.

Definition 2.3 ( [34, 40]). A sequence {xn} in a CAT(0) space X is said to be ∆−convergent to a point

x ∈ X if x is the unique asymptotic center of every subsequence {un} of {xn}. In the present setting, we write

∆− lim
n→∞

xn = x, and refer to x as the ∆−limit of the sequence {xn}.

Some brilliant known results in CAT(0) spaces can be found in previous studies [22–31] and refer-
ences therein.

We now collect some elementary facts about CAT(0) spaces which will be used in the proofs of our
main results. The following lemma can be found in [23,35, 40, 41].

Lemma 2.4 ( [23]). IfK is a closed convex subset of a complete CAT(0) space and {xn} is a bounded sequence
inK, then the asymptotic center of {xn} is inK.

Lemma 2.5 ( [35]). Let (X, d) be a CAT(0) space.
(i) For x, y ∈ X and u ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = ud(x, y) and d(y, z) = (1− u)d(x, y). (2.2)

We use the notation (1− u)x⊕ uy for the unique point z satisfying (2.2).

(ii) For x, y, z ∈ X and u ∈ [0, 1], we have

d((1− u)x⊕ uy, z) ≤ (1− u)d(x, z) + ud(y, z).
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(iii) For x, y, z ∈ X and u ∈ [0, 1], we have

d((1− u)x⊕ uy, z)2 ≤ (1− u)d(x, z)2 + ud(y, z)2 − u(u− 1)d(x, y)2.

Lemma 2.6 ( [40]). Every bounded sequence in a complete CAT(0) space has a ∆−convergent subsequence.

Theorem 2.7 ( [41]). Let (X, d) be a complete CAT(0) space and {xn} ⊂ X be a bounded sequence. Suppose

that {xn} ∆−converges to both x and y. Then x = y.

Lemma 2.8 ( [32]). Let {αn}, {βn} be two sequences such that

(i) 0 ≤ αn, βn < 1,

(ii) βn → 0 and
∑∞

n=1 αnβn =∞.

Let {γn} be a nonnegative real sequence such that
∑∞

n=1 αnβn(1 − βn)γn is bounded. Then, {γn} has a

subsequence which converges to zero.

The existence of fixed points for asymptotically nonexpansive mappings in CAT(0) spaces was
proved by Kirk [40] as the following result.

Theorem 2.9 ( [40]). LetK be a nonempty bounded closed and convex subset of a complete CAT(0) space X
and let t : K → K be asymptotically nonexpansive. Then t has a fixed point.

Theorem 2.10 ( [37]). Let X be a complete CAT(0) space andK be a nonempty bounded closed and convex

subset of X , and t : K → K be an asymptotically nonexpansive mapping. Then I − t is demiclosed at 0.

Corollary 2.11 ( [35]). LetK be a closed and convex subset of a complete CAT(0) spaceX and let t : K → X

be an asymptotically nonexpansive mapping. Let {xn} be a bounded sequence inK such that lim
n→∞

d(txn, xn) =

0 and 4– lim
n→∞

xn = w. Then tw = w.

Lemma 2.12 ( [39]). Let X be a complete CAT(0) space and let x ∈ X . Suppose {αn} is a sequence in [a, b]

for some a, b ∈ (0, 1), and {xn}, {yn} are sequences in X such that lim sup
n→∞

d (xn, x) ≤ r, lim sup
n→∞

d (yn, x) ≤

r, and lim
n→∞

d((1− αn)xn ⊕ αnyn, x) = r for some r ≥ 0. Then lim
n→∞

d (xn, yn) = 0.

The following property can be found in [15].

Lemma 2.13. Let {an} and {bn} be two sequences of nonnegative numbers such that

an+1 ≤ (1 + bn)an for all n ≥ 1.

If
∑∞

n=1 bn converges, then lim
n→∞

an exists. In particular, if there is a subsequence of {an} which converges to 0,

then lim
n→∞

an = 0.
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One important concept in the analysis of weak convergence in metric spaces is Opial’s condition.
This condition provides a useful criterion for distinguishing the weak limit of a sequence from any
other point in the space, and it is often employed to guarantee the convergence of various iterative
schemes in fixed point theory.

We now recall the formal definition of Opial’s condition in the setting of CAT(0) spaces.

Definition 2.14 ( [40]). Let (X, d) be a CAT(0) space. Then X is said to satisfy Opial’s condition if for every

sequence {xn} ⊂ X that converges weakly to a point x ∈ X , and for every point y ∈ X with y 6= x, the following

inequality holds:

lim inf
n→∞

d(xn, x) < lim inf
n→∞

d(xn, y).

3. Main Results

In this section, we establish strong and weak convergence results for the iterative scheme defined by
(1.8), with respect to a common fixed point of two asymptotically nonexpansive nonself-mappings
in CAT(0) spaces. In preparation for the proofs of the main theorems, we present the following
preliminary lemmas.

Lemma 3.1. LetX be a complete CAT(0) space and letC be a nonempty closed convex nonexpansive retract ofX ,

with P as a nonexpansive retraction. Let T1, T2 : C → X be two asymptotically nonexpansive nonself-mappings

of C with sequences {kn}, {`n} ⊂ [1,∞) such that
∑∞

n=1(kn − 1) <∞,
∑∞

n=1(`n − 1) <∞, kn → 1, `n →

1 as n→∞, and assume that F 6= ∅. Suppose that {αn} and {βn} are real sequences in [0, 1). From an arbitrary

x1 ∈ C, define the sequence {xn} using (1.8). If q ∈ F, then lim
n→∞

d (xn, q) exists.

Proof. Let q ∈ F. Set kn = 1 + un and `n = 1 + vn. Since
∑∞

n=1(kn − 1) <∞ and ∑∞
n=1(`n − 1) <∞,

it follows that∑∞n=1 un < ∞ and ∑∞n=1 vn < ∞. In equation (1.8), we have using the iteration and
properties of the retraction P , we have

d(yn, q) = d(P ((1− βn)xn ⊕ βnT2(PT2)n−1xn), P (q))

≤ d((1− βn)xn ⊕ βnT2(PT2)n−1xn, q)

≤ (1− βn)d(xn, q) + βnd(T2(PT2)
n−1xn, q)

≤ (1− βn)d(xn, q) + βn(1 + vn)d(xn, q)

= (1− βn)d(xn, q) + (βn + βnvn) d(xn, q)

≤ (1 + vn)d(xn, q).

(3.1)

Similarly, for the next iteration:

d(xn+1, q) = d(P
(
(1− αn)yn ⊕ αnT1(PT1)

n−1yn
)
, P (q))

≤ d((1− αn)yn ⊕ αnT1(PT1)
n−1yn, q)

(3.2)
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≤ (1− αn)d(yn, q) + αnd(T1(PT1)
n−1yn, q)

≤ (1− αn)d(yn, q) + αn(1 + un)d(yn, q)

= (1 + un)d(yn, q)

≤ (1 + un)(1 + vn)d(xn, q)

= (1 + un + vn + unvn)d(xn, q)

= d(xn, q) + (un + vn + unvn)d(xn, q).

Hence, we have the recursive inequality:

d(xn+1, q) ≤ d(xn, q) + (un + vn + unvn)d(xn, q)

= (1 + un + vn + unvn)d(xn, q)

≤ e
∑∞

n=1(un+vn+unvn)d(x1, q).

Since∑∞n=1(un + vn + unvn) < ∞, then {xn} is bounded. It implies that there exists a constant
M > 0 such that d(xn, q) ≤M for all n ≥ 1. So, d(xn+1, q) ≤ d(xn, q) + (un + vn + unvn)M.

It follows from Lemma 2.13 that lim
n→∞

d(xn, q) exists. �

Lemma 3.2. Let X be a complete CAT(0) space and let C be a nonempty closed convex nonexpansive retract

of X with P as a nonexpansive retraction. Let T1, T2 : C → X be two asymptotically nonexpansive nonself-

mappings of C with sequences {kn}, {`n} ⊂ [1,∞) such that
∑∞

n=1(kn − 1) < ∞,
∑∞

n=1(`n − 1) <

∞, kn → 1, `n → 1 as n → ∞, and assume that F 6= ∅. Suppose that {αn} and {βn} are real sequences

in [ε, 1 − ε] for some ε ∈ (0, 1). From an arbitrary x1 ∈ C, define the sequence {xn} by (1.8). Then

lim
n→∞

d(xn, T1xn) = lim
n→∞

d(xn, T2xn) = 0.

Proof. Let q ∈ F. Set kn = 1 + un, `n = 1 + vn. By Lemma 3.1, we see that lim
n→∞

d(xn, q) exists. Assume
that lim

n→∞
d(xn, q) = c. Using (3.1), we have

d(yn, q) ≤ (1 + vn)d(xn, q). (3.3)

Taking the lim sup on both sides of inequality (3.3), we obtain

lim sup
n→∞

d(yn, q) ≤ c. (3.4)

In addition, since d(T1(PT1)
n−1yn, q) ≤ knd(yn, q), taking the lim sup on both sides, we have

lim sup
n→∞

d(T1(PT1)
n−1yn, q) ≤ c. (3.5)
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From (1.8), we also have

d(xn+1, q) ≤ (1− αn)d(yn, q) + αnd(T1(PT1)
n−1yn, q)

≤ (1 + un + vn + unvn)d(xn, q)

= d(xn, q) + (un + vn + unvn)d(xn, q).

(3.6)

Since∑∞n=1(un + vn + unvn) < ∞ and lim
n→∞

d(xn+1, q) = c, letting n → ∞ in inequality (3.6), we
have

lim
n→∞

((1− αn)d(yn, q) + αnd(T1(PT1)
n−1yn, q)) = c. (3.7)

By using (3.4), (3.5), (3.7) and Lemma 2.12, we have

lim
n→∞

d(T1(PT1)
n−1yn, yn) = 0. (3.8)

In addition, d(T2(PT2)
n−1xn, q) ≤ `nd(xn, q), and taking the lim sup on both sides, we obtain

lim sup
n→∞

d(T2(PT2)
n−1xn, q) ≤ c. (3.9)

Using (1.8), we have

d(xn+1, q) ≤ (1− αn)d(yn, q) + αnd(T1(PT1)
n−1yn, q)

≤ (1− αn)d(yn, q) + αnd(T1(PT1)
n−1yn, yn) + αnd(yn, q)

≤ d(yn, q) + d(T1(PT1)
n−1yn, yn).

(3.10)

Taking the lim inf on both sides of inequality (3.10), and using (3.8) and the fact that lim
n→∞

d(xn+1, q) =

c, we obtain
lim inf
n→∞

d(yn, q) ≥ c. (3.11)

It follows from (3.4) and (3.11) that

lim
n→∞

d(yn, q) = c.

This implies that

c = lim
n→∞

d(yn, q)

≤ lim
n→∞

((1− βn)d(xn, q) + βnd(T2(PT2)
n−1xn, q))

≤ lim
n→∞

d(xn, q) = c,

and so
lim
n→∞

((1− βn)d(xn, q) + βnd(T2(PT2)
n−1xn, q)) = c.

Using (3.9) and Lemma 2.12, we obtain

lim
n→∞

d(T2(PT2)
n−1xn, xn) = 0. (3.12)
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From yn = P ((1− βn)xn ⊕ βnT2(PT2)n−1xn) and (3.12), we have

d(yn, xn) = d(P ((1− βn)xn ⊕ βnT2(PT2)n−1xn), xn)

≤ (1− βn)d(xn, xn) + βnd(T2(PT2)
n−1xn, xn)

= βnd(T2(PT2)
n−1xn, xn)→ 0 as n→∞.

(3.13)

In addition,

d(T1(PT1)
n−1xn, xn) ≤ d(T1(PT1)

n−1xn, yn) + d(yn, xn)

≤ d(T1(PT1)
n−1xn, T1(PT1)

n−1yn) + d(T1(PT1)
n−1yn, yn) +

d(yn, xn)

≤ knd(xn, yn) + d(T1(PT1)
n−1yn, yn) + d(yn, xn).

(3.14)

Thus, it follows from (3.8) and (3.13) that

lim
n→∞

d(T1(PT1)
n−1xn, xn) = 0. (3.15)

By using (1.8), we have

d(xn+1, xn) ≤ (1− αn)d(yn, xn) + αnd(T1(PT1)
n−1yn, xn)

≤ (1− αn)d(yn, xn) + αnd(T1(PT1)
n−1yn, yn) + αn(yn, xn)

≤ d(yn, xn) + d(T1(PT1)
n−1yn, yn).

It follows from (3.8) and (3.13) that

lim
n→∞

d(xn+1, xn) = 0. (3.16)

Using (3.15) and (3.16), we have

d(xn+1, T1(PT1)
n−1xn+1) ≤ d(xn+1, xn) + d(T1(PT1)

n−1xn+1, T1(PT1)
n−1xn) +

d(T1(PT1)
n−1xn, xn)

≤ d(xn+1, xn) + knd(xn+1, xn) + d(T1(PT1)
n−1xn, xn)

Therefore,
d(xn+1, T1(PT1)

n−1xn+1)→ 0 as n→∞. (3.17)

In addition,

d(xn+1, T1(PT1)
n−2xn+1) ≤ d(xn+1, xn) + d(xn, T1(PT1)

n−2xn) +

d(T1(PT1)
n−2xn+1, T1(PT1)

n−2xn)

≤ d(xn+1, xn) + d(xn, T1(PT1)
n−2xn) + ξd(xn+1, xn),

(3.18)
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where ξ = sup{kn : n ≥ 1}. It follows from (3.16) and (3.17) that

lim
n→∞

d(xn+1, T1(PT1)
n−2xn+1) = 0. (3.19)

We define (PT1)
1−1 as the identity map on C. Therefore, by inequalities (3.17) and (3.19), we obtain

d(xn+1, T1xn+1) ≤ d(xn+1, T1(PT1)
n−1xn+1) + d(T1(PT1)

n−1xn+1, T1xn+1)

= d(xn+1, T1(PT1)
n−1xn+1) + d(T1(PT1)

1−1(PT1)
n−1xn+1, T1(PT1)

1−1xn+1)

≤ d(xn+1, T1(PT1)
n−1xn+1) + ξd((PT1)

n−1xn+1, xn+1)

= d(xn+1, T1(PT1)
n−1xn+1) + ξd((PT1)(PT1)

n−2xn+1, Pxn+1)

≤ d(xn+1, T1(PT1)
n−1xn+1) + ξd(T1(PT1)

n−2xn+1, xn+1)→ 0.

This implies that lim
n→∞

d(xn, T1xn) = 0. Similarly, we may show that lim
n→∞

d(xn, T2xn) = 0.Hence, the
proof is complete. �

Theorem 3.3. Let X be a complete CAT(0) space and let C be a nonempty closed convex nonexpansive retract

of X with P as a nonexpansive retraction. Let T1, T2 : C → X be two asymptotically nonexpansive nonself-

mappings of C with sequences {kn}, {`n} ⊂ [1,∞) such that
∑∞

n=1(kn−1) <∞,
∑∞

n=1(`n−1) <∞, kn →

1, `n → 1 as n→∞, and assume that F 6= ∅. Suppose that {αn} and {βn} are real sequences in [ε, 1− ε] for

some ε ∈ (0, 1). Let {xn} and {yn} be the sequences defined by (1.8). If one of T1 or T2 is completely continuous,

then {xn} and {yn} converge strongly to a common fixed point of T1 and T2.

Proof. By Lemma 3.1, the sequence {xn} is bounded. In addition, by Lemma 3.2, we have

lim
n→∞

d(xn, T1xn) = 0 and lim
n→∞

d(xn, T2xn) = 0,

which implies that {T1xn} and {T2xn} are also bounded.
If T1 is completely continuous, then there exists a subsequence {T1xnj} ⊂ {T1xn} such that

T1xnj → q as j →∞.

It follows from Lemma 3.2 that lim
j→∞

d(xnj , T1xnj ) = lim
j→∞

d(xnj , T2xnj ) = 0. By the continuity of T1
and Theorem 2.10, we obtain lim

j→∞
d(xnj , q) = 0, and hence q ∈ F. Furthermore, by Lemma 3.1, we have

that lim
n→∞

d(xn, q) exists. Thus, lim
n→∞

d(xn, q) = 0. From (3.13), we also have lim
n→∞

d(yn, xn) = 0,which
implies that lim

n→∞
d(yn, q) = 0. Thus, the proof is complete. �

Theorem 3.4. Let X be a complete CAT(0) space and let C be a nonempty closed convex nonexpansive retract

of X with P as a nonexpansive retraction. Let T1, T2 : C → X be two asymptotically nonexpansive nonself-

mappings of C with sequences {kn}, {`n} ⊂ [1,∞) such that
∑∞

n=1(kn−1) <∞,
∑∞

n=1(`n−1) <∞, kn →

1, `n → 1 as n→∞, and assume that F 6= ∅. Suppose that {αn} and {βn} are real sequences in [ε, 1− ε] for
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some ε ∈ (0, 1). Let {xn} and {yn} be the sequences defined by (1.8). If one of T1 or T2 is semi-compact, then

{xn} and {yn} converge strongly to a common fixed point of T1 and T2.

Proof. Since one of T1 or T2 is semi-compact, and {xn} is bounded with

lim
n→∞

d(xn, T1xn) = lim
n→∞

d(xn, T2xn) = 0,

there exists a subsequence {xnj} ⊂ {xn} such that xnj → q strongly inX . It follows from Theorem 2.10
that q ∈ F. By Lemma 3.1, lim

n→∞
d(xn, q) exists.

Since a subsequence {xnj} of {xn} converges strongly to q, we conclude that the full sequence {xn}
converges strongly to the common fixed point q ∈ F.

From (3.13), we have lim
n→∞

d(yn, xn) = 0, and it follows that lim
n→∞

d(yn, q) = 0. Therefore, the theorem
is proved. �

Finally, we prove that the iterative scheme (1.8) converges weakly in the case of two asymptotically
nonexpansive nonself-mappings defined on a complete CAT(0) space that satisfies Opial’s condition.

Theorem 3.5. Let X be a uniformly convex complete CAT(0) space which satisfies Opial’s condition and let C

be a nonempty closed convex nonexpansive retract ofX with P as a nonexpansive retraction. Let T1, T2 : C → X

be two asymptotically nonexpansive nonself-mappings of C with sequences {kn}, {`n} ⊂ [1,∞) such that∑∞
n=1(kn− 1) <∞,

∑∞
n=1(`n− 1) <∞, kn → 1, `n → 1 as n→∞, and assume that F 6= ∅. Suppose that

{αn} and {βn} are real sequences in [ε, 1− ε] for some ε ∈ (0, 1). Let {xn} and {yn} be the sequences defined

by (1.8). Then {xn} and {yn} converge weakly to a common fixed point of T1 and T2.

Proof. It follows from Lemma 3.2 that

lim
n→∞

d(xn, T1xn) = lim
n→∞

d(xn, T2xn) = 0.

Since X is uniformly convex and {xn} is bounded, we may assume that xn ⇀ uweakly as n→∞,
without loss of generality. By Theorem 2.10, we have u ∈ F.

Suppose that subsequences {xnk
} and {xmk

} of {xn} converge weakly to u and v, respectively.
According to Theorem 2.10, we have that u and v belong to the set F. By Lemma 3.1, lim

n→∞
d(xn, u) and

lim
n→∞

d(xn, v) exist. It follows from Theorem 2.7 that u = v. Therefore, {xn} converges weakly to a
common fixed point of T1 and T2.

Moreover, lim
n→∞

d(yn, xn) = 0 as proved in Lemma 3.2, and since xn ⇀ uweakly as n→∞, it follows
that yn ⇀ uweakly as n→∞. This concludes the proof of the theorem. �
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