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Abstract. We give an exact enumeration of the unlabeled P -series, a subclass of the frequently studied
series-parallel posets. In this enumeration method, we determine the number of unlabeled P -series
according to the number of direct terms (connected components) of the posets. Here, we use the results
regarding the matrix recognition of P -series by using the poset matrix. We also give an algorithm to
determine the values of the parameters involved in the enumeration formula and to compute the number
of unlabeled P -series with a certain number of elements. We show that the enumeration algorithm runs
in polynomial time. We include the numerical results for the numbers of unlabeled P -series up to 76
elements.
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Key words and phrases. P -series; poset matrix; matrix recognition; exact enumeration; nonisomorphic
direct sum; nondecreasing inter-distant length.

1. Introduction

A common problem in the theory of mathematical structures is to recognize the classes of structures
that satisfy some common structural properties. For a particular class of mathematical structures,
conjectures for such recognitions can be made by observing various examples. In the cases of finite
posets, this can be done efficiently with the help of computer codes by counting and generating, if
possible, all the nonisomorphic structures belonging to the class of structures under consideration.
This is one of the main reasons for which the recognitions and enumerations of several classes of finite
lattices [8, 10], posets [1, 7, 12, 13], graphs [2, 4], and topologies [6, 10] were considered by numerous
authors.

The class of series-parallel posets contains the P -series as a subclass, and the class of P -series contains
theP -graphs as a subclass. Severalmethods for the recognitions [11,14–16] and enumerations [5,7,9,13]
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of these computationally tractable classes of posetswere considered in the literature. We know that Ḡ(n),
the number of n-element unlabeled P -graphs, can be given explicitly as Ḡ(n) = 2n−1, n ≥ 1. On the
other hand, Stanley [18] gave the generating functions for the enumeration of unlabeled series-parallel
posets, see the sequence A003430 in OEIS [17], and later, El-Zahar et al. [5] gave the height counting
of the unlabeled series-parallel posets by modifying the generating functions given by Stanley [18]
with the height of a poset as an additional parameter. Unfortunately, neither any explicit formula for
the enumeration of unlabeled P -series was obtained nor any other methods for the enumeration of
these posets were considered. In this article, we give an exact enumeration method to determine S(n),
the number of n-element unlabeled P -series. See the integer sequences A349276 and A349488 that we
contributed to OEIS [17]. Here, we compute S(n) according to the number of direct terms (connected
components) of the posets. For these data, see the integer sequence A350635 contributed to OEIS [17].

In Section 2, we recall some basic terminologies related to the posets and P -series. Here, we also
recall common definitions related to the poset matrix and the results regarding the matrix recognition
of P -series by using the poset matrix. In Section 3, we obtain the results giving an explicit formula for
the enumeration of connected P -series (equivalently, connected P -graphs). In Section 4, we obtain
the results regarding the enumeration of unlabeled disconnected P -series. In Section 5, we give an
algorithm to determine the values of the parameters involved in the enumeration formula and to
compute the numbers S(n), n ≥ 2. Here, we show that the enumeration algorithm runs in polynomial
time. Also, in Section 6, we include the numerical data for S(n), 1 ≤ n ≤ 76, obtained by implementing
the enumeration algorithm into the computer.

2. Preliminaries

2.1. Posets and P -series. A poset (partially ordered set) is a structure A = 〈A,6〉 consisting of the
nonempty set A with the order relation 6 on A. A poset A is called finite if the underlying set A is
finite. Throughout this paper, we assume that every poset is finite and nonempty. LetA = 〈A,6A〉 and
B = 〈B,6B〉 be two posets. A bijective map φ : A→ B is called an order isomorphism if for all x, y ∈ A,
x 6A y if and only if φ(x) 6B φ(y). We writeA ∼= BwheneverA andB are order isomorphic. Also, by
a collection of isomorphic (analogously, nonisomorphic) posets, we mean that the posets are pairwise
isomorphic (nonisomorphic). For further details on the basics of posets, we refer the readers to the
classical book by Davey and Priestley [3].

Here, we use the notations 1 for the singleton poset,Cn, n ≥ 1, for the n-element chain posets, In,
n ≥ 1, for the n-element antichain posets, Dn, n ≥ 4, for the n-element diamond posets, and Bm,n,
m ≥ 1, n ≥ 1, for the complete bipartite posets withmminimal elements and nmaximal elements. In
particular, we haveC1

∼= I1 ∼= 1 andC2
∼= B1,1. We also use the notationsA + B andA⊕B to denote,

respectively, the direct sum and ordinal sum of the posets A and B. Here, the posets A and B are
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called the direct terms ofA+B and the ordinal terms ofA⊕B. A poset having two or more direct terms
is called disconnected, otherwise, it is called connected.

A posetG is called a P -graph if it can be expressed as the ordinal sum of the antichain posets, that is,
there exist the antichain posets Ini , 1 ≤ i ≤ m, such that G = In1 ⊕ In2 ⊕ · · · ⊕ Inm . For every n ≥ 2,
the poset In is a disconnected P -graph. Also, the posets B1,2

∼= 1⊕ I2 andD5
∼= 1⊕ I3 ⊕ 1 are some

connected P -graphs. Note that all the P -graphs except the antichains In, n ≥ 2, are connected posets.
A poset S is called a P -series if it is either a P -graph or it can be expressed as the direct sum of the
P -graphs. Thus, every P -graph is trivially a P -series. Also, the P -graphs except the antichains In,
n ≥ 2, are all connected P -series. On the other hand, a poset S is a disconnected P -series if there exist
the P -graphs Gi, 2 ≤ i ≤ n, such that S = G1 + G2 + · · · + Gn. For m > 1 and n ≥ 1, the posets
Cm + Cn are disconnected P -series which are not P -graphs. A poset is called series-parallel if it can
be expressed as the sum of the singleton posets using only the direct sum and ordinal sum of posets.
Every P -series, and therefore, every P -graph is trivially series-parallel. Also, the posets 1⊕ (1 + C2)

and (1 + C2)⊕ 1 are series-parallel which are not P -series.

2.2. Poset matrix and recognition of P -series. Mohammad and Talukder [11] introduced the notion
of poset matrix. A square (0, 1)-matrixMm = [aij ], 1 ≤ i, j ≤ m, is called a poset matrix if and only if
the following conditions hold:

(1) aii = 1 for all 1 ≤ i ≤ m i.e. Mm is reflexive,
(2) aij = 1 and aji = 1 imply i = j i.e. Mm is antisymmetric,
(3) aij = 1 and ajk = 1 imply aik = 1 i.e. Mm is transitive.
An upper (or lower) triangular (0, 1)-matrix with entries 1s in the main diagonal is reflexive and

antisymmetric clearly. Therefore, an upper (or lower) triangular (0, 1)-matrix with entries 1s in the
main diagonal is a poset matrix if it is transitive only.

Throughout this paper, we use the notationsMm,n for anm-by-nmatrix andMm for a square matrix
of orderm. In particular, we use the notations In, On, and Zn, for the identity matrix, the matrix with
entries 1s only, and the matrix with entries 0s only, respectively, all of order n. We use also the notation
Cn for the matrix [cij ], 1 ≤ i, j ≤ n defined as cij = 1 for all i ≤ j and cij = 0 otherwise. Then, for n ≥ 1,
the matrices In and Cn are all poset matrices because these are upper triangular and clearly transitive.

LetMm = [aij ], 1 ≤ i, j ≤ m be a poset matrix. We associate a posetA = 〈A,6〉 toMm, where A =
{x1, x2, . . . , xm} and xi corresponds the i-th row (or column) ofMm, by defining the order relation 6
on A such that for all 1 ≤ i, j ≤ m, we have xi 6 xj if and only if aij = 1. Then we say that the poset
matrixMm represents the poset A and vice versa. Clearly, for every n ≥ 1, the poset matrices In and Cn

represent the antichain poset In and the chain posetCn, respectively. Also, the poset matrices L and Lt,
as given in the following example, represent the complete bipartite posets B2,1 and B1,2, respectively.
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Example 2.1.

L =

 1 0 1
0 1 1
0 0 1

 Lt =

 1 0 0
0 1 0
1 1 1


LetMm be a poset matrix. For some 1 ≤ i, j ≤ m, the interchanges of i-th and j-th rows along with

the interchanges of i-th and j-th columns inMm is called (i,j)-relabeling ofMm. The following example
shows a relabeling of the poset matrix Lt (Example 2.1).

Example 2.2.

Lt =

 1 0 0
0 1 0
1 1 1

 (1,3)-relabeling
−−−−−−−−−→

 1 1 1
0 1 0
0 0 1

 = L
′

The following results, obtained by Mohammad and Talukder [11], give interpretations of the rela-
beling in a poset matrix.

Theorem 2.1. [11] Any relabeling of a poset matrix is a poset matrix and it represents the same poset up to

isomorphism.

Theorem 2.2. [11] Every poset matrix can be relabeled to an upper (or lower) triangular matrix with 1s in the

main diagonal by a finite number of relabeling.

LetMm and Nn be any poset matrices. We writeMm ⊕Nn andMm �Nn to denote, respectively, the
direct sum and ordinal sum of the matricesMm and Nn. Note here that the matricesMm and Nn are
called the direct terms ofMm ⊕Nn and the ordinal terms ofMm �Nn. Throughout this paper, by a poset
matrix we mean a poset matrix in upper triangular form, and byMn we mean a poset matrix of order n.

Mohammad and Talukder [11] defined the properties of block of 0s, block of 1s, and complete blocks
of 1s in a poset matrixMn = [aij ], 1 ≤ i, j ≤ n, as follows:

(1) A poset matrix Mn satisfies the property of block of 0s (analogously, block of 1s) of length r,
1 ≤ r < n, if and only if aij = 0 (aij = 1) for all 1 ≤ i ≤ r and r + 1 ≤ j ≤ n.

(2) A poset matrixMn satisfies the property of complete blocks of 1s of length {r1, r2, . . . , rm}, where
0 ≤ r1 < r2 < · · · < rm < n, if and only if for all 1 ≤ i < j ≤ n,

aij =

1, if 1 ≤ i ≤ rk and rk + 1 ≤ j ≤ n (1 ≤ k ≤ m),

0, otherwise.

A length l in the property of complete blocks of 1s is called nonzero if and only if l 6= {0}. Obviously,
for every n ≥ 2, both the poset matrices In and Cn satisfy the properties of block of 0s and block of
1s, respectively, of the lengths 1, 2, . . . , n− 1. Also, for every n ≥ 1, matrix In satisfies the property of
complete blocks of 1s of length {0}, and for every n ≥ 2, matrix Cn satisfies the property of complete
blocks of 1s of length {1, 2, . . . , n − 1}. In particular, the matrices 1 ⊕ C2, C2 ⊕ 1, and I3, as in the
following example, satisfy the property of block of 0s of length 1, length 2, and lengths 1, 2, respectively.
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Example 2.3.

1⊕ C2 =

 1 0 0
0 1 1
0 0 1

 C2 ⊕ 1 =

 1 1 0
0 1 0
0 0 1

 I3 =

 1 0 0
0 1 0
0 0 1


Note that for any relabeling, a matrixMn can satisfy one of the two properties at a time but not both

the properties together. We have the following immediate consequences.

Theorem 2.3. [11] For n ≥ 2,

(1) a poset matrixMn satisfies the property of block of 0s of lengths n1, n2, . . . , nm if and only ifMn =

Mn1 ⊕Mn2−n1 ⊕ · · · ⊕Mn−nm .

(2) a poset matrixMn satisfies the property of block of 1s of lengths n1, n2, . . . , nm if and only ifMn =

Mn1 �Mn2−n1 � · · ·�Mn−nm .

We observe that all the poset matrices in Example 2.3 represent disconnected posets. However, we
have the following results regarding the matrix recognitions of the connected and disconnected posets
in general.

Theorem 2.4. LetMn represent the poset P � 1. Then

(1) P is connected ifMn can be relabeled in such a form that it satisfies the property of block of 1s.

(2) P is disconnected if and only ifMn can be relabeled in such a form that it satisfies the property of block

of 0s.

Proof. Proofs follow by Theorem 2.3 and the definitions of connected posets and disconnected posets.
�

Our method for the enumeration of P -series is based mainly on the following results regarding the
recognition of P -series by using the poset matrix.

Theorem 2.5. [11] LetMn represent the poset P. Then P is a P -series if and only ifMn can be relabeled in

such a form that eitherMn satisfies the property of complete blocks of 1s orMn satisfies the property of block of

0s, and every direct term ofMn satisfies the property of complete blocks of 1s.

In general, the converse of the result obtained in the first part of Theorem 2.4 is not true. Because, the
4-element N -shaped poset is connected but the poset matrix that represents this poset does not satisfy
the property of block of 1s for any labeling. However, the following result regarding the recognition of
connected P -series (equivalently, connected P -graphs) shows that the converse of the aforesaid result
holds in the cases of connected P -series.

Corollary 2.1. LetMn represent the poset P � 1. Then
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(1) P is a connected P -series (equivalently, a connected P -graph) if and only ifMn can be relabeled in such

a form that it satisfies the property of complete blocks of 1s of some nonzero lengths.

(2) P is a disconnected P -series if and only ifMn can be relabeled in such a form that it satisfies the property

of block of 0s and every direct term satisfies the property of complete blocks of 1s of some nonzero lengths.

Proof. Proofs follow by Theorem 2.4 and Theorem 2.5. �

3. Enumeration of connected P -series

Let G(n) be the number of unlabeled connected P -series with n elements. Since the singleton poset
1 is connected, we have G(1) = 1. LetMn, n ≥ 2, represent a connected P -series, that is, a connected
P -graph. By Corollary 2.1, the matrix Mn satisfies the property of complete blocks of 1s of some
nonzero lengths. Then we observe the following.

(1) AnM2 can satisfy the property of complete blocks of 1s of nonzero length {1} only. ThenM2

represents the connected P -series C2 only. Thus, G(2) = 1.
(2) AnM3 can satisfy the property of complete blocks of 1s of nonzero lengths {1}, {2}, and {1, 2}.

Thus,M3 represents 3 connected P -series all of which are nonisomorphic. This gives G(3) = 3.
(3) AllM4 that satisfy the property of complete blocks of 1s are given in Table 1. This shows that

M4 represents 7 connected P -series all of which are nonisomorphic. Thus, G(4) = 7.

This intuition gives that anMn, n ≥ 2 can satisfy the property of complete blocks of 1s of nonzero
lengths equal to a nonempty subset of {1, 2, . . . , n− 1} such that in every case it represents a single
connected P -series. This result gives an explicit formula for the enumeration of n-element unlabeled
connected P -series (equivalently, connected P -graphs) for all n ≥ 2.

Theorem 3.1. For n ≥ 2, let G(n) be the number of n-element unlabeled connected P -series. Then G(n) =

2n−1 − 1.

Proof. By Corollary 2.1, G(n), n ≥ 2, equals the number of distinctMn that satisfies the property of
complete blocks of 1s of all possible nonzero lengths. We observe thatMn can satisfy the property of
complete blocks of 1s of nonzero lengths equal to a nonempty subset of S = {1, 2, . . . , n− 1}. Since
there are 2n−1 − 1 nonempty subsets of S, anMn can satisfy the property of complete blocks of 1s of
nonzero lengths in 2n−1 − 1 ways. Thus,Mn represents 2n−1 − 1 connected P -series. To show that all
the connected P -series represented byMn are nonisomorphic, letMn satisfy the property of complete
blocks of 1s of lengths {n1, n2, . . . , nm}. ThenMn satisfies the property of block of 1s of lengths n1, n2,
. . . , nm such that the ordinal terms are Ini−ni−1 , 1 ≤ i ≤ m+ 1, where we assume n0 = 0 and nm+1 = n.
Since for every 1 ≤ i ≤ m+ 1, the ordinal term Ini−ni−1 represents a single poset, and the ordinal sum
of the poset matrices is not commutative, in this case,Mn represents a single connected P -series. Since
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Table 1. AllM4 that satisfy the property of complete blocks of 1s.

1� I3 =



1 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1


I2 � I2 =



1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1



I3 � 1 =



1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1


1� I2 � 1 =



1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1



1� 1� I2 =



1 1 1 1

0 1 1 1

0 0 1 0

0 0 0 1


I2 � 1� 1 =



1 0 1 1

0 1 1 1

0 0 1 1

0 0 0 1



1� 1� 1� 1 =



1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1



all the 2n−1− 1 lengths satisfied byMn are different,Mn represents 2n−1− 1 nonisomorphic connected
P -series. Therefore, we have G(n) as follows:

G(n) = 2n−1 − 1, where n ≥ 2. (1)

�

4. Enumeration of disconnected P -series

Let D(n), n ≥ 1, be the numbers of n-element unlabeled disconnected P -series. Then D(1) = 0. For
every n ≥ 2, letMn represent a disconnected P -series, that is, a P -series with two or more direct terms.
By Corollary 2.1, the matrixMn satisfies the property of block of 0s such that every direct term satisfies
the property of complete blocks of 1s of nonzero lengths. We observe the following.
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(1) AnM2 can satisfy the property of block of 0s of length 1 only. Then both the direct terms are
M1. Thus, D(2) = 1.

(2) An M3 can satisfy the property of block of 0s of length 1, length 2, and lengths 1, 2. Here,
the matricesM3 that satisfy the property of block of 0s of length 1 and length 2 represent the
isomorphic P -series. Therefore, D(3) = 2.

(3) AllM4 that satisfy the property of block of 0s and represent nonisomorphic P -series are given
in Table 2. Here,
(a) the matricesM4 that satisfy the property of block of 0s of length 1 and length 3 represent

isomorphic P -series.
(b) the matricesM4 that satisfy the property of block of 0s of lengths 1, 2 and lengths 1, 3

represent isomorphic P -series.
Therefore, D(4) = 6.

Table 2. AllM4 that satisfy the property of block of 0s and represent nonisomorphic P -series.

1⊕ (1� I2) =



1 0 0 0

0 1 1 1

0 0 1 0

0 0 0 1


1⊕ (I2 � 1) =



1 0 0 0

0 1 0 1

0 0 1 1

0 0 0 1



1⊕ C3 =



1 0 0 0

0 1 1 1

0 0 1 1

0 0 0 1


C2 ⊕ C2 =



1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1



1⊕ 1⊕ C2 =



1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1


1⊕ 1⊕ 1⊕ 1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



Since the direct sum of the posets is commutative, the matricesMn that satisfy the property of block
of 0s of different lengths can represent isomorphic P -series. Therefore, in the case of enumeration of
Mn that represent nonisomorphic disconnected P -series, to exclude the cases when the matricesMn

satisfy the property of block of 0s and represent isomorphic P -series, we restrict firstly the lengths in
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the property of block of 0s to be nondecreasing inter-distant (as defined below). In addition, we count
the number of repetitions of the consecutive direct terms of same order and reduce the number ofMn

accordingly.

Definition 4.1. The lengths n1, n2, . . . , nm, where 1 ≤ m ≤ n − 1, chosen as a subcollection of the
integers 1, 2, . . . , n− 1 are called nondecreasing inter-distant if the following condition holds:

n1 ≤ n2 − n1 ≤ · · · ≤ ni+1 − ni ≤ · · · ≤ n− nm.

For example, all the nondecreasing inter-distant lengths l(m, j), 1 ≤ m ≤ 5, 1 ≤ j ≤ pm, for some
integers pm, are given in Table 3.

Table 3. Nondecreasing inter-distant lengths l(m, j), 1 ≤ m ≤ 5, 1 ≤ j ≤ pm, for some
integer pm ≤

(
5
m

).
m j l(m, j)

1 1 1

1 2 2

1 3 3

2 1 1, 2

2 2 1, 3

2 3 2, 4

3 1 1, 2, 3

3 2 1, 2, 4

4 1 1, 2, 3, 4

5 1 1, 2, 3, 4, 5

For all 1 ≤ m ≤ n− 1, it is clear that pm ≤
(
nm

m

). By inspection, we have p ≤ n2 ≤
(
nm

m

). However,
the following result gives an upper bound of nm.

Lemma 4.1. Let the lengths n1, n2, . . . , nm be nondecreasing inter-distant. Then nm ≤ b mn
m+1c for every

1 ≤ m ≤ n− 1.

Proof. The proof follows from the fact that nm + nm
m ≤ n holds for all 1 ≤ m ≤ n− 1. �

Now we establish the result regarding the enumeration ofMn that satisfy the property of block of 0s
of the nondecreasing inter-distant lengths n1, n2, . . . , nm, and represent nonisomorphic disconnected
P -series.
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Theorem 4.1. For n ≥ 2, letMn satisfy the property of block of 0s of nondecreasing inter-distant lengths n1, n2,

. . . , nm, where tk, 1 ≤ k ≤ q, for some q ≤ m + 1, be the number of the k-th group of consecutive lengths of

equal inter-distance rk, such that the direct termMri represents G(ri) nonisomorphic connected P -series for

every 1 ≤ i ≤ m+ 1. Then D̄(n), the number of nonisomorphic disconnected P -series represented byMn, can

be given as D̄(n) =
∏q

k=1

(
G(rk)+tk

1+tk

)
, n ≥ 2.

Proof. For n ≥ 2, letMn satisfy the property of block of 0s of nondecreasing inter-distant lengths n1, n2,
. . . , nm, where for some q ≤ m+ 1,

r1 = n1 − n0 = n2 − n1 = · · · = nt1+1 − nt1 ,

r2 = nt1+2 − nt1+1 = · · · = nt1+t2+2 − nt1+t2+1,

...

rq = nt1+···+tq−1+q − nt1+···+tq−1+q−1 = · · · = n− nm,

such that r1 < r2 < · · · < rq andm = t1 + · · ·+ tq + q− 1. Here, we assume n0 = 0 and nm+1 = n. This
shows that for every 1 ≤ k ≤ q, all the tk + 1 consecutive direct terms equalMrk which representsG(rk)

nonisomorphic connected P -series. Therefore, the direct sumM(tk+1)rk represents the nonisomorphic
P -series having direct terms as a subcollection of the tk + 1 posets each of which is chosen from one of
the same tk + 1 collections of G(rk) nonisomorphic connected P -series. This implies that D̄((tk + 1)rk),
the number of nonisomorphic disconnected P -series represented byM(tk+1)rk , equals the number of
combinations of tk + 1 items chosen from G(rk) + tk distinct items. Therefore, for every 1 ≤ k ≤ q, the
number D̄((tk + 1)rk) can be given as follows:

D̄((tk + 1)rk) =

(
G(rk) + tk

1 + tk

)
. (2)

Since r1 < r2 < · · · < rq, for every 1 ≤ k ≤ q, the direct term M(tk+1)rk represents nonisomorphic
P -series of distinct orders. This shows that Mn represents the nonisomorphic P -series having the
direct terms as a subcollection of q P -series each of which is chosen from one of the q collections of
D̄((tk + 1)rk) nonisomorphic P -series. Therefore, D̄(n) equals the number of combinations of q items
each of which is chosen from one of the q disjoint sets of D̄((tk + 1)rk) distinct items. Therefore, D̄(n)

can be given as follows:

D̄(n) = D̄((t1 + 1)r1)× · · · × D̄((tq + 1)rq) =

q∏
k=1

D̄((tk + 1)rk).

Then by using the equation (2), we have

D̄(n) =

q∏
k=1

(
G(rk) + tk

1 + tk

)
, where n ≥ 2. (3)

�
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Now we establish the result regarding the computation of D(n), the number of n-element unlabeled
disconnected P -series for n ≥ 2.

Theorem 4.2. For n ≥ 2, letMn satisfy the property of block of 0s of nondecreasing inter-distant lengths l(m, j),

where tmjk be the number of the k-th group of consecutive lengths of equal inter-distance rmjk, such that the direct

termsMrmjk
representsG(rmjk) nonisomorphic connectedP -series for every 1 ≤ k ≤ qmj , 1 ≤ j ≤ pm, and 1 ≤

m ≤ n− 1, for some pm ≤ n2 and qmj ≤ m+ 1. Then we haveD(n) =
∑n−1

m=1

∑pm
j=1

∏qmj

k=1

(2rmjk−1
+tmjk−1

tmjk+1

)
,

n ≥ 2.

Proof. Let S̄(m, j) be the number ofMn that satisfy the property of block of 0s of the nondecreasing
inter-distant lengths l(m, j): n1j , n2j , . . . , nmj such that tmjk be the number of the k-th group of
consecutive lengths of equal inter-distance rmjk, for every 1 ≤ k ≤ qmj , 1 ≤ j ≤ pm, and 1 ≤ m ≤ n− 1.
Then we have

rmj1 = nij − n(i−1)j , 1 ≤ i ≤ tmj1 + 1,

rmj2 = nij − n(i−1)j , tmj1 + 2 ≤ i ≤ tmj2 + 1,

...

rmjq = nij − n(i−1)j , tmj(q−1) + 2 ≤ i ≤ tmjq + 1,

such that rmj1 < rmj2 < · · · < rmjqmj , where we assume n0j = 0 and n(m+1)j = n. Then the direct terms
areMrmjk

, 1 ≤ i ≤ tmjk + 1, 1 ≤ k ≤ qmj . By hypothesis,Mrmjk
represents G(rmjk) nonisomorphic

connected P -series for every 1 ≤ i ≤ tmjk + 1 and 1 ≤ k ≤ qmj . Therefore, by Theorem 4.1, we have
S̄(m, j) as follows:

S̄(m, j) =

qmj∏
k=1

(
G(rmjk) + tmjk

1 + tmjk

)
. (4)

Since the equation (4) holds for all lengths l(m, j), where 1 ≤ j ≤ pm and 1 ≤ m ≤ n− 1, we have

D(n) =
n−1∑
m=1

pm∑
j=1

S̄(m, j) =
n−1∑
m=1

pm∑
j=1

qmj∏
k=1

(
G(rmjk) + tmjk

1 + tmjk

)
, where n ≥ 2.

Then by using the equation (1), we have

D(n) =

n−1∑
m=1

pm∑
j=1

qmj∏
k=1

(
2rmjk−1 + tmjk − 1

tmjk + 1

)
, where n ≥ 2. (5)

�

5. Enumeration algorithm

Recall that we did not specify the parameters pm, qmj , 1 ≤ m ≤ n − 1, 1 ≤ j ≤ pm, as in the
equation (5), explicitly. For given n, we have 1 ≤ p ≤ n2 and 1 ≤ q ≤ m+1, where 1 ≤ m ≤ n−1. Here,
we give an algorithm for determining mainly the parameters pm, qmj , 1 ≤ m ≤ n− 1, 1 ≤ j ≤ pm, and
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for computing D(n), the number of n-element unlabeled disconnected P -series, as in the equation (5).
In the algorithm below, we recall also the equation (1), and finally, determine S(n), the number of
n-element unlabeled P -series, for 1 ≤ n ≤ 76, see the sequence A349276 in OEIS [17].

Algorithm 5.1. To compute S(n), the number of unlabeled P -series with n ≥ 2 elements.

(1) Compute G(n), the number of n-element unlabeled connected P -series, by using the equa-
tion (1).

(2) Initialize D(n) = 0, where D(n) is the number of n-element unlabeled disconnected P -series.
(3) Repeat (a) for everym ≤ n− 1.

(a) Repeat (i) to (iv) for every distinct nondecreasing inter-distant lengths l(m, j) as is con-
structed in (i). (Here, the total number of repetitions equals the parameter pm in the
equation (5)).

(i) Construct j-th nondecreasing inter-distant lengths l(m, j) consisting ofm integers
chosen from the integers less than or equal to n− 1.

(ii) Initialize S̄(m, j) = 1 as given in the equation (4).
(iii) Compute tmjk and repeat (α) for every distinct rmjk in the lengths l(m, j). (Here,

the total number of distinct rmjk equals the parameter qmj in the equation (4)).
(α) Update S̄(m, j) with S̄(m, j)×

(2rmjk−1
+tmjk−1

tmjk+1

).
(iv) Increase D(n) by S̄(m, j).

(4) Return the sum of G(n) and D(n).

Lemma 5.1. Algorithm 5.1 is a polynomial time algorithm.

Proof. The constructions of the nondecreasing inter-distant lengths l(m, j) in the step (i) have complex-
ities equivalent to O(m(n − 1)). Then 1 ≤ m ≤ n − 1 implies O(m(n − 1)) ≈ O(n2). Since we have
1 ≤ tmjk, qmj ≤ m+ 1 and tmjk ∝ 1

qmj
, the computations of S̄(m, j) in the step (iii) have complexities

equivalent toO(m+ 1) ≈ O(n). Since 1 ≤ pm ≤ n2, the repetitions in the step (a) increase the complex-
ities to n2(O(n2)+O(n)) ≈ O(n4). Finally, the repetitions in the step (3) increase the complexities to
(n− 1)(O(n4)) ≈ O(n5). This shows that Algorithm 5.1 runs in polynomial time. �

6. Numerical results

We implemented the enumeration algorithm on an Intel CORE-i7 (3.6 GHz) personal computer and
determined the numbers S(n), n ≤ 76, see Table 4. To compute S(n), the machine took about 1 minute
for n ≤ 30 and about 2 minutes for n ≤ 55. A modified version of the computer codes consisting of the
basic operations with the numbers greater than the maximum of unsigned 64-bit integers was used to
determine S(n), 56 ≤ n ≤ 76. The same machine then took about 5 days to compute the numbers S(n),
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56 ≤ n ≤ 76. The numbers S(n), n ≤ 7, were verified by the direct counting of the Hasse diagrams of
the posets. Also, in Table 5 to Table 10, we include the numbers D(n), 2 ≤ n ≤ 50, obtained according
to the number of direct terms d = m + 1, 2 ≤ d ≤ 50, see the equation (5). Note that in the cases of
Table 6 to Table 10, we omitted some rows of the tables, because the numbers in these rows become
fixed and can be found from the preceding tables.

Table 4. The number of unlabeled P -series, S(n), 1 ≤ n ≤ 76.

n S(n) n S(n)

1 1 39 35832848639728
2 2 40 78705877884915
3 5 41 172713052281618
4 13 42 378658685153078
5 31 43 829444630192847
6 76 44 1815327343588985
7 178 45 3969733570967104
8 423 46 8673949863105406
9 988 47 18937880726772891

10 2312 48 41315603669403295
11 5361 49 90068720253991344
12 12427 50 196209285382157748
13 28626 51 427128874227627952
14 65813 52 929180107820533570
15 150700 53 2019993307095465670
16 344232 54 4388500556899660906
17 783832 55 9528080978492183705
18 1780650 56 20673992475866448294
19 4034591 57 44831081784801194655
20 9121571 58 97157449500339784571
21 20576349 59 210436395165112089588
22 46322816 60 455532200360723949309
23 104079338 61 985544410433148763070
24 233421517 62 2131068542916883839418
25 522574991 63 4605616404036914986284
26 1167974002 64 9948373437303420329108
27 2606282841 65 21478059545386107220988
28 5806953923 66 46346950727795354034183
29 12919314397 67 99961971368012285152972
30 28702716868 68 215496487079393129129125
31 63682839588 69 464345657776589836023901
32 141111193270 70 1000097485812093813586914
33 312292169989 71 2153013980763130917951360
34 690306198843 72 4632960798441274853250227
35 1524130470505 73 9965090320649581955683375
36 3361399303025 74 21415423429824053319007625
37 7405463570514 75 46025078414400880740770376
38 16298002803048 76 98911833079304855821827814
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Table 5. The number of unlabeled disconnected P -series, D(n), 2 ≤ n ≤ 18, according
to the number direct terms d, 2 ≤ d ≤ 18.

d�n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2 1 1 4 10 28 67 167 388 908 2053 4629 10246 22566 49159 106567 229384 491656
3 1 1 4 11 31 80 213 534 1343 3291 7980 19040 44984 104988 242884 556791
4 1 1 4 11 32 83 226 580 1504 3796 9536 23583 5,900 140496 338304
5 1 1 4 11 32 84 229 593 1550 3957 10062 25244 62948 155431
6 1 1 4 11 32 84 230 596 1563 4003 10223 25770 64637
7 1 1 4 11 32 84 230 597 1566 4016 10269 25931
8 1 1 4 11 32 84 230 597 1567 4019 10282
9 1 1 4 11 32 84 230 597 1567 4020
10 1 1 4 11 32 84 230 597 1567
11 1 1 4 11 32 84 230 597
12 1 1 4 11 32 84 230
13 1 1 4 11 32 84
14 1 1 4 11 32
15 1 1 4 11
16 1 1 4
17 1 1
18 1

D(n) : 1 2 6 16 45 115 296 733 1801 4338 10380 24531 57622 134317 311465 718297 1649579

Table 6. The number of unlabeled disconnected P -series,D(n), 19 ≤ n ≤ 27, according
to the number of direct terms d, 2 ≤ d ≤ 14.

d�n 19 20 21 22 23 24 25 26 27
2 1048585 2228489 4718602 9961994 20971531 44041227 92274700 192940044 402653197
3 1266751 2861202 6422009 14329484 31805747 70252549 154488108 338336382 738193444
4 807237 1912072 4494918 10497181 24356462 56184170 128879083 294109263 667901109
5 381277 928112 2244879 5394318 12886346 30605995 72302182 169918416 397378534
6 160626 396947 974151 2377592 5769408 13929199 33459298 79999191 190404747
7 65163 162315 402178 990017 2424639 5906454 14321530 34565725 83075361
8 25977 65324 162841 403867 995248 2440550 5953753 14459900 34963876
9 10285 25990 65370 163002 404393 996937 2445781 5969664 14507254
10 4020 10286 25993 65383 163048 404554 997463 2447470 5974895
11 1567 4020 10286 25994 65386 163061 404600 997624 2447996
12 597 1567 4020 10286 25994 65387 163064 404613 997670
13 230 597 1567 4020 10286 25994 65387 163065 404616
14 84 230 597 1567 4020 10286 25994 65387 163065

D(n) : 3772448 8597284 19527774 44225665 99885035 225032910 505797776 1134419571 2539173978
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Table 7. The number of unlabeled disconnected P -series,D(n), 28 ≤ n ≤ 34, according
to the number of direct terms d, 2 ≤ d ≤ 18.

d�n 28 29 30 31 32 33 34
2 838864909 1744830478 3623886862 7516192783 15569272847 32212254736 66572025872
3 1605012086 3478467868 7516176493 16195589395 34807097956 74625024265 159629552218
4 1509867489 3398600871 7619289505 17016923183 37870246585 83994797573 185706360360
5 924973200 2143477586 4946037062 11366662041 26020964794 59348001466 134881344515
6 451241226 1064970949 2503508837 5862757276 13679302057 31804663743 73695371416
7 198847778 474135412 1126358220 2666381958 6290646019 14793003401 34678077433
8 84205462 202013276 482899046 1150352137 2731408818 6465188021 15257303293
9 35102561 84605296 203150904 486095681 1159235316 2755839396 6531740146
10 14523165 35149915 84744047 203551123 487235394 1162441405 2764762205
11 5976584 14528396 35165826 84791401 203689874 487635691 1163581580
12 2448157 5977110 14530085 35171057 84807312 203737228 487774442
13 997683 2448203 5977271 14530611 35172746 84812543 203753139
14 404617 997686 2448216 5977317 14530772 35173272 84814232
15 163064 404617 997687 2448219 5977330 14530818 35173433
16 65387 163064 404617 997687 2448220 5977333 14530831
17 25994 65387 163064 404617 997687 2448220 5977334
18 10286 25994 65387 163064 404617 997687 2448220

D(n) : 5672736196 12650878942 28165845957 62609097765 138963709623 307997202694 681716264252

Table 8. The number of unlabeled disconnected P -series,D(n), 35 ≤ n ≤ 40, according
to the number of direct terms d, 2 ≤ d ≤ 21.

d�n 35 36 37 38 39 40
2 137438953489 283467907089 584115552274 1202590973970 2473901162515 5085241540627
3 340734006527 725849342543 1543324783860 3275628128836 6940666889448 14683061004856
4 409351418116 899770401861 1972412861594 4312761385740 9407206034047 20472269741866
5 305512784640 689767269943 1552503917727 3483993382458 7796348096160 17399073347974
6 170201538669 391842528114 899355963864 2058114658969 4696439658814 10687375059445
7 81047757227 188867721744 438881655169 1017064309232 2350701482265 5419121237462
8 35902678657 84251790220 197186885086 460325889435 1071959991411 2490307177236
9 15436987973 36383784779 85529867179 200557072734 469150541905 1094913052502
10 6556324949 15504111139 36565492083 86017890423 201858086319 472594806691
11 2767970824 6565259359 15528745095 36632808617 86200321470 202348701371
12 1163981877 2769111090 6568468524 15537682523 36657456541 86267697710
13 487821796 1164120628 2769511387 6569608790 15540891793 36666394606
14 203758370 487837707 1164167982 2769650138 6570009087 15542032059
15 84814758 203760059 487842938 1164183893 2769697492 6570147838
16 35173479 84814919 203760585 487844627 1164189124 2769713403
17 14530834 35173492 84814965 203760746 487845153 1164190813
18 5977334 14530835 35173495 84814978 203760792 487845314
19 2448220 5977334 14530835 35173496 84814981 203760805
20 997687 2448220 5977334 14530835 35173496 84814982
21 404617 997687 2448220 5977334 14530835 35173496

D(n) : 1506950601322 3327039564658 7336744093779 16160563849577 35557970732785 78156122071028
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Table 9. The number of unlabeled disconnected P -series,D(n), 41 ≤ n ≤ 45, according
to the number of direct terms d, 2 ≤ d ≤ 23.

d�n 41 42 43 44 45

2 10445360463892 21440477265940 43980465111061 90159954526229 184717953466390

3 31015389975772 65420940806699 137805456299215 289904563759646 609129439696065

4 44454957781390 96331619708056 208331276709173 449693716677808 968931536739116

5 38728538760019 85990928093694 190473579856294 420938987475544 928208260681351

6 24255843356810 54908954740940 123990449527175 279310303001575 627730601961794

7 12461643067304 28586943323221 65423791190219 149385168779836 340337759138687

8 5771925395845 13347881861258 30800377251935 70921565825199 162968649866921

9 2549629583160 5924315615251 13737078604595 31788839948556 73418617030197

10 1103971401864 2573304750371 5985827821321 13895997702443 32197202864856

11 473904783197 1107445726719 2582461315091 6009816527499 13958490498912

12 202531369392 474396293016 1108758936042 2585946920021 6019011268778

13 86292349183 202598762187 474579032326 1109250730904 2587261213457

14 36669603876 86301287368 202623414395 474646429244 1109433489576

15 15542432356 36670744142 86304496638 202632352580 474671081588

16 6570195192 15542571107 36671144439 86305636904 202635561850

17 2769718634 6570211103 15542618461 36671283190 86306037201

18 1164191339 2769720323 6570216334 15542634372 36671330544

19 487845360 1164191500 2769720849 6570218023 15542639603

20 203760808 487845373 1164191546 2769721010 6570218549

21 84814982 203760809 487845376 1164191559 2769721056

22 35173496 84814982 203760809 487845377 1164191562

23 14530835 35173496 84814982 203760809 487845377

D(n) : 171613540653843 376459661897527 825046583681744 1806531250566778 3952141384922689
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Table 10. The number of unlabeled disconnectedP -series,D(n), 46 ≤ n ≤ 50, according
to the number of direct terms d, 2 ≤ d ≤ 26.

d�n 46 47 48 49 50

2 378232002052118 774056185954327 1583296748191767 3236962232172568 6614661961089048

3 1278365515033104 2679876336571571 5611907339790849 11739852145251492 24535235453168114

4 2084098123128673 4475326479602254 9594966779907938 20540133808336393 43906745522488463

5 2042448364261787 4485095705244385 9829718631564444 21502614372408198 46951849531703518

6 1407602179101315 3149475326523435 7031990909757367 15668563529981774 34843255271767539

7 773694738380576 1755136990705480 3973363951584615 8977075395155599 20242448421527101

8 373729014087492 855379360957198 1954029064304096 4455470993905336 10140647950148663

9 169244336709722 389423469869103 894442022352300 2050808406537735 4694185790941035

10 74462548616777 171899823803530 396146215824697 911383714980428 2093314021306824

11 32359132509046 74880000922228 172970781542159 398880942497005 918335798591009

12 13982605095485 32422030986395 75043211526947 173392205098663 399964009836122

13 6022500819359 13991813705348 32446192869064 75106267106545 173555925826013

14 2587753092221 6023815450370 13995304547710 32455406209237 75130445717662

15 1109500887334 2587935855633 6024307351523 13996619276266 32458897446169

16 474680019773 1109525539678 2588003253544 6024490115887 13997111182819

17 202636702116 474683229043 1109534477863 2588027905888 6024557513798

18 86306175952 202637102413 474684369309 1109537687133 2588036844073

19 36671346455 86306223306 202637241164 474684769606 1109538827399

20 15542641292 36671351686 86306239217 202637288518 474684908357

21 6570218710 15542641818 36671353375 86306244448 202637304429

22 2769721069 6570218756 15542641979 36671353901 86306246137

23 1164191563 2769721072 6570218769 15542642025 36671354062

24 487845377 1164191563 2769721073 6570218772 15542642038

25 203760809 487845377 1164191563 2769721073 6570218773

26 84814982 203760809 487845377 1164191563 2769721073

D(n) : 8638765491016575 18867511982595228 41174866181047968 89787245277280689 195646335428736437
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