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Abstract. In this paper, we proposed a new hybrid algorithm for the minimization of real functions.
This algorithm, called gaTLBO_NNA, is a combination of three algorithms: Improved real-coded genetic
algorithm (IRGA), the Teaching–learning-based optimization (TLBO) algorithm and the Neural Network
Algorithm (NNA). First we evaluated our algorithm on some benchmark test functions and compared it to
some metaheuristics. The results showed that the proposed hybrid algorithm delivers better performance
for most of the tested functions.We then applied our algorithm to estimate the parameters of a COVID-19
model using data from Morocco.
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1. Introduction

Global optimization of functions presents a common challenge in the fields of engineering. Mathe-
matically, this problem can be formulated as follows:

min
x∈D

f(x) (1)

where x = (x1, · · · , xn) ∈ Rn, f a numeric function of Rn, D =
∏n
i=1[ai, bi], ai and bi are reals.

Metaheuristic optimization techniques are particularly well-suited to optimization problems where the
search space is large, where parameters interact in complex ways, and where available information
about the function to be optimized is limited [1,12]. They do not require specific assumptions regarding
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the regularity of the objective function. Furthermore, metaheuristic algorithms do not rely on the
successive derivatives of the functions to be optimized, which eliminates the need for a continuity
assumption. As a result, the function to be optimized can be derived from a simulation. These algo-
rithms often prove to be much more robust in their ability to identify the global optimum, with reduced
sensitivity to initial conditions.
Numerous metaheuristic algorithms have been presented in the literature to solve optimization prob-
lems. Among them are the genetic algorithm proposed by Holland [12]. The Grey Wolf Opti-
mizer(GWO) algorithmwhich mimics the leadership hierarchy and hunting mechanism of grey wolves
in nature proposed by S. Mirjalili et al [1]. The HmGAGWO algorithm proposed by Sawadogo et
al. [8] combine GA and GWO algorithm. Neural Network Algorithm (NNA) proposed by A. Sadollah
et al. [2] is inspired by biological nervous system and Artificial Neural Networks (ANNs). Particle
Swarm Optimization (PSO) algorithm proposed by Kennedy and Eberhart [3] is inspired from social
organization of birds. The Improved Real-coded Genetic Algorithm (IRGA) proposed by [7] is an
improvement to the genetic algorithm that allows solving optimization problems where variables
are continuous rather than discrete. Teaching–learning-based optimization (TLBO algorithm) is an
optimization algorithm based on teaching and learning proposed by by R.V. Rao et al. [10]. In this
work, we propose an hybridization of the IRGA, TLBO, and NNA algorithms. The idea is to combine
the exploration capacity of the IRGA algorithm, the refinement ability of the NNA algorithm, and the
capability of the TLBO algorithm to reach the global optimum.
The rest of this paper is organized as follows: Section 2, we provide a comprehensive review of the
Neural Networks (NNA) algorithm, Improved Real-coded Genetic Algorithm (IRGA) and the TLBO
algorithm. Section 3 is dedicated to presenting the proposed hybridization method. In section 4,
present the results on test functions and the resolution of the of the parameter estimation problem. We
conclude with Section 5.

2. Presentation of Algorithm Used

2.1. Improved real-coded genetic algorithm (IRGA). The Improved Real-coded Genetic Algorithm
(IRGA) is an improvement to the genetic algorithm that allows solving optimization problems where
variables are continuous rather than discrete [7]. The IRGA is based on the Real-coded Genetic
Algorithm (RGA) by integrating specific modifications in order to improve its performance or its
effectiveness in solving problems.
The IRGA offers three operators, namely tournament selection, directional crossover (DX) and direc-
tional mutation.
The discussion focuses on the operating mechanism of the proposed directional mutation (DM) and
the the directional crossover (DX) operator developed for the RGA. Both operators are influenced by
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the directional information of the given optimization problem. This information directs the search
process towards the most promising areas of the variable space where the chances of obtaining the best
solutions are high [7].

2.1.1. The DX directional crossover. The directional crossover operator (DX) is similar to the (DM)
operator. DX mainly has four (04) parameters namely the crossover probability (pc), the crossover
probability variable by variable (pcv), the directional probability (pd) and the multiplication factor
(α). Suppose pj1 and pj2 ( j varies from 1 to d), two parents who participate in the crossing and they are
not equal. pjmean and pjbest are the mean of the two parents and the jth variable of the optimal solution,
respectively. If pjbest is greater than or equal to pjmean, the two child solutions denoted c1 and c2 are
created as follows:

val = 1− (0.5)e

 |pj1−pj2|
(yju−yjl )


(2)

β =
r3
α2

(3)

c1 = val ×
(
pj1 + pj2

)
+ αr3 × e(1−β) × (1− val)×

∣∣∣pj1 − pj2∣∣∣ si r4 ≤ pd (4)

c2 = (1− val)×
(
pj1 + pj2

)
− α(1−r3) × e(−β) × val ×

∣∣∣pj1 − pj2∣∣∣ si r4 ≤ pd (5)

c1 = val ×
(
pj1 + pj2

)
− αr3 × e(1−β) × (1− val)×

∣∣∣pj1 − pj2∣∣∣ si r4 > pd (6)

c2 = (1− val)×
(
pj1 + pj2

)
+ α(1−r3) × e(−β) × val ×

∣∣∣pj1 − pj2∣∣∣ si r4 > pd (7)

r3 and r4: two different random numbers created in the range of (0,1)
val and β are the two intermediate parameters
yju and yjl : the upper and lower limits of the jth variable
α: multiplication factor
If pjbest is less than pjmean, the children are produced as follows:

c1 = val ×
(
pj1 + pj2

)
− αr3 × e(1−β) × (1− val)×

∣∣∣pj1 − pj2∣∣∣ si r4 ≤ pd (8)

c2 = (1− val)×
(
pj1 + pj2

)
+ α(1−r3) × e(−β) × val ×

∣∣∣pj1 − pj2∣∣∣ si r4 ≤ pd (9)

c1 = val ×
(
pj1 + pj2

)
+ αr3 × e(1−β) × (1− val)×

∣∣∣pj1 − pj2∣∣∣ si r4 > pd (10)
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c2 = (1− val)×
(
pj1 + pj2

)
− α(1−r3) × e(−β) × val ×

∣∣∣pj1 − pj2∣∣∣ si r4 > pd (11)

If the breeding parents have equal values and if pjbest 6= pjmean, then the solutions for the offspring are
obtained as follows:

val = 1− (0.5)e

 |pjbest−pjmean|
(yju−yjl )


(12)

β =
r3
α2

(13)

c1 = val ×
(
pjbest + pjmean

)
+ αr3 × e(1−β) × (1− val)×

∣∣∣pjbest − pjmean∣∣∣ si r4 ≤ pd (14)

c2 = (1− val)×
(
pjbest + pjmean

)
− α(1−r3) × e(−β) × val ×

∣∣∣pjbest − pjmean∣∣∣ si r4 ≤ pd (15)

c1 = val ×
(
pjbest + pjmean

)
− αr3 × e(1−β) × (1− val)×

∣∣∣pjbest − pjmean∣∣∣ si r4 > pd (16)

c2 = (1− val)×
(
pjbest + pjmean

)
+ α(1−r3) × e(−β) × val ×

∣∣∣pjbest − pjmean∣∣∣ si r4 > pd (17)

c1 is recognized as either the first child or the second.

Pseudo code of the directional crossover DX of IRGA

Input: Two parent ( p1 and p2) with d dimensions, pc, pcv, pd, pbest, α

Output: offspring ( Ch1 and Ch2)

if rand ≤ pc
forj=1 to d

if r1 ≤ pcv ( % r1 is random number created in the range (0,1) )
if
∣∣∣pj1 − pj2∣∣∣ > 0

Determine pjmean
Determine val and β by applying 2 and 3

if (pjbest ≥ p
j
mean)

if r4 ≤ pd
calculate c1 and c2 by applying 4 and 5
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else
calculate c1 and c2 by applying 6 7
endif

else
if r4 ≤ pd

calculate c1 and c2 using 8 and 9
else
calculate c1 and c2 by applying 10 and 11
endif

endif
Apply boundary constraint
Apply child recognition conditions

else
Chj1 = pj1

Chj2 = pj2

endif
endif

else
Chj1 = pj1

Chj2 = pj2

endif
end of for loop

else
Chj1 = pj1

Chj2 = pj2

endif

2.1.2. Directional mutation (DM). Let N be the size of the population and d be the total number of
variables in an optimization problem. Consider a parent yji and its mutated solutions ym where i and j
vary from 1 to N and from r to d respectively. yji participate in the mutation operation and pjbest the
best solution. ym is created using equation 3:

β1 = e2r−
2
r (18)

β2 = er−
2
r (19)
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ym =

y
j
i + β1 ×

(
yju − yji

)
si r2 ≤ pd

yji − β2 ×
(
yji − y

j
l

)
sinon

(20)

where:
β1 and β2: intermediate parameters
r1 and r2: two random numbers created in the range of (0,1) and r 6= 0

yju and yjl : the upper and lower limits of the jth variable
pd: the directional probability and between 0.5 and 1
pm: the probability of mutation

If pjbest is considered less than yji then ym is generated by equation 4:

ym =

y
j
i − β1 ×

(
yji − y

j
l

)
if r2 ≤ pd

yji + β2 ×
(
yju − yji

)
else

(21)

The mutated solutions will always be created within the limits of the variables.

Pseudo code of the proposed DM operator

Input: Parent solution (yji ), DM parameters ( pm and pd )

if r1 ≤ pm
calculate β1 using 18
calculate β2 using 19
if pjbest

evaluate ym using 20
else

evaluate ym using 21
end if

else

ym = yji

end if
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2.2. Teaching–learning-based optimization (TLBO) algorithm. TLBO is an optimization algorithm
based on teaching and learning and propose by R.V. Rao , V.J. Savsani, D.P. Vakharia [10]. It has two
phases: the teaching phase and the learning phase.

2.2.1. The teaching phase. the teaching phase which corresponds to learning alongside the teacher. The
teacher can only improve the average performance of the class according to the capacity of the class.
LetMi be the average situation of the population at iteration k and Xteacher be the teacher who tries to
makeMi converge towards its own level. In this case, a solution is updated based on the difference
between the average situation and the teacher’s situation as follows [9], [10]:

Xdiff = ri × (Mnew − TF ×Mi) (22)

TF = round [1 + rand(0, 1) {2− 1}] (23)

Xi
new = Xi

old +Xdiff (24)

where:
TF= learning factor, its value can be 1 or 2
ri: denotes a vector of random numbers in the interval [0, 1]

2.2.2. The learning phase. the learning phase represents the acquisition of knowledge through interaction
between learners.
Learners improve their knowledge by interacting with each other.
For any learner Xi, the learner Xj is randomly selected (i 6= j),
and if f(Xi) < f(Xj) then:

Xnew,i = Xold,i + ri × (Xi −Xj) (25)

And conversely, if f(Xi) > f(Xj) then:

Xnew,i = Xold,i + ri × (Xj −Xi) (26)

Pseudo code for TLBO algorithm

Initialize the population size N and number of generations Ng.
For (k=1 to Ng) do
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% teacher phase
Find the mean of each design variable Xmean

[Xteacher → X with f(X)max]

for (i=1 to n) do
Calculate TF,i = round [1 + rand(0, 1) {2− 1}]

Xnew,i = Xi + rand(0, 1) [Xteacher − TF,i ×Xmean]

Calculate f(Xnew,i)forXnew,i

f(Xnew,i) < f(Xi) then
Xi = Xnew,i

end if
% End of teacher phase

% Student phase
Select a learner randomly Xj such that j 6= i

if f(Xi) < f(Xj) then
Xnew,i = Xold,i + randi(Xi −Xj)

else
Xnew,i = Xold,i + randi(Xj −Xi)

end if
if f(Xnew,i) < f(Xi) then
Xi = Xnew,i

end if
% end of student phase
end for

end for

2.3. Neural Network Algorithm (NNA). The NNA (Neural Network Algorithm) was developped
by Ali Sadollah, Hassan Sayyaadi, Anupam Yadav [4]. Neural Network Algorithm (NNA) is a
metaheuristic optimization algorithm inspired by biological nervous systems and artificial neural
networks (ANN). It is designed to solve complex optimization problems. In NNA, the best solution
obtained at each iteration is assumed to be the target data, and the goal is to minimize the error between
the target data and the other predicted model solutions. NNA is an evolutionary algorithm that is
population-based and involves initializing the population, updating weight matrices, defining bias
operators, as well as transferring and applying the operators.
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2.3.1. Initial Population. The NNA algorithm begins with the random generation of an initial population
within the space of feasible solutions. The generated solutions are called pattern solution.
LetD be the dimension andN the number of generated solutions, then the solution patternX l is given
by
X l = [xl1, x

l
2, · · · , xlD] where l = 1, · · · , N and

xlj = LBj + rand(UBj − LBj) (27)

where LB and UB are are respectively the lower and upper bounds of the variables.
The solution matrix X is given by

X =


x11 · · · x1i · · · x1D

x21 · · · x2i · · · x2D
... ... ... ...
xN1 · · · xNi · · · xND

 (28)

2.3.2. Weight matrix. In the NNA algorithm, the population is updated using a neural network model-
like approach. In the search space, the initial population Xr = [xr1, x

r
2, . . . , x

r
N ] is updated through the

weight matrix
W r = [wr1, w

r
2, . . . , w

r
N ] for any generation r.Thus, xri = [xri,1, x

r
i,2, . . . , x

r
i,D] and wri =

[wri,1, w
r
i,2, . . . , w

r
i,D], where i = 1, 2, . . . , Np.Where, xri represents the ith individual vector and wri

represents the ith weight vector, both with D dimensions.
The weigth matrix is given by

W (t) = [W1,W2, · · · ,WN ] =


w11 · · · wi1 · · · wN1

w12 · · · wi2 · · · wN2

... ... ... ...
w1N · · · wiN · · · wNN

 (29)

It is desirable to impose constraints on the weights associated with new model solutions so that
significant biases are prevented in the generation and transmission of these solutions. In this way,
NNA was equipped to regulate its behavior through subtle deviations. After initializing the weights,
the one corresponding to the desired solution (Xtarget), i.e., the target weight (Wtarget), is chosen from
the weight matrixW . Therefore, the summation of the weight matrix must adhere to the following
conditions:

N∑
j=1

wi,j(t) = 1, i = 1, 2, . . . , N (30)

where
wi,j ∈ U [0, 1], i, j = 1, 2, . . . , N (31)
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2.3.3. Pattern solution and weights update. The formula for generating a new population at the (t+ 1)th
iteration can be expressed by:

Xl(t+ 1) = Xl(t) +
N∑
i=1

wjl(t)×Xl(t), (32)

After generating the new solutions, the weight matrix must be updated. The following equation
represents the process of updating the weights of the matrix based on the newly generated models and
the target weight.

Wl(t+ 1) = Wl(t) + 2× rand(0, 1)× (Wtarget(t)−Wl(t)) (33)

whereWtarget(t) is the vector of optimal target weights obtained in each iteration. The weight matrix
must always satisfy constraints during the optimization process.

Figure 1. Processes of the NNA [4], [5], [6]

2.3.4. Bias Operator. In NNA, the bias operator modifies a certain percentage of model solutions in the
new population, as well as the updated weight matrix. Therefore, the bias operator is another way to
explore the search space. The parameter β determines the percentage of model solutions and is initially
set to 100%. Its value has been reduced as described in [4], [5], [6].

β(t+ 1) = β(t)× 0.99 for t = 1, 2, 3, . . . ,Max_Iteration (34)

The bias population is defined by:

xri,P (s) = lP (s) + (uP (s) − lP (s))× α1, s = 1, 2, . . . , N (35)

where L = (l1, l2, . . . , lD) and U = (u1, u2, . . . , uD) are the lower and upper bounds of the variables. P
denotes a set of NP integers randomly selected from the range 0 to D, and NP is D multiplied by βr.
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α1 is a random number between 0 and 1 that obeys a uniform distribution.
he scientific representation for defining the bias weight matrix can be formulated as follows:

wri,Q(t) = α2, t = 1, 2, . . . , Pw (36)

where α2 is a random number between 0 and 1, following a uniform distribution [6].

2.3.5. Transfer Function Operator. The transfer function (TF) operator moves the new model solutions
from their current positions in the search space to new positions, facilitating the update and generation
of higher-quality solutions towards the target solution. Its equation is:

X∗l (t+ 1) = TF (Xl(t+ 1)) = Xl(t+ 1) + 2× rand× (XTarget(t)−Xl(t+ 1)) (37)

The pseudocode of NNA is given [5], [6]:

The pseudocode of the NNA algorithm

Initialize the population X and the weight matrixW
Calculate the fitness value of each solution and then set Xtarget andWtarget.
repeat

Generate the new solution X(t+ 1) by Equation 32 and new weight matrixW (t+ 1) by Equation 33
for i = 1 to N do

ifβ(t) ≥ rand
Perform the bias operator for updating the new pattern solution Xi(t+ 1) by Equation 35

and the weight matrixW i(t+ 1) by Equation 36.
else

Perform the transfer function operator for updating the solution Xi(t+ 1) via Equation 37.
endif

endfor

Generate the new modification factor β(t+ 1) by Equation 34.
Calculate the fitness value of each solution and find the target solution XTarget(t+ 1)

and the target weightWTarget(t+ 1).
Until (stop condition=false)
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3. Proposed Hybridization Method

3.1. Concept of the Proposed Hybridization Method. The proposed hybridization method combines
NNA, IRGA, and TLBO algorithms and proceeds in three (03) stages:

(1) Exploration Phase: The IRGA initializes the search process to enhance exploration capability.
It uses directional mutation (DM) and directional crossover (DX) operators to explore the
search space. At the end of the steps of the IRGA algorithm, we obtain a population of size 2N.

(2) Refinement Phase: After the IRGA phase, the NNA uses a neural network to further optimize
the refined solutions by focusing on local exploration and performance enhancement. It
improves the N best solutions from IRGA by adjusting the neural network weights to obtain
more precise results.

(3) Optimization Phase: TLBO is used to adjust the remaining N worst solutions. TLBO applies
teaching and learning concepts to optimize the remaining individuals, using the best individuals
as teachers and the others as students. It adjusts the solutions based on the performance of the
teachers and students to avoid local optima and accelerate overall convergence.

3.2. Steps of Hybridization. Step 1: Initialization of Parameters

Define the parameters for the IRGA, NNA, and TLBO algorithms:Population size N , Number of
variables d, Mutation probability pm, Crossover probability pc, Multiplication factor α, Learning factor
TF

Step 2: Generation of the Population

Create an initial population P ofN possible solutionsXi (with i = 1, . . . , N) covering the search space.
Step 3: Application of IRGA for Each Iteration

For each solution Xi:

• Calculate the directional mutation parameters: eq.18 and eq. 19
• Apply directional mutation: eq. 20

Step 4: For Each Pair of Solutions X1 and X2

• Calculate the intermediate value: eq. 2
• Calculate the crossover parameters: eq. 3

Step 5: Teaching and Learning Phase for the N Worst Solutions

Identify the N worst solutions. Apply TLBO to improve these solutions:
Teaching Phase

(1) Calculate the teacher difference: eq. 22
(2) Calculate the learning factor: eq. 23
(3) Update the solution: eq. 24

Learning Phase
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(1) For each learner Xi: Randomly select another learner Xj (i 6= j).
(2) Apply the learning rule: eq. 25 and eq. 26

Step 6: NNA Phase for Each Iteration (Top N Solutions)

Identify the top N solutions. Use NNA to refine these solutions by adjusting the neural network
weights for local optimization.

Figure 2 illustrates flowchart of the proposed hybridization algorithm gaTLBO_NNA.

Figure 2. flowcharts of gaTLBO_NNA
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4. Results and Discussion

4.1. Results for benchmark functions. In this part, we first use our algorithm on test functions. These
test functions were used by S. Mirjalili and al [1]. In each case the results were compared with others
algorithms.

4.1.1. Test functions. These functions are of three types. The table 1 presents the unimodal functions. The
multimodal functions are given in the table 2 and the table 3 presents the fixed-dimension multimodal.
The min column gives the minimum, dim is the dimension, and runge is the search interval. The
comparison was made with IRGA, TLBO ,NNA, GWO and PSO.

Functions Dim Interval fmin

f1(x) =
∑n

i=1 x
2
i 30 [−100, 100] 0

f2(x) =
∑n

i=1 |xi|+
∏n
i=1 |xi| 30 [−10, 10] 0

f3(x) =
∑n

i=1(
∑i

i=j−1 xj)
2 30 [−100, 100] 0

f4(x) = maxi |xi|, 1 ≤ i ≤ n 30 [−100, 100] 0

f5(x) =
∑n−1

i=1 [100(xi+1 − x2i )2 + (xi − 1)2 30 [−100, 100] 0

f6(x) =
∑n

i=1(xi + 0.5)2 30 [−100, 100] 0

f7(x) =
∑n

i=1 ix
4
i + random(0, 1) 30 [−1.28, 1.28] 0

Table 1. Unimodal test functions.

Functions Dim Interval fmin

f8(x) =
∑n
i=1−xisin

(√
|xi|
)

30 [−500, 500] −418.9829× 5

f9(x) =
∑n
i=1(x

2
i − 10cos(2πxi) + 10) 30 [−5.12, 5.12] 0

f10(x) = −20exp(−0.2
√

1
n

∑n
i=1 x

2
i )− exp( 1

n

∑n
i=1 cos(2πxi)) + 20 + e 30 [−32, 32] 0

f11(x) =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) + 1 30 [−600, 600] 0

f12(x) = π
n
(10sin(πy1) +

∑n−1
i=1 (yi − 1)2[1 + 10sin2(πyi+1) + (yn − 1)2]) +∑n

i=1 u(xi, 10, 100, 4), yi = xi+1
,

4

30 [−50, 50] 0

f13(x) = 0.1(sin2(3πx1) +
∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 +

sin2(2πxn)]) +
∑n
i=1 u(xi, 5, 100, 4)

30 [−50, 50] 0

f14(x) = −
∑n
i=1 sin(xi).

(
sin
(
ix2i
π

))2m
,m = 10 30 [0, π] −4.687

f15(x) =

[
e
−
∑n
i=1

(
xi
β

)2m
− 2e−

∑n
i=1 x

2
i

]
.
∏n
i=1 cos

2 xi ,m = 5 30 [−20, 20] −1

f16 =
{[∑n

i=1 sin
2(xi)

]
− exp

(
−
∑n
i=1 x

2
i

)}
.exp

[
−
∑n
i=1 sin

2
√
|xi|
]

30 [−10, 10] −1

Table 2. Multimodal test functions
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u(xi, a, k,m) =


k(xi − a)m if xi > a

0 if −a < xi < a

k(−xi − a)m if xi < −a

Functions Dim Interval fmin

f17(x) = ( 1
500

∑25
j=1

1
j+
∑2
j=1

(xi − aij)6)−1 2 [−65, 65] 1

f18(x) =
∑11
i=1[ai − x1(b

2
i+bix2)

b2i+bix3+x4
]2 4 [−5, 5] 0.0003

f19(x) = 4x21 − 2.1x41 + 1
3x

6
1 + x1x2 − 4x22 + 4x42 2 [−5, 5] −1.0316

f20(x) = (x2 − 5.1
4π2x

2
1 + 5

πx1 − 6)2 − 10
8π cosx1 + 10 2 [−5, 5] 0.398

f21(x) = [1 + (x1 +x2 + 1)2(19− 14x1 + 3x21− 14x2 + 6x1x2 + 3x22)][30 + (2x1−

3x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

2 [−2, 2] 3

f22(x) = −
∑4
i=1 ci exp

(
−
∑3
j=1 aij (xj − pij)2

)
3 [1, 3] −3.86

f23(x) = −
∑4
i=1 ci exp

(
−
∑6
j=1 aij (xj − pij)2

)
6 [0, 1] −3.32

f24(x) = −
∑5
i=1

[
(X − ai) (X − ai)T + ci

]−1

4 [0, 10] −10.1532

f25(x) = −
∑7
i=1

[
(X − ai) (X − ai)T + ci

]−1

4 [0, 10] −10.4028

f26(x) = −
∑10
i=1

[
(X − ai) (X − ai)T + ci

]−1

4 [0, 10] −10.5363

Table 3. Fixed-dimension multimodal test functions.

4.1.2. Analysis of results. For each category of test functions, we conducted 50 simulations. The
statistical results are presented in tables 4 to 14. Analyzing these tables reveals that, for the majority of
the tested functions, the hybrid algorithm outperforms the other algorithms. This improvement is
particularly evident for unimodal functions. This finding is also supported by the convergence curves
(see figures 3 to 6). In most cases, gaTLBONNA converges faster than the other algorithms.

F1 F2
Best Worst Mean Std Best Worst Mean Std

gaTLBO_NNA 4,9405E-237 7,0567E-220 1,4113E-220 0 1,4335E-135 1,8529E-129 7,1338E-130 9,7643E-130
TLBO 1,37683E-82 3,9426E-81 1,21227E-81 1,59316E-81 3,80048E-41 1,68469E-40 9,04677E-41 6,14221E-41
MNA 4,20078E-08 3,37807E-07 1,85066E-07 1,15212E-07 1,59194E-05 9,73689E-05 4,28638E-05 3,17464E-05
PSO 9,48691E-35 9,40112E-31 2,04967E-31 4,11416E-31 3,15586E-11 2,69177E-06 5,48115E-07 1,19844E-06
GWO 2,91436E-42 9,55976E-41 2,75248E-41 3,86969E-41 1,98639E-24 9,27032E-24 4,56319E-24 2,84829E-24
IGA 1,193E-11 8,06713E-11 4,29479E-11 3,17375E-11 4,66772E-08 7,42594E-08 5,91751E-08 1,13168E-08

Table 4. Results for test functions -1
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F3 F4
Best Worst Mean Std Best Worst Mean Std

gaTLBO_NNA 1,089E-104 1,82014E-82 3,64029E-83 8,13993E-83 2,16411E-96 5,23728E-90 1,75624E-90 2,45594E-90
TLBO 2,91092E-16 7,46405E-15 4,09799E-15 2,99277E-15 3,94731E-33 8,04116E-33 5,68164E-33 1,74547E-33
MNA 5,186856 23,19358 11,25134 7,258951 0,084142 0,302758 0,166427 0,093845
PSO 0,032864 0,777496 0,529999 0,301551 0,069329 0,167601 0,127047 0,040792
GWO 2,13097E-13 2,71802E-12 9,21416E-13 1,04598E-12 5,24873E-11 1,65829E-09 4,8042E-10 6,70303E-10
IGA 81,78037 300,6139 178,01788 80,88151 0,290834 0,97095 0,54322 0,255875

Table 5. Results for unimodal test functions-2

F5 F6
Best Worst Mean Std Best Worst Mean Std

gaTLBO_NNA 24,19995 24,8382 24,47988 0,233853 1,56089E-13 8,5255E-13 3,2531E-13 2,96753E-13
tlbo 15,8572 19,27742 17,51799 1,365953 2,18258E-19 6,66594E-17 2,24312E-17 2,64159E-17
mna 24,19478 77,79509 36,17072 23,30995 1,04949E-08 1,46497E-07 4,14141E-08 5,89757E-08
pso 7,146065 76,2392 30,57586 26,47320 1,2326E-32 9,01335E-30 1,98818E-30 3,93065E-30
Gwo 25,11981 26,19161 25,91423 0,451840 2,17191E-05 0,256310 0,101119 0,13845
iga 9,766462 82,92044 34,28521 28,12968 1,86075E-11 8,77665E-11 4,34317E-11 2,61044E-11

Table 6. Results for unimodal test functions-3

F7 F8
Best Worst Mean Std Best Worst Mean Std

gaTLBO_NNA -12569,47 -12451,04 -12545,8 52,97228 0 0 0 0
TLBO -9521,248 -7667,773 -8652,383 673,1520 0,004355 7,963454 4,579853 4,195738
MNA -11733,34 -10472,53 -10995,57 517,9359 21,90292 29,65968 26,47626 3,1208691
PSO -7910,808 -5502,19 -6643,314 854,2481 32,83361 62,68227 49,34989 10,84456
GWO -7104,147 -5682,756 -6371,445 608,7203 0 0,995783 0,199157 0,44533
IGA -12323,47 -11959,35 -12201,20 166,2304 1,68015E-05 1,990903 0,398407 0,890232

Table 7. Results for unimodal test functions-4

F9 F10
Best Worst Mean Std Best Worst Mean Std

gaTLBONNA 4,44089E-16 4,44089E-16 4,44089E-16 0 0 0 0 0
TLBO 3,9968E-15 3,9968E-15 3,9968E-15 0 0 0 0 0
MNA 5,08365E-05 8,3965E-05 6,12065E-05 1,31928E-05 6,29223E-08 0,012320 0,004928 0,006747
PSO 2,88658E-14 1,07025E-13 5,37348E-14 3,17764E-14 0 0,049176 0,016240 0,019168
GWO 2,53131E-14 2,88658E-14 2,81553E-14 1,58882E-15 0 0 0 0
IGA 1,01303E-06 1,79593E-06 1,44419E-06 3,84634E-07 4,05235E-11 1,72202E-10 9,45437E-11 5,38723E-11

Table 8. Results for unimodal test functions-5



Asia Pac. J. Math. 2025 12:69 17 of 26

F11 F12
Best Worst Mean Std Best Worst Mean Std

gaTLBO_NNA 2,5945E-12 6,3122E-11 2,25807E-11 2,37103E-11 2,45617E-10 2,36323E-09 8,72838E-10 8,71201E-10
TLBO 4,79933E-20 6,51061E-19 2,07023E-19 2,60007E-19 6,41339E-19 0,010987 0,00879 0,004914
MNA 2,10608E-09 2,86032E-05 5,73135E-06 1,27857E-05 2,06984E-08 1,27004E-07 5,10189E-08 4,38597E-08
PSO 1,61088E-32 0,10367 0,020734 0,046362 1,47304E-32 0,010987 0,002198 0,004914
GWO 0,006499 0,07169 0,023546 0,027466 1,73259E-05 0,402586 0,202536 0,157927
IGA 1,85213E-13 5,61777E-13 3,22515E-13 1,57786E-13 3,78151E-12 5,76853E-11 2,93533E-11 2,50484E-11

Table 9. Results for unimodal test functions-6

F13 F14
Best Worst Mean Std Best Worst Mean Std

gaTLBO_NNA 0,998004 0,998004 0,998004 1,57009E-16 0,000308 0,001223 0,000497 0,000406
TLBO 0,998004 0,998004 0,998004 0 0,000307 0,000624 0,00038 0,000140
MNA 0,998004 0,998004 0,998004 1,24127E-16 0,000342 0,000602 0,00044 0,000109
PSO 0,998004 1,9920 1,395615 0,544451 0,000307 0,00159 0,000565 0,000575
GWO 0,998004 12,67051 3,729324 5,071573 0,000307 0,020363 0,004319 0,008969
IGA 0,998004 0,998004 0,998004 0 0,000509 0,000725 0,000626 9,44299E-05

Table 10. Results for unimodal test functions-7

F15 F16
Best Worst Mean Std Best Worst Mean Std

gaTLBO_NNA -1,031628 -1,031628 -1,031628 1,92296E-16 0,397887 0,397887 0,397887 0
TLBO -1,031628 -1,031628 -1,031628 0 0,397887 0,397887 0,397887 0
MNA -1,031628 -1,031628 -1,031628 1,11022E-16 0,397887 0,397887 0,397887 0
PSO -1,031628 -1,031628 -1,031628 0 0,397887 0,397887 0,397887 0
GWO -1,031628 -1,031628 -1,031628 4,65713E-09 0,397887 0,397888 0,397888 4,24961E-07
IGA -1,031628 -1,031628 -1,031628 0 0,397887 0,397887 0,397887 0

Table 11. Results for unimodal test functions-8

F17 F18
Best Worst Mean Std Best Worst Mean Std

gaTLBO_NNA 3 3 3 2,30756E-15 -3,862782 -3,862782 -3,862782 4,44089E-16
TLBO 3 3 3 6,28037E-16 -3,862782 -3,862782 -3,862782 0
MNA 3 3 3 1,9984E-15 -3,862782 -3,862782 -3,862782 4,44089E-16
PSO 3 3 3 6,28037E-16 -3,862782 -3,862782 -3,862782 0
GWO 3 3 3 2,22367E-06 -3,862782 -3,8628 -3,862780 9,94071E-07
IGA 3 3 3 1,73422E-15 -3,862782 -3,862782 -3,862782 0

Table 12. Results for unimodal test functions-9
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F19 F20
Best Worst Mean Std Best Worst Mean Std

gaTLBO_NNA -3,321995 -3,20310 -3,250659 0,065120 -10,1532 -5,10077 -9,142714 2,259514
TLBO -3,321995 -3,321995 -3,321995 6,7136E-08 -10,1532 -

10,15319968
-10,1532 8,88178E-16

MNA -3,321995 -3,20310 -3,226881 0,05317 -10,1532 -5,055198 -7,112628 2,775712
PSO -3,321995 -3,20310 -3,250659 0,065120 -10,1532 -2,630472 -4,63956 3,260157
GWO -3,321994 -3,197375 -3,272147 0,068252 -10,15306 -10,15193 -10,15265 0,000460
IGA -3,321995 -3,321995 -3,321995 3,14018E-16 -10,1532 -10,1532 -10,1532 0

Table 13. Results for unimodal test functions-10

F21 F22
Best Worst Mean Std Best Worst Mean Std

gaTLBO_NNA -10,40294 -5,128823 -9,348117 2,358657 -10,53641 -10,53641 -10,53641 2,17558E-15
TLBO -10,40294 -10,40294 -10,40294 1,53837E-15 -10,53641 -10,53641 -10,53641 0
MNA -10,40294 -5,128823 -9,348117 2,358657 -10,53641 -5,128481 -8,382671 2,949175
PSO -10,40294 -2,765897 -6,2933 3,87361 -3,835427 -2,4273 -2,936530 0,528658
GWO -10,40287 -10,40162 -10,40229 0,00045 -10,53578 -10,53537 -10,53563 0,000154
IGA -10,40294 -10,40294 -10,40294 8,88178E-16 -10,53641 -10,53641 -10,53641 8,88178E-16

Table 14. Results for unimodal test functions11

Figure 3. curves of convergence.
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Figure 4. curves of convergence

Figure 5. curves of convergence
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Figure 6. curves of convergence

4.2. Application of the gaTLBO_NNA algorithm for estimating the parameters of a mathematical

model in epidemiology. In this section, we employ the gaTLBO_NNA algorithm to estimate the
parameters of a mathematical model related to epidemiology. The used model was proposed by Hamza
Alaa and Al. [11]. The authors developed a new Reservoir-Population (RP) transmission network
model to simulate the potential spread of the Covid-19 virus within the Moroccan population, taking
into account the different lockdown phases implemented by the government.
Four phases (4) have been considered:

• Day 1 (first case) to day 150: phase 1
• Day 151 to day 220: phase 2
• Day 221 to day 300: phase 3
• Day 301 to day 379: phase 4

The model stands out by incorporating phase-dependent parameters, allowing the calculation of the
basic reproduction numberR0 for each phase.
The authors used genetic algorithms to optimize the model’s parameters, minimizing a cost function to
fit the results to real-world data. Simulations demonstrated that total lockdown significantly reduced
the virus’s spread (R0 < 1).

4.2.1. Mathematical model. The following assumptions have been made:
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(H1) The population is divided into five compartments: susceptibles S, exposed E, symptomatic
infected I , asymptomatic infected A, and recovered R.

(H2) The reservoirW represents the source of infection in the seafood market where the virus is
present. The virus in the reservoir is exported at a rate εW , where 1

ε represents the virus’s
lifespan in the environment, depending on the infected individuals exporting the virus into
the market: symptomatic infected µI and asymptomatic cµA.

(H3) The entry rate of new individuals into the population is given by Λ = n×N , where n is the birth
rate and N is the total human population size. Natural mortality affects each compartment at a
ratem.

(H4) Susceptible individuals S are infected through contact with the reservoirW and the sympto-
matic infected I , with respective transmission rates βW and β. Asymptomatic individuals A
can also transmit the virus, but with a reduced rate κβ, where 0 ≤ κ ≤ 1.

(H5) The proportion of asymptomatic individuals is given by δ, meaning that a fraction δ of the
exposed E will become asymptomatic, and the other fraction (1− δ) will become symptomatic.

(H6) The incubation and latency periods of human infection are defined as 1
ρ , and the infectious

period of the I and A compartments is defined as 1
γ .

The compartmental diagram is given in the figure 7.

Figure 7. Compartmental diagram [11]

4.3. Mathematical model. By assuming:
s = S

N , e = E
N , i = I

N , a = A
N , r = R

N , w = εW
µN , b = βN , bw = µβWN

ε
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The normalized model is given by [11]:



ds
dt = n−ms− b(t)s(i+ κ(t)a)− bw(t)sw

de
dt = −(m+ ρ)e+ b(t)s(i+ κ(t)a) + bw(t)sw

di
dt = −(γ(t) +m)i+ (1− δ(t))ρe

da
dt = −(γ(t) +m)a+ δ(t)ρe

dr
dt = −mr + γ(t)i+ γ(t)a

dw
dt = −εw + ε(i+ c(t)a)

(38)

The model parameters (b, c, bw, δ, κ, γ) are assumed to be variable but constant within each phase.

4.3.1. The basic reproduction numberR0. The disease-free equilibrium (DFE) is: ( nm , 0, 0, 0, 0, 0) . In this
model, the authors assumed that the parameters are constant within each phase [T li , T

l
f ], where l =

1, . . . , 4. After applying the next-generation matrix, the expression for the basic reproduction number
Rl0 is given as follows [11]:

Rl0 = bl
n

m

(1− δl)ωl

(ωl +m)(γl +m)
+ κlbl

n

m

δlωl

(ωl +m)(γl +m)
+ blw

n

m

(1− δl)ωl

(ωl +m)(γl +m)

+ blw
n

m

clδlωl

(ωl +m)(γl +m)

(39)

4.4. Parameter estimation problem. Problem 38 can be formulated as follows:
y′(t) = f(y, k) t ∈ [ti, tf ]

y0 given
(40)

where: k = (b, c, bw, δ, κ, γ): the parameter vector

y =



s

e

i

a

r

w


f(y, k) =



n−ms− b(t)s(i+ κ(t)a)− bw(t)sw

−(m+ ρ)e+ b(t)s(i+ κ(t)a) + bw(t)sw

−(γ(t) +m)i+ (1− δ(t))ρe

−(γ(t) +m)a+ δ(t)ρe

−mr + γ(t)i+ γ(t)a

−εw + ε(i+ c(t)a)


During each phase l, l = 1, . . . , 4, Subdivide [T li , T

l
f ] into M ∈ N+ subdomains, ie

[T li , T
l
f ]=⋃M−1

j=0 [tlj , t
l
j+1] with T li = tl0 < tl1 < tl2 < . . . < tlM−1 < tlM = T lf . tlj = jh, with h =

T lf−T
l
i

M and
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apply the 4th order Runge-Kutta scheme given

y0 = (s0, e0, i0, a0, r0, w0)

k1 = hf(yj , k)

k2 = hf(yj + k1
2 , k)

k3 = hf(yj + k2
2 , k)

k4 = hf(yj + k3, k)

yj+1 = yj + 1
6(k1 + 2k2 + 2k3 + k4)

(41)

to solve model 38 for each element k = (b, c, bw, δ, κ, γ) of the population, to obtain the unique solution
(s, e, i, a, r, w). This solution is associated with the cost function Fl, called fitness.

Fl(k) =

∫ T lf

T li

(
(i(t)− iobs(t))2 + (a(t)− aobs(t))2

)
dt (42)

y10 = (s0, e0, i0, a0, r0, w0) the initial condition at phase 1. The initial condition yl0 = yl−1M , l = 2, 3, 4.
The objective is to determine the global minimun k∗l = (b∗, c∗, b∗w, δ

∗, κ∗, γ∗) of the functional Fl for
each phase.

4.4.1. Results of idenfication. The results obtained by our method are summarized in the table 15. Table
16 summarizes the results obtained by the genetic algorithm [11].

phase 1 Phase 2 Phase 3 Phase 4
κ 0,032391063 0,4253588 0,5675845 0,5
c 0,017869446 0,036946999 0,798936826 0,010101335
b 0,010035221 0,30819454 0,058620818 0,788555126
bw 0,8 0,796277997 0,8 0,779667433
δ 0,4 0,5 0,43806583 0,6
γ 0,176865399 0,375315963 0,177006875 0,5

Values of objective function 0,000123 0,000552 0,00324 0,00038

Table 15. Parameters estimation
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phase 1 Phase 2 Phase 3 Phase 4
κ 0.0554 0.5249 0.7318 0.7002

c 0.2381 0.6898 0.6484 0.3930

b 0.6604 0.2807 0.2295 0.5117

bw 0.7552 0.6368 0.7218 0.7065

δ 0.4312 0.3519 0.2124 0.5066

γ 0.2699 0.3150 0.1880 0.5575

Values of objective function 0, 0385 0, 0386 0, 0179 0, 00067

Table 16. Parameters estimation [11]

In Figure 8, we present the curves of new COVID-19 cases recorded in Morocco, along with the
results obtained from the gaTLBONNA algorithm and GA algorithm [11].
This figure illustrates that gaTLBO_NNA algorithm can reproduce the evolution of new COVID-19
cases observed during the study period. However, the gaTLBO_NNA algorithm provides a better
reproduction, as indicated by the values of the objective functions presented in the tables 15 and 16.

Figure 8. Best fitted curve
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5. Conclusion

In this study, we developed an algorithm for the minimization of real functions, called gaTLBONNA.
This algorithm is a hybrid of the Improved real-coded genetic algorithm (IRGA), Teaching–learning-
based optimization (TLBO) algorithm, and Neural Network Algorithm (NNA). Initially, we tested our
algorithm on benchmark functions and compared it to several well-established metaheuristics. The
results, in terms of convergence and accuracy, indicate that gaTLBONNA outperforms the compared
methods for the majority of the tested functions. Subsequently, the algorithm was applied to identify
parameters of a mathematical model for the spread of COVID-19, using real data from Morocco. This
demonstrated the effectiveness of our algorithm in estimating parameters of mathematical models in
epidemiology.
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