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Abstract. LetM be a real hypersurface in a nonflat complex space formMn(c). In this paper, we prove
that if (LξA) + (∇ξA) = 0 holds onM , thenM is a Hopf hypersurface, where Lξ is the Lie derivative in ξ
direction and A is the shape operator ofM inMn(c). We investigate the geometric structure of such Hopf
hypersurfaces ofMn(c).
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1. Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c (c 6= 0)
is called a nonflat complex space form and is denoted byMn(c). A complete and simply connected complex
space form is complex analytically isometric to a complex projective space PnC, or a complex hyperbolic
space HnC, depending on c > 0 or c < 0.

If a real hypersurfaceM is in a nonflat complex space formMn(c), thenM has an almost contact
metric structure (φ, g, ξ, η) induced from the Kaehler metric and a complex structure J onMn(c). For a
shape operator A ofM , α = η(Aξ) and Aξ = αξ, the Reeb vector field ξ is said to be principal andM is
called a Hopf hypersurface. In this case, it is shown that α is locally constant [3].

Homogeneous Hopf hypersurfaces in PnC are given as orbits under a subgroup of the projective
unitary groups PU(n+ 1). All these hypersurfaces are completely classified into six model spaces: A1,
A2, B, C, D and E by Takagi [11]. Berndt [1] catagorized all homogeneous Hopf hypersurfaces in
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HnC as four model spaces which are said to be A0, A1, A2 and B. If a real hypersurfaceM is of A1 or
A2 in PnC or of A0, A1 or A2 in HnC, thenM is said to be type A for simplicity.

The following theorem is a typical characterization of real hypersurfaces of type A.

Theorem 1.1. LetM be a real hypersurface in a nonflat complex space formMn(c) for n ≥ 2. It satisfies

Aφ− φA = 0 onM if and only ifM is locally congruent to one of the model spaces of type A.

Theorem 1.1 is due to Okumura [10] for c > 0 and Montiel and Romero [6] for c < 0.

For the shape operator A onM , the Lie derivative LξA is defined by (LξA)X = [ξ, AX] − A[ξ,X]

and ∇ξA is the covariant derivative with respect to the Reeb vector field ξ and a unit vector field X
onM . Regarding the Lie derivative, real hypersurfaces in a nonflat complex space form have been
studied by many geometricians and interesting results have been obtained ([2], [5], [7], [8] and [9]
etc.). Among them, the following theorem is for the Lie derivative and the covariant derivative of the
shape operator by Lim [4].

Theorem 1.2. Let M be a real hypersurface in a nonflat complex space form Mn(c). Then it satisfies

(LξA) = (∇ξA) onM if and only ifM is locally congruent to one of the model spaces of type A.

In this paper, we study a real hypersurfaceM satisfying LξA+∇ξA = 0 of a nonflat complex space
formMn(c), where Lξ is the Lie derivative in ξ direction and A is the shape operator ofM inMn(c). In
section 4, we investigate the geometric structure of this hypersurface. In section 5, we prove that such
hypersurface is a Hopf hypersurface and locally congruent to one of the model spaces of type A.

From now on, all manifolds are assumed to be connected and of class C∞. And real hypersurfaces
are supposed to be orientable.

2. Preliminaries

LetM be a real hypersurface immersed in a nonflat complex space formMn(c), and N be a unit
normal vector field ofM . By ∇̃, we denote the Levi-Civita connection with respect to the Fubini-Study
metric tensor g̃ ofMn(c). Then the Gauss formula and the Weingarten formula are given by

∇̃XY = ∇XY + g(AX,Y )N, ∇̃XN = −AX

respectively, whereX and Y are any vector fields tangent toM , g denotes the Riemannian metric tensor
ofM induced from g̃, and A is the shape operator ofM inMn(c). For any vector field X onM , we put

JX = φX + η(X)N, JN = −ξ,
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where J is the almost complex structure ofMn(c). And we see thatM induces an almost contact metric
structure (φ, g, ξ, η), that is,

φ2X = −X + η(X)ξ, φξ = 0, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ) (1)

for any vector fields X and Y onM . Since the almost complex structure J is parallel, we can verify the
followings from the Gauss and Weingarten formulas:

∇Xξ = φAX, (2)

and
(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ.

As the ambient space has holomorphic sectional curvature c, the equations of Gauss and Codazzi
are given, respectively, by:

R(X,Y )Z = c
4{g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

−2g(φX, Y )φZ}+ g(AY,Z)AX − g(AX,Z)AY, (3)

and

(∇XA)Y − (∇YA)X =
c

4
{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}, (4)

for any vector fields X , Y and Z onM , where R denotes the Riemannian curvature tensor ofM .

Let α = η(Aξ) and Ω be an open subset ofM defined by

Ω = {p ∈M |Aξ − αξ 6= 0}. (5)

We put

Aξ = αξ + µW, (6)

whereW is a unit vector field orthogonal to ξ and µ does not vanish on Ω.

3. Real hypersurfaces satisfying LξA+∇ξA = 0

LetM be a real hypersurface in a nonflat complex space formMn(c). In this section, we assume that
M satisfies LξA+∇ξA = 0 and the open subset Ω given in (5) is not empty. Then

2(∇ξA)X = φA2X −AφAX (7)

is established from (2). By using the symmetric property of∇ξA, the equation of (7) becomes

(φA2 − 2AφA+A2φ)X = 0 (8)
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for any vector field X on Ω.
Substituting X = ξ into (7) and using (6), we have

2(∇ξA)ξ = µφAW − µAφW + αµφW.

Since (∇ξA)ξ = ∇ξ(αξ + µW ) − A∇ξW , we see that the covariant vector field in ξ direction ofW is
given by

2µ∇ξW = −2(ξα)ξ − 2(ξµ)W − αµφW + µφAW + µAφW.

If we take inner product of this equation with ξ andW respectively, then we obtain

ξα = ξµ = 0 (9)

on Ω and hence the initial equation is reduced to

2∇ξW = −αφW + φAW +AφW. (10)

On the other hand, putting X = ξ into (8) and using (6), we have

φAW − 2AφW + αφW = 0. (11)

Taking inner product of (11) withW and φW , we get

g(AW,φW ) = 0 and α+ γ − 2g(AφW,φW ) = 0. (12)

Next, we will obtain some of the relationships that are important tools in this paper.

If we put X = W in (8), then we have

φA2W − 2AφAW +A2φW = 0.

If we apply φ to the above equation and using the first equation of (1), then we gain

φA2φW − 2φAφAW −A2W = −η(A2W )ξ. (13)

Putting X = φW into (8), we get

φA2φW − 2AφAφW −A2W = 0. (14)

Comparing (13) with (14), we gain

2(φAφAW −AφAφW ) = η(A2W )ξ. (15)

Differentiating the smooth function α = g(Aξ, ξ) along any vector field X on Ω and using (2), (4),
and (6), we have

Xα = g((∇ξA)ξ − 2µAφW,X).
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From this equation and (∇ξA)ξ = ∇ξ(αξ + µW )−A∇ξW , we see that the gradient vector field∇α of
α is given by

∇α = µ∇ξW + (ξα)ξ + (ξµ)W + αµφW − 3µAφW. (16)

With a similar argument as above, we can verify that gradient vector fields of the smooth functions
µ = g(Aξ,W ) and γ = g(AW,W ) are given by

∇µ = µ∇WW + (Wα)ξ + (Wµ)W + {1

2
(α− γ)(2γ + α) +

c

2
}φW (17)

and

∇γ = −(A− γI)∇WW + (Wµ)ξ + (Wγ)W + µ(2γ + α)φW, (18)

respectively. If we take inner product of (16) withW and (18) with ξ, then we obtain

Wα = ξµ and ξγ = Wµ. (19)

4. Some lemmas

We shall prove some lemmas, which will be used later.

Lemma 4.1. LetM be a real hypersurface in a nonflat complex space formMn(c), satisfying LξA+∇ξA = 0.

If the open subset Ω is not empty, then the following properties hold;

AW = µξ + γW, AφW = α+γ
2 φW,

∇ξW = 1
4(3γ − α)φW,

4µ2 + (α− γ)2 = 0. (20)

Proof. SinceA is symmetric, we can choose a local orthogonal frame field {ξ,W, φW,X4, · · · , X2n−1}

on Ω such that AXi = λiXi for 4 ≤ i ≤ 2n− 1. The vector field∇ξW can be expressed as

∇ξW =
1

4
(3γ − α)φW +

2n−1∑
i=4

fiXi. (21)

If we substitute (21) into (10), then we have

φAW +AφW =
1

2
(3γ + α)φW + 2

2n−1∑
i=4

fiXi. (22)

Comparing (22) with (11), we can show that

AφW =
1

2
(γ + α)φW +

2

3

2n−1∑
i=4

fiXi. (23)
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Substituting (23) into (11) and apply φ to this equation, we get

AW = µξ + γW − 4

3

2n−1∑
i=4

fiφXi. (24)

If we substitute (23) and (24) into (14) and make use of (1) and (6), then we obtain

{−1

4
(α− γ)2 − µ2}W +

1

3
(γ − 3α)

2n−1∑
i=4

fiφXi +
2

3

2n−1∑
i=4

fiλiφXi = 0. (25)

Taking inner product of (25) withW , we gain the fourth equation of (20) and hence (25) is reduced to

1

3
(γ − 3α)

2n−1∑
i=4

fiφXi +
2

3

2n−1∑
i=4

fiλiφXi = 0. (26)

With a similar argument as above, if we substitute (23) and (24) into (15), and use (1) and (6), then
we obtain

2n−1∑
i=4

fi(λi − α)φXi = 0. (27)

Comparing (26) with (27), we can verify that

(γ − α)
2n−1∑
i=4

fiφXi = 0.

Now, suppose there is a point p such that α(p) = γ(p) on Ω. According to the fourth equation of (20),
the scalar function µ is zero. so it is a contradiction. Thus, we can easily show that∑2n−1

i=4 fiφXi = 0,

and hence we have fi = 0 for 4 ≤ i ≤ 2n− 1. Substituting this equation into (21), (23) and (24), we get
the third, second and first equations of (20). �

Lemma 4.2. Under the assumptions of Lemma 4.1, ξγ = 0 andWα = Wµ = Wγ = 0 on Ω.

Proof. Differentiating the fourth equation in (20), taking the inner product of ξ and using (9), we
obtain

(α− γ)ξγ = 0. (28)

Suppose that there is a point p of Ω such that (ξγ)(p) 6= 0, the equation (28) means

α− γ = 0.

Note that α− γ is smooth. Differentiating the equation α− γ = 0 and taking inner product of ξ, we get
ξα = ξγ. Since ξα = 0, ξγ becomes zero, which contradicts the assumption. Thus, we have ξγ = 0.

Since ξµ = ξγ = 0, it is easily seen from (19) thatWα = Wµ = 0.

By the same reasoning as above, if we differentiate the fourth equation of (20) and use the inner
product ofW , then we obtain

4µWµ+ (α− γ)(Wα−Wγ) = 0.
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From the fact thatWα = Wµ = 0, the above equation is reduced to

(α− γ)Wγ = 0. (29)

Again, assuming that there is a point p of Ω such that (Wγ)(p) 6= 0, we gain α− γ = 0 from (29), so
α− γ is a scalar function. Differentiating α− γ = 0 with respect toW and making use ofWα = 0, we
getWγ = 0. This is a contradiction. Therefore,Wγ = 0 and this completes the proof. �

Lemma 4.3. Under the assumptions of Lemma 4.1, the following equations hold on Ω.

µ∇WW = {12µ
2 − 3

4γ(α− γ)− c
4}φW, ∇α = −3

4µ(α+ γ)φW,

∇µ = {12µ
2 + 1

4(α− γ)(2α+ γ) + c
4}φW,

µ∇γ = {34µ
2(α+ 3γ) + 1

8(α− γ)[3(α− γ) + c]}φW. (30)

Proof. If we put X = W into (7) and make use of the first and second equations of (20), Then we
obtain

2(∇ξA)W = {µ2 +
1

2
γ(α− γ)}φW. (31)

If we differentiate the smooth function µ = g(AW, ξ) along any vector field X on Ω, and use (2),(4)
and (20), we have

Xµ = g((∇wA)ξ +
1

2
(α2 − γ2) +

c

2
φW,X). (32)

Since we have (∇ξA)W = ∇ξ(µξ + γW )−A∇ξW , the equation of (31) and (32) is rewritten as

(A− γI)∇ξW =
1

2
{µ2 +

1

2
γ(α− γ)}φW (33)

and

∇µ = −(A− γI)∇ξW + (ξµ)ξ + (ξγ)W + {µ2 +
1

2
(α2 − γ2) +

c

4
}φW. (34)

By substituting (33) into (34), we obtain the third equation of (30). If we compare (17) with the third
equation of (30) and use Lemma 4.2, then we get the first equation of (30). If we apply the third
equation of (20) into (16) and use (9), then we have the second equation of (30). Comparing (18) with
the first equation of (30) and using Lemma 4.2, we have the fourth equation of (30). �
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5. Characterizations of Real Hypersurfaces

Theorem 5.1. LetM be a real hypersurface satisfying LξA + ∇ξA = 0 in a nonflat complex space form

Mn(c). ThenM is a Hopf hypersurface inMn(c).

Proof. Assume that the open set Ω = {p ∈ M |Aξ − αξ 6= 0} is not empty. By Lemma 4.1,
4µ2 + (α− γ)2 = 0 holds on Ω. After differentiating this equation and multiplying by µ, we have

4µ2∇µ+ (µ∇α− µ∇γ) = 0. (35)

Substituting the second, third and fourth equation of (30) into (35), we can find

4µ2 + (α− γ)2 +
3c

4
= 0. (36)

Comparing the fourth equation (20) with (36), we reach the conclusion that c = 0, which is a contra-
diction.

Thus the set Ω is empty, soM is a Hopf hypersurface. �

Theorem 5.2. Let M be a real hypersurface in a nonflat complex space form Mn(c). Then it is satisfies

LξA+∇ξA = 0 onM if and only ifM is locally congruent to one of the model spaces of type A.

Proof. By Theorem 5.1, M is a Hopf hypersurface in Mn(c), that is, Aξ = αξ. Therefore the
assumption LξA+∇ξA = 0 is given by

(φA2 − 2AφA+A2φ)X = 0. (37)

On the other hand, if we differentiateAξ = αξ covariantly and make use of the equation (4) of Codazzi,
then we have

AφA− α

2
(φA+Aφ)− c

4
φ = 0. (38)

For any vector field X onM such that AX = λX , it follows from (38) that

(λ− α

2
)AφX =

1

2
(αλ+

c

2
)φX. (39)

We can choose an orthonormal frame field {ξ,X1, X2, · · · , X2n−1} onM such that AXi = λiXi for
1 ≤ i ≤ 2(n− 1).

If λi 6= α
2 for 1 ≤ i ≤ p ≤ 2(n− 1), then we see from (39) that φXi is also a principal direction, say

AφXi = µiφXi. From (37), we have µi = λi, so AφXi = φAXi for 1 ≤ i ≤ p.

If λi 6= α
2 and λj = α

2 for 1 ≤ i ≤ p and p+ 1 ≤ j ≤ 2(n− 1) respectively, then it follows from (37)
that

A2φXj − αAφXj +
α2

4
φXj = 0.
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For p + 1 ≤ j ≤ 2(n − 1), taking inner product of (39) with Xi, we obtain g(φXj , Xi) = 0 for
1 ≤ i ≤ p. Thus the vector field φXj is expressed by a linear combination of Xj

′s only, which implies
AφXj = α

2φXj = φAXj .
If λi = α

2 for 1 ≤ i ≤ 2(n− 1), then it is easily seen that φAXi = AφXi for all i.
Therefore we have φA−Aφ = 0 onM and the proof is completed from Theorem 1.1. �

Acknowledgements. This paper was supported by the Sehan University Research Fund in 2025.

Authors’ Contributions. All authors have read and approved the final version of the manuscript. The
authors contributed equally to this work.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication
of this paper.

References

[1] J. Berndt, Real Hypersurfaces with Constant Principal Curvatures in Complex Hyperbolic Space, J. Reine Angew. Math.
395 (1989), 132-141. https://doi.org/10.1515/crll.1989.395.132.

[2] U.H. Ki, S.J. Kim, S.B. Lee, Some Characterizations of Real Hypersurface of Type A, Kyungpook Math. J. 31 (1991),
73-82.

[3] U.H. Ki, Y.J. Suh, On Real Hypersurfaces of a Complex Space Form, Math. J. Okayama Univ. 32 (1990), 207-221.
[4] D.H. Lim, Characterization of Real Hypersurfaces in a Nonflat Complex Space Form Having a Special Shape Operator,

Balk. J. Geom. App. 25 (2020), 84-92.
[5] J.H. Kwon, Y.J. Suh, Lie Derivatives on Homogeneous Real Hypersurfaces of Type A in a Complex Space Form, Bull.

Korean Math. Soc. 34 (1997), 459-468.
[6] S. Montiel, A. Romero, On Some Real Hypersurfaces of a Complex Hyperbolic Space, Geom. Dedicata 20 (1986), 245–261.

https://doi.org/10.1007/BF00164402.
[7] R. Niebergall, P.J. Ryan, Real Hypersurfaces in Complex Space Forms, in: Tight and Taut Submanifolds, (eds. T.E. Cecil

and S.S. Chern), Math. Sciences Res. Inst. Publ. 32, Cambridge Univ. Press, Cambridge, (1997), 233–305.
[8] K. Panagiotodou, P.J. Xenos, Real Hypersurfaces in CP 2 and CH2 Equipped with Structure Jacobi Operator Satisfying

Lξl = ∇ξl, Adv. Pure Math. 2 (2012), 1-5. http://dx.doi.org/10.4236/apm.2012.21001.
[9] J.D. Perez, F.G. Santos, Real Hypersurfaces in Complex Projective Space Whose Jacobi Operator Satisfies LξRξ = ∇ξRξ ,

Rocky Mountain J. Math. 39 (2009), 1293-1301. https://doi.org/10.1216/RMJ-2009-39-4-1293.
[10] M. Okumura, On Some Real Hypersurfaces of a Complex Projective Space, Trans. Amer. Math. Soc. 212 (1975), 355–355.

https://doi.org/10.1090/S0002-9947-1975-0377787-X.
[11] R. Takagi, On Homogeneous Real Hypersurfaces in a Complex Projective Space, Osaka J. Math. 10 (1973), 495-506.

9

https://doi.org/10.1515/crll.1989.395.132
https://doi.org/10.1007/BF00164402
http://dx.doi.org/10.4236/apm.2012.21001
https://doi.org/10.1216/RMJ-2009-39-4-1293
https://doi.org/10.1090/S0002-9947-1975-0377787-X

	1. Introduction
	2. Preliminaries
	3. Real hypersurfaces satisfying LA+A=0
	4. Some lemmas
	5. Characterizations of Real Hypersurfaces
	Acknowledgements
	Authors' Contributions
	Conflicts of Interest

	References

