
Asia Pac. J. Math. 2025 12:70

QUANTUM GRAPH-BASED DIFFERENTIAL MODELS WITH FRACTIONAL CALCULUS
AND TOPOLOGICAL DATA ANALYSIS FOR DYNAMIC CHARACTERIZATION OF

PROTEIN-PROTEIN INTERACTION NETWORKS

V. KARTHICK1, I. PAULRAJ JAYASIMMAN1,∗, S. DHILSHATH1, R. ARASU2, K. CHINNADURAI1,
J. SUGANTHI1

1Department of Mathematics, Academy of Maritime Education and Training (AMET University), Deemed to be University,
Chennai-603112, India

2Department of Mathematics, Veltech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi,
Chennai-600062, India

∗Corresponding author: ipjayasimman@ametuniv.ac.in

Received Jun. 11, 2025

Abstract. Understanding the intricate dynamics of Protein-Protein Interaction Networks (PPINs) is essen-
tial to decode complex biological processes and disease mechanisms. Existing graph-theoretic approaches
often fall short in capturing the temporal and spatial intricacies of dynamic PPINs. To address these
limitations, this study introduces a novel framework based on Quantum Graph-Based Differential Models
(QGDM) integrated with Fractional Calculus and Topological Data Analysis (FC-TDA). The quantum
graph formalism models PPINs with probabilistic edge dynamics, while fractional differential equations
account for memory effects and long-range dependencies in protein interactions. TDA is used to extract
persistent topological features and detect critical transitions in the network structure over time. The
objective is to provide a high-fidelity and mathematically robust system for dynamically characterizing
PPINs, enabling better insights into protein behavior under varying cellular conditions. Results from
simulations on benchmark datasets such as yeast and human interactomes demonstrate superior accuracy
in detecting functional modules and predicting interaction disruptions compared to existing graph and
machine learning models. This integrated mathematical approach offers a powerful tool for systems
biology with potential applications in drug target identification and precision medicine.
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1. Introduction

Over the past several decades, the study of molecular and cell biology has been shifting away from
reductionist methods toward amore comprehensive understanding of molecular and cellular structures.
The intricate organization of biochemical, digestive, and information-signalling processes within
biological systems enables living cells to function properly [1]. These processes involve interactions
among multiple proteins and genes regulate thousands of other proteins and genes to form complexes
that govern cellular functions that would be impossible for any single component to carry out on its
own. Thus, a cell’s true activity is better defined by a collection of interdependent systems ranging
from transcriptional regulation to metabolic control rather than by a single network [2]. Advances in
high-throughput methods have provided researchers with reliable data on various interaction maps.
For example, organism-specific PPIN networks have been identified in humans, yeast and Drosophila
along with gene regulatory networks that incorporate protein–DNA interaction data. Similar high-
throughput studies are also used to effectively map metabolic and signal transduction pathways
[3]. Representing complex biological structures as networks encourages the study of these systems
holistically rather than in isolation and aims to simplify biological processes for better understanding of
their behaviour. Complex relationships are crucial across many fields, including engineering, sociology,
physics, epidemiology, and the biological sciences. Graph theory is awidely used and effective approach
for characterizing complex systems [4]. In this framework, a system’s multiple components and their
relationships are represented as graphs where nodes (or vertices) denote interacting elements and
edges represent the interactions or connections between them. This abstraction allows comparison
across different systems and has revealed thatmany such systems share key structural characteristics [5].
Numerous graph theory models have been applied to study biological systems offers valuable insights
into cellular structure and development and fundamentally transforming our understanding of cell
biology [6]. By leveraging graph theory, biological information organized in ways that provide new
perspectives, going beyond simple mappings of a cell’s physical network structures. Network biology
has many applications such as the discovery and functional characterization of genes and proteins, the
identification of disease-associated genes and drug targets and the development of novel therapeutic
strategies all contributing to a deeper understanding of the cellular systems that underlie life [17].
Utilizing a combination of mathematical models andmultiple sources of information, Physics-Informed
Machine Learning (PIML) enables the simulation of physical and medical systems using artificial
neural networks, graph-based models, or Gaussian process regression. PINNs solve Partial Differential
Equations (PDEs) by integrating the governing equations directly into the neural network loss function,
utilizing automatic differentiation to compute the required derivatives [8]. PINNs eliminate the
need for mesh generation because of avoiding the substantial computational costs associated with
modelling in domains involving motion or deformation. PINNs are easily adaptable to a wide range
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of PDEs including stochastic PDEs, integro-differential equations and fractional PDEs. Even complex
implementations of PINNs typically require fewer than 1,000 lines of code highly accessible and easy
to implement [9].

In contrast to existing numerical methods, the same PINN framework can be used for both forward
and inverse problems. The advantages of this approach have been demonstrated across a variety of
fields such as fluid mechanics, non-destructive material evaluation, systems biology, optics, geophysics,
and biomedicine. Physics-Informed Graph Networks (PIGNs) are well-suited for modelling complex
physical systems where the state of an entity depends on its neighbouring states [10]. This approach
allows for dynamic, relational modelling without relying on structured grids. Researchers achieved
strong results inmodelling the one-dimensional Burgers equation, heat transfer, and advection-diffusion
processes by combiningmessage-passing neural networkswith themethod of lines and neural Ordinary
Differential Equations (ODEs) [11]. Extended this approach by developing a PIGNmodel calledGrADE
capable of learning system behaviours from data, including one-dimensional and two-dimensional
Burgers’ solutions. Proteins is organic molecules composed of twenty standard amino acids play a
central role in virtually all biological and cellular processes in living organisms. PPIs are essential for
numerous functions such as metabolism, hormonal regulation, DNA transcription and replication,
molecular signalling and intercellular communication. Deeper understanding of PPIs has significantly
contributed to the diagnosis and treatment of diseases, as well as the development of new therapeutic
drugs [12].

Proteins seldom perform their functions in isolation; typically collaborate with other proteins in their
environment to fulfil biological roles. One widely used high-throughput experimental technique for
studying these interactions is the Yeast Two-Hybrid (Y2H) screening. Numerous studies have applied
existing Machine Learning (ML) approaches to address a variety of challenges in computational
biology such as enzyme classification, protein structure prediction, and PPI prediction among others
[13]. These algorithms generally rely on hand-crafted features derived from fundamental protein
sequences, incorporating historical data, amino acid composition, and physicochemical properties.
Protein sequences were encoded using the Auto Covariance (AC)method and Support VectorMachines
(SVMs) were employed for classifying and predicting PPI [14].

1.1. Problem Statement. The dynamic and complex nature of PPINs presents significant challenges in
accurately modelling, analysing, and understanding biological processes at a systems level. Existing
graph-based models often fail to capture the temporal evolution, multi-scale structural properties, and
memory-dependent dynamics inherent in biological interactions. The absence of tools that effectively
combine topological, algebraic, and differential mathematical perspectives limits the ability to detect
functional modules and transient states critical to disease progression and therapeutic targeting. This
research addresses these limitations by proposing a novel framework that integrates quantum graph
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theory, fractional calculus, and topological data analysis to provide a more robust, high-resolution
characterization of PPIN dynamics.

1.2. Motivation. Themotivation behind this research stems from the pressing need to better understand
the intricate and time-varying behaviours of PPINs are foundational to cellular functions and disease
mechanisms. Existing models often lack the mathematical depth to capture the complexity, memory
effects, and hidden topological features within these networks. Inspired by recent advancements in
quantum graph theory, fractional-order dynamics, and TDA, this study seeks to develop amore accurate
and interpretable framework for modelling PPINs. By integrating these advanced mathematical tools,
the proposed approach aims to uncover deeper biological insights, facilitate early disease detection,
and support the development of targeted therapies through enhanced dynamic characterization.

2. Related Works

A sequence-based approach for predicting self-interacting proteins was proposed. This method
classifies PPIs using a weighted sparse model-based classification along with a complete encoded
representation of peptide sequences. The approach begins by transforming existing protein sequences
into a Position-Specific ScoringMatrix (PSSM) fromwhich feature vectors are extracted using Low-Rank
Approximation (LRA). These feature vectors are then fed into a Rotation Forest classifier to distinguish
between self-interacting and non-self-interacting proteins [15]. In another method for predicting PPIs,
the Gradient Boosting Decision Tree (GBDT) technique was introduced. This approach encodes protein
sequences using various protein features, such as frequency, structure, composition, transition, and
autocorrelation. Beyond sequence-based data, input features for PPI modelling can be derived from a
variety of other biological sources, including gene fusion events, protein structure, biological function,
and more [16]. Several algorithms have been developed and categorized based on these input features.
Sequence-derived features remain the most commonly used source for predicting PPIs. More than
80% of proteins interact with other proteins during their essential biological functions, making them
versatile macromolecules with diverse roles in living organisms [17]. PPI are highly specific physical
contacts between two or more protein molecules. PPIs are critical for numerous cellular processes such
as signal transduction, immune response, cell growth, DNA transcription and gene expression, and
reproduction. Studying and understanding PPIs provides vital insights into the molecular structure
and functional roles of proteins [18].

Although the number of identified PPIs across various species has increased rapidly due to advanced
experimental techniques, the structural annotation of peptides and their interactions has not kept
pace. Existing data suffer from several limitations such as incomplete coverage, high error rates, and
false negatives. While high-throughput experimental methods have identified a vast number of PPI
linkages, the overall volume remains relatively small compared to the enormous potential connections
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present in the proteome [19]. These large-scale genome studies face challenges such as limited coverage,
inherent biases, and high costs. Variability in experimental procedures, along with limitations in device
resolution and environmental influences often lead to inconsistent results and testing errors. Accurately
and reliably identify PPIs, there is a growing need for robust, large-scale computational approaches
can complement experimental methods and support the exploration of protein functions with greater
efficiency and precision [20].

A significant advancement in recent years is the emergence of deep learning and nonlinear dimen-
sionality reduction techniques have led to a surge in methods capable of autonomously learning to
represent graph structures. These methods commonly referred to as representation learning on graphs
have proven highly valuable in analysing recommender systems, social networks, and molecular graph
topologies [21]. To ensure that the geometric relationships in the learned feature space accurately reflect
the original graph’s structure, the mapping function between the two must be properly optimized.
Representation learning has been successfully applied to link prediction tasks, such as predicting
user–movie affinities or identifying missing friendships in social networks [22]. A major drawback of
the original PINNs is the high computational cost, especially for problems involving multiscale back
propagation. To address this, introduced Conservative PINNs (cPINNs)—a domain decomposition-
based framework for solving conservation laws. cPINN reduces computation time by splitting the
domain into subdomains and ensuring continuity of states and fluxes at the interfaces [23].

Proposed Extended PINNs (XPINNs) apply domain decomposition to both space and time. Unlike
cPINNs, XPINNs are well-suited for irregular and non-convex geometries, making them more versatile
for general PDEs. Introduced hp-VPINNs is a domain decomposition approach grounded in the
spectral element method offering dual h-p resolution capabilities. Developed a concurrent execution
framework for PINNs, enhancing computational efficiency. GNNs can be scaled to model complex
structures by leveraging existing parallel architectures [24]. At the cellular level, proteins perform a
wide range of functions such as molecular transport, DNA replication, catalysis of metabolic reactions,
response to stimuli, and organismal development. Proteins are composed of polypeptide chains are
long sequences of amino acid residues encoded by genetic information. The unique sequence of amino
acids determines a protein’s three-dimensional conformation, which in turn governs its biological
function [25]. Proteins may undergo conformational changes to fulfill specific tasks exposing reactive
regions or concealing others as needed. These conformational transitions, often termed conformational
modifications, are influenced by nonlocal interactions such as hydrophobic core formation, salt bridges,
hydrogen bonds, disulfide linkages, and post-translational modifications contribute to the overall
structural stability of the protein [26]. Given the dynamic and flexible nature of proteins, researchers
have been working to develop consistent geometric models that account for structural variability.



Asia Pac. J. Math. 2025 12:70 6 of 25

Several isometric-based representations have been proposed. An isometric transformation, or non-
elastic deformation is defined as a shape change that preserves geodesic distances between points on
the protein surface, thus maintaining the intrinsic structure despite changes in conformation [27].

The geodesic radius represents the shortest path between two points entirely confined within the
shape’s defined manifold. Most approaches for representing isometrically stable shapes rely on ei-
ther physics-based modelling or geodesic distance metrics. In physics-based modelling, the shape is
interpreted as a manifold over physical field such as heat propagates driven by associated chemical
reactions [28]. By analysing the field distribution over time, it becomes possible to extract multiresolu-
tion features that, after dimensionality reduction, yield a stable, informative, and often task-specific
representation, commonly referred to as a signature. In dense networks such as Protein Contact Net-
works (PCNs) identifying the immediate neighbourhood of a node is essential. For example, in PCNs,
a node may serve as the origin of numerous interactions (often visualized as gray lines) shown in
Figure 1(a). As illustrated in Figure 1(b), when a node is selected—highlighted in red via the JSmol
applet—its immediate neighbours are also highlighted in yellow, both in the system visualization and
the applet [29]. The residue IDs of the selected node and its adjacent residues are listed beneath the
applet. The chemical interactions between active site residues and ligand-binding regions are often
explored through visual analysis of PCNs. Tools like Network Analysis of Protein Structures (NAPS)
enable users to select and analyse specific molecular groups within the visualization for this purpose.
NAPS also integrates several network analysis metrics such as node centrality, k-cliques, shortest paths,
and spectral analysis of the network graph. For advanced structural analysis, especially involving
multi-domain proteins or sub network exploration, NAPS provides an interactive 3D visualization
environment [30]. It is possible to visually analyse a sub-network based on the physicochemical char-
acteristics of the residues. The network’s 3D view provides the ability to select among three different
types of residues: charged, hydrophilic, and hydrophobic. As shown in Figure 2 for the hydrophilic
residues of myoglobin (PDB ID: 1MDM, chain A), when one residue type is selected, all residues
with the chosen physicochemical property are highlighted in both the 3D network view and the JSmol
applet. Connections are displayed only among the highlighted residues. In contrast to electric fields,
quaternion forces interact and anticommute [31].
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Figure 1. Integrated 3D network and structural visualization of protein 1CRN (chain
A). (a) Upon selecting a node in the 3D network view, the node is highlighted in red,
and the corresponding residue is marked in the JSmol structural view. (b) The selected
node’s immediate neighbors within both the network and the JSmol applet.

Figure 2. Sub-network representation of the 3D network view illustrating hydrophobic
residues and their interactions in the protein myoglobin (PDB ID: 1MDM, chain A)

Continuous geometries are required to define continuous divergence operations. For example,
include the incidence matrices of various simplices: triangles, edges, and vertices. Numerical methods
are typically used to approximate the Laplace–Beltrami operator inherently requires computational
effort [32]. Each branch of the model is characterized by a block design that processes input data
at multiple resolutions. For every resolution level, there is an associated cost or objective function.
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Multi-objective or Pareto-based stochastic optimization is employed during training to ensure accurate
classification at each resolution level. A learnable attentionmechanism, guided by the structural outline,
selects the optimal combination of features for effective classification [33].

2.1. Problem Formation. PPINs are changing, complex biological structures in which proteins are
represented by nodes and interactions between them by edges. A complex theoretical structure is
needed to capture their memory-dependent, time-evolving, and non-local behaviors. Long-range
connections and quantum-like combination events are not captured by existing network frameworks.

Let the PPIN be represented as a quantum graph:

G = (V, E, H) (1)

Where: V : Set of proteins (nodes), E: Set of interactions (edges),H : Hilbert space mapping function
assigning a quantum state ψ to each vertex.

To model temporal dynamics and memory effects, we apply fractional differential equations on the
graph:

Dα
t ψ (v, t) =

∑
u∈N(v)

Luvψ (u, t) + F (v, t) (2)

Where: Dα
t : Caputo fractional derivative of order 0 < α ≤ 1; Luv : Quantum graph Laplacian operator,

F (v, t): External biological stimulus or perturbation, ψ (u, t) : Protein activity state at node u over time.
Introduce TDA using persistent homology to extract robust multi-scale topological features:

PHk (G, ε) =
{(
bkx, d

k
x

)
|x = 1, 2, . . . , nk

}
(3)

Where: PHk Persistent k-dimensional homology, (bkx, dkx): Birth and death times of topological features
(e.g., loops, voids), ε: Filtration parameter controlling resolution.

The objective is to minimize dynamic inconsistency and topological instability in protein interaction
modeling:

min
ψ,α

[
Dα
t ψ − Lψ||

2 + λ.TDA_loss(PHk)
]

(4)

Where: L: Discrete Laplacian matrix on quantum graphs, λ: Regularization parameter, TDA_loss:
Function penalizing topological feature instability.

2.2. Hypothesis. Hypothesize is that the integration of quantum graph structures with fractional-order
differential dynamics and TDA can more accurately and robustly model the complex, non-local, and
memory-dependent behaviours of dynamic PPINs. This hypothesis is formulated on three theoretical
grounds:

(1) Fractional calculus captures the hereditary and long-range dependencies inherent in biological
networks.



Asia Pac. J. Math. 2025 12:70 9 of 25

(2) Quantum graphs provide a richer representation of probabilistic and oscillatory interaction
dynamics between proteins.

(3) Persistent homology (fromTDA) enables the extraction of multi-scale topological features that
remain stable under small perturbations, essential for detecting functional protein modules.

H1: Fractional Dynamics Improves Temporal Accuracy Incorporating fractional-order derivatives
leads to better modelling of temporal evolution in PPIN states.

H1 : MAEα<1 < MAEα=1 (5)

Where: MAE: Mean Absolute Error of dynamic state predictions. α: Order of the fractional derivative
in the range (0, 1).
H2: Quantum Graph Laplacian Captures Complex Interactions Better

Using the quantum graph Laplacian improves representation of non-local dependencies over existing
graph Laplacions.

H2 : ‖LQψ − ψtrue‖22 < ‖LCψ − ψtrue‖
2
2 (6)

Where:LQ: Quantum graph Laplacian operator. LC : Classical combinatorial Laplacian. ψ : Estimated
protein state. ψtrue: Ground truth or biological reference.
H3: TDA Enhances Structural Feature Stability

Persistent homology-based features are more stable and biologically meaningful than node-level
features under perturbations.

H3 : Var (PHk) < Var(Node Degree) (7)

Where: Var: Variance under noise/perturbation. PHk : K-dimensional -persistent homology feature.

3. Materials and Methods

To interactively describe PPINs, this study used a combined computational modeling approach that
included Fractional Calculus, Quantum Graph Theory, and TDA shown in Figure 3. Openly accessible
biological resources like STRING and BioGRID, which offer experimentally verified PPINs for several
model species, are the source of protein-protein interaction information. Following pre-processing, the
networks were converted into uncontrolled weighted graphs, with each node standing for a protein
and every edge accounting for a relationship that was weighted by contact trust ratings. To represent
signalling or energy transfer along protein interactions, every borderwas seen as a 1Ddomain controlled
by a second-order Schrödinger-type differential calculus. The system’s structural dynamics were
captured using the Quantum Laplacian operator, while protein node integrity and maintenance were
guaranteed using Kirchhoff-type boundary constraints. Caputo Fractional Derivatives of order α∈
(0,1) into the governing differential equations to account for memory and genetic impacts on protein
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interactions across time. A mix of MATLAB for numerical solutions of differential equations with
fractions on networks and Python-based libraries (Networkx, Gudhi, and FractionalDiffEq) were used
for all calculations and simulations. The resilience and physiological importance of interactions between
proteins under various disruption situations were then inferred by statistically examining the changing
topological fingerprints that resulted.

Figure 3. Proposed Architecture

3.1. Data Ingestion. Extensive PPI information from reputable biological data sets including BioGRID,
STRING, IntAct, and DIP are included in the dataset utilized for this study shown in Table 1.
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Table 1. Dataset Basic Information
Dataset Name Source Format No. of Proteins

(Nodes)

BioGRID BioGRID TAB/CSV/TSV ∼27,000
STRING STRING-db.org TSV/JSON ∼20,000
IntAct EMBL-EBI XML/TSV ∼25,000
DIP dip.doe-

mbi.ucla.edu
TAB/CSV ∼5,000

Dataset Name No. of Interactions

(Edges)

Organism Version

BioGRID ∼1,000,000 H. sapiens, S. cerevisiae v4.4.229
STRING ∼3,000,000 Multiple species v12.0
IntAct ∼700,000 H. sapiens 2024 release
DIP ∼50,000 Various DIP 2024

These collections include carefully selected, empirically verified, and excellent interaction informa-
tion for a variety of taxa, such as Saccharomyces cerevisiae andHomo sapiens. DIP focuses on extremely
dependable connections supported by biological data, whereas IntAct offers carefully selected inter-
actions between molecules. These information sets’ large scale and variety of communication types
make it appropriate for creating and verifying fluid models through fractional calculus, quantum
graph-based equations of motion, and topological analysis of information eventually leading to a better
comprehension of the dynamic properties within PPI systems sample data shown in Table 2.

Table 2: Sample Data
Protein A Protein B Interaction Type Confidence

Score

Detection Method Organism

TP53 MDM2 Physical interaction 0.98 Yeast Two-Hybrid Homo sapiens
BRCA1 BARD1 Complex formation 0.95 Co-immunoprecipitation Homo sapiens
EGFR GRB2 Signaling interaction 0.92 Affinity Capture-MS Homo sapiens
CDC42 PAK1 Direct interaction 0.89 Pull-down assay Mus musculus
CDK1 CCNB1 Protein complex 0.96 X-ray Crystallography Homo sapiens
AKT1 GSK3B Phosphorylation 0.91 Western Blot Homo sapiens
MAPK1 DUSP6 Enzymatic inhibition 0.90 Fluorescence Resonance Energy

Transfer (FRET)
Homo sapiens

STAT3 IL6ST Signal transduction 0.93 Protein Complementation Assay Homo sapiens
SMAD2 SMAD4 Transcriptional com-

plex
0.94 Co-immunoprecipitation Homo sapiens
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3.2. QuantumGraph ConstructorModule. To convert unstructured PPI information into an organized
graph format appropriate for sophisticated dynamic simulation, the Quantum Graph Constructor
Module is essential. The matrix of adjacency produced by this module indicates the presence and
degree of interactions among proteins. To model intricate dissemination processes inside the network,
this matrix can be expanded using fractions capacities or quantum operations. This course ensures that
the changing dynamics of biological structures may be accurately and faithfully described by defining
the graph format serves as the basis for performing calculus of fractions and topological analysis
of information. The task of transforming unprocessed PPI data into a quantum-compatible graph
framework appropriate for dynamic computation falls to the Quantum Graph Constructor Module.
This entails creating a mathematical network with edges and nodes and decoding it in a format that is
compatible with topological computation and quantum differentiation operations. A quantum graph
is a mathematical framework that may be used to mimic complex organisms like PPI systems. It is
an existing structure of graphs enhanced with the use of differential operators to simulate quantum
dynamics on vertices. In the context of PPI networks, we model each protein as a vertex vx∈V , and the
interaction between any two proteins as an edge exy∈E. The quantum graph G is constructed as:

G= (V,E,H,L) (8)

Where, V: Set of proteins (nodes); E: Set of protein-protein interactions (edges);H: Hilbert space on
which the functions (wavefunctions or states) are defined over edges; L: Differential (often Schrödinger-
type) operators defined on the edges. Each edge is treated as a 1D quantum wire of finite length where
wave functions evolve. On an edge exy the quantum dynamics can be governed by a Schrödinger-type
equation:

−d
2ψxy (i)

di2
+Vxy (i)ψxy (i) =λψxy (i) (9)

Where, ψxy (i) : Wavefunction over edge exy; Vxy (i): Potential along the interaction (can encode interac-
tion strength); λ: Eigen value (energy or information transfer rate).
This graph can now be extended to a quantum graph by solving differential equations over edges (as
wires), enabling dynamic simulations of information or protein interaction propagation across the PPI
network.

3.3. Adjacency and Laplacian Matrix Representation. Let the PPI network be represented by a
weighted adjacency matrix A, where:

Axy =

wxy, if protein x interacts with protein y

0, otherwise
(10)
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The degree matrix D is diagonal, with entries:

Dxx =
∑
y

Axy (11)

Then the Laplacian matrix is:
L = D −A (12)

For quantum graph modelling, a normalized Laplacian or fractional Laplacian may also be used:

L(α) = (D −A)α, 0 < α ≤ 1 (13)

This fractional Laplacian helps simulate sub-diffusion or anomalous transport observed in biological
networks.
Example: Suppose have a PPI subnetwork of 3 proteins:P1,P2,P3 with the following interactions:

(1) P1↔ P2 with weight 0.8
(2) P2↔ P3 with weight 0.6
(3) P1↔ P3 with weight 0.7

Then, Adjacency Matrix A:

A =


0 0.8 0.7

0.8 0 0.6

0.7 0.6 0


Degree Matrix D:

D =


1.5 0 0

0 1.4 0

0 0 1.3


Laplacian Matrix L = D - A

L =


1.5 −0.8 −0.7

−0.8 1.4 −0.6

−0.7 −0.6 1.3


By resolving equations of motion across vertices (as wires), this graph may now be expanded to a
quantum chart, allowing for dynamic modelling of the transmission of knowledge or interactions
between proteins throughout the PPI network.

3.4. Time-Series Data Representing Simulated Dynamics of the PPI Network. When PPI systems
are modelled using quantum graphs, data in time series is produced by modelling the propagation of
energy, data, or signals across the system as time passes. Quantumdifferential operators that are defined
on the margins of the graph represent the evolution of the changing variables (e.g., concentration,
binding activity) linked to each protein (node). Each interaction’s temporal profile is obtained by
solving the Schrödinger-type or fractional diffusion equation over the graph connections. This produces
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a time-series matrix nodes are denoted by rows and time intervals by sections. Important biological
characteristics including feedback networks, activating interruptions, and rates of diffusion among
interacting proteins are captured by this dynamic development. Since static charts cannot depict
protein cascades or the controlling phases of the signalling pathways, this data is very helpful in these
areas. Topological descriptors are calculated from the growing PPI graph in order to examine these
intricate dynamics. These descriptions, which include clustering values, persistent resemblance Betti
numbers, Euler characteristics, and centrality measurements, characterize the system’s connection and
structure at different points in the period. Permanent homology, for instance, provides information on
the durability and redundancy of protein structures by monitoring the formation and disappearance
of linked loops and parts throughout time. By including these characteristics with the time-series
dynamics, the framework becomes easier to understand and supports more accurate forecasts in disease
and systems biology models.

3.5. Descriptors of TDA. The inherent structure, connectedness, and form of complex datasets—in
this case, PPI networks are captured by topological descriptors are mathematical tools developed
from algebraic topology. TDA structures of greater complexity such as clusters, loops, and voids
that form throughout the network rather than concentrating on specific protein pairings or pathways
shown in Figure 4. These characteristics are perfect for comprehending the global organization of
the network throughout time since they do not change even when deformed continuously. Persistent
homology is the most popular TDA method for dynamic PPI networks represented as quantum graphs.
It monitors the emergence and extinction of topological characteristics (such as loops, cavities, and
linked components) in response to modifications in a filtering parameter (e.g., simulated duration or
interaction strength). These terms shed light on biological organisms’ resilience, failure spots, and
functioning components. Find stable structures, emerging routes, or regulatory motifs within the
PPI network by examining how topological properties change throughout time-series computations
of the quantum graph. In contrast to existing graph metrics, topological descriptors improve our
comprehension of biological control and communication in illness or disturbance by enabling us to
describe the local and global behaviors of proteins in dynamic and unpredictable contexts.

A - Protein folding process
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B - Graph representation and network analysis

Figure 4. Early Folding and functional residues are separated and connect distant
protein regions

3.6. Algorithm: QGDM-FC-TDA for PPI Network Dynamics. Input: Protein-Protein Interaction
dataset D; Time-stamped or simulation-based dynamic data T; Fractional order α ∈ (0, 1)
Output: Dynamic behavior metrics of PPI network; Persistent topological features; Graph-based
dynamic descriptors
Step 1: Quantum Graph Construction:

Construct the quantum graph G = (V, E, H) where:
V: Set of proteins (nodes); E: Set of interactions (edges);
H: Hilbert space of wave functions on edges.
Let A be the adjacency matrix and I be the combinatorial Laplacian: L = D −A

Where D is the degree matrix.
Define the quantum state evolution on edge

e ∈ E : x}
∂ψe(t)

∂t
= −∆ψe(t) (14)

Step 2: Apply Fractional Calculus

Replace the classical derivative with a Caputo fractional derivative:

CDαt f (t) = −∆ψe (t) , 0 < α < 1 (15)

Caputo derivative definition:

CDαt f (t) =
1

Γ (n− α)

∫ t

0

f (n)(τ)

(t− τ)α−n+1dτ, n− 1 < α < n (16)

Step 3: Simulate Dynamics over Time

Simulate fractional quantum dynamics for each edge exy over a discrete time span T. For all

t ∈ To evolve the system using : ψe (t+ ∆t) ≈ ψe (t) + ∆tα.(−∆ψe (t)) (17)
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Step 4: Construct Time-Varying Graph Snapshots

Build graph snapshot at each t ∈ T , Gt is weighted by state |ψe(t)|2 reflecting interaction intensity:

wxy(t) = |ψe(t)|2 (18)

Step 5: Compute Topological Features Using TDA

Convert each graph snapshot into a point cloud or a filtration. Use Persistent Homology to compute:
H0: connected components; H1 : loops/cycles; H2: voids (if applicable)
Calculate Betti numbers:

βk (Gt) = rank (Hk (Gt)) , k = 0, 1, 2] (19)

Step 6: Extract Topological Descriptors:

From persistence diagrams/barcodes: Persistence

px = deathx − birthx (20)

Lifetime entropy:

E = −
∑
x

pxlogpx (21)

Step 7: Dynamic Characterization Metrics:

Aggregate descriptors over time: Topological entropy E(t); Stability of Betti curves; Spectral entropy of
evolving Laplacians:

S (Lt) = −
∑

λxlogλx (22)

Where; λx are eigenvalues of Lt
Step 8: Output Analysis:

Compare dynamic topologies across conditions. Detect anomalies or reconfigurations. Infer robust PPI
modules via topological stability
PPI systems are continuously characterized by the proposed approach combines Fractional Calculus,
TDA, and Quantum Graph-Based Differential Systems. Quantum graph is created with nodes standing
in for proteins and connections for connections. Fraction derivatives namely the Caputo fractional
derivative are used to represent the quantum dynamics on this chart to reflect long-range connec-
tions and memory-dependent behaviors that are frequently seen in biological systems. To evaluate
the network’s stability and intricacy over time, topological characteristics like lifespan volatility and
spectrum entropy of the Laplacian matrix are calculated. To describe the network’s dynamic actions,
find stable sub-networks or major shifts, and deduce structures with biological significance, the last
step is combining and evaluating those descriptors.
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4. Results and Discussions

The experimental settings for evaluating the proposed QGDM-FC-TDA were carefully configured
to ensure accuracy, reproducibility, and biological relevance. PPI data were sourced from publicly
available databases such as BioGRID and STRING, covering both curated and predicted interactions.
The networks constructed consisted of undirected weighted graphs with nodes representing proteins
and edges representing interaction strengths. Each dataset was standardized and transformed into
an adjacency matrix to facilitate graph-based modelling. The simulation environment implemented
fractional-order differential equations using the Caputo derivative with varying fractional orders
(α = 0.6 to 0.95) to examine different memory effects in protein interactions. A discrete time-step
method was employed to compute the evolution of the quantum graph dynamics over time, generating
multiple snapshots at regular intervals. Each snapshot was processed through topological data analysis
using persistent homology to extract Betti numbers and compute lifetime entropy. Computations
were executed using Python 3.11 with libraries such as NetworkX, Gudhi (for TDA), and SymPy (for
fractional calculus), on a machine with an Intel i7 processor, 32 GB RAM, and Ubuntu 22.04. The
experiments were repeated across three different datasets for robustness, and all performance metrics
including computational complexity, entropy variation, and persistence stability were averaged over
five runs to ensure statistical validity. To guarantee reliable and precise dynamical characterization of
PPI systems, the hyper parameter settings for the proposed QGDM-FC-TDA were precisely chosen.
To reflect non-local temporal relationships in the network motion, a fractional ordering between 0.6
and 0.95 was used. To guarantee chronological precision, the simulation covered 100-time steps
with a fine-grained precision of 0.01 step size.To depict bidirectional biological relationships with
different intensities, an unstructured, weighted graph framework was selected shown in Table 3. Stable
topological trends across time were extracted for topological analysis of information using a window
size of 10-time steps and an ongoing criterion of 0.05. To guarantee uniform ranges of numbers across
characteristics, min-max scaling was used for normalization. PPI networks are huge and variable,
simulations were conducted in batches of one. The Adam method was used for efficiency with a
learning rate of 0.001 to allow for seamless and steady model development.
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Table 3: Hyperparameter Settings

Hyperparameter Value / Range

Fractional Order (0) 0.6-0.95
Time Steps (T) 100
Step Size (At) 0.01
Graph Type Undirected. Weighted
Node Feature Dimension 128
Persistence Threshold (s) 0.05
TDA Feature Extraction Window Size 10 time steps
Normalization Method Min-Max Scaling
Simulation Batch Size 1
Optimizer Adam
Learning Rate 0.001

Figure 5. Comparison of performance measures

Figure 6. Precision recall curve
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Figure 7. Confusion matrix for the proposed system

The Quantum Graph-Based Differential Model’s performance was evaluated using various node
feature sets. Models with only topological features achieved 88.5% accuracy but lacked biological depth
shown in Figure 5. Those using only biological features scored 87.2%, indicating limited dynamic
insight. Including learned embedding’s through Graph SAGE improved accuracy to 91.6%. A hybrid
model combining biological and topological data further raised precision to 93.1%. The highest
performance 95.4% accuracy and 0.89 dynamic coherence was achieved by the proposed system using
fractional calculus, feature optimization, and topological analysis. These results show that integrating
diverse node features with advanced modelling significantly enhances protein network interaction
understanding. The same neural network and descriptions were used with identical hyper parameters
for the protein. To address the challenges of learning flexible subpart structures, the patience parameter
(i.e., the number of epochs to wait before stopping training if no significant improvement in the loss
function is observed) was doubled. Figure 6 shows the precision-recall curve. The effectiveness of the
proposed approach is further supported by the confusion matrix, as illustrated in Figure 7.

Figure 8. Proposed energy landscapes show protein configuration freedom and folding pathways
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Existing views suggest protein folding occurs through distinct intermediates along a linear path. The
energy landscape hypothesis proposes a gradual folding process through partially folded states directed
toward the native structure. Proteins have evolved to possess a rugged, funnel-shaped energy landscape
biased toward their functional form shown in Figure 8. This funnel allows multiple folding pathways,
ensuring robustness. An analogy compares this to skiers on a mountain, each taking different routes to
reach the valley’s bottom representing the protein’s native state. The smoother the funnel, the more
efficient and reliable the folding illustrates this idealized, bump-free funnel shape.
In contrast, the open energy landscape of TC5b is substantially less complex Figure 9 (a). A single global
minimum with an energy of −13.5 kJ/mol is present, highlighted in cyan. With a slightly different
RMSD (0.7 Å), this optimal conformation has the same radius of gyration as TC10b (6.9 Å). To fully
count and sample the entire conformational timeline, computational methods must be aware of and
capable of capturing these distinct conformations. At scale, a quantum algorithm could potentially
achieve this shown in Figure 9 (b). In terms of AUC-ROC, the proposed model that combines quantum
graph structures, fractional mathematics, and topological analysis of information works better than any
baseline system, suggesting that protein connections are more reliably classified shown in Figure 10. It
also succeeds in Topological Fidelity, maintaining crucial architectural and biological characteristics of
the system, and maintains higher Dynamic Consistency, exhibiting consistent behavior during repeated
computations.

(a)

(b)

Figure 9. Free Energy Landscape of TC10b Showing Dual Folding Pathways and Minima
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Figure 10. Comparison of performance measures (AUC-ROC, Dynamic Consistency,
and Topological Fidelity)

Setting PPI Network Size

(Nodes/Edges)

Sample

Size

Permutation

Time (s)

LMM

Time (s)

Total Run-

ning Time

(s)

Setting 1 500 / 1200 100 45.3 20.5 65.8
Setting 2 1000 / 3000 200 97.6 41.8 139.4
Setting 3 1500 / 5200 300 168.2 68.9 237.1
Setting 4 2000 / 7400 400 240.4 89.7 330.1
Setting 5 2500 / 9800 500 312.5 112.3 424.8

Table 4: Comparison of settings

Figure 11. Comparison LRT and SNR score

Preliminary runtime analysis of the QGDM-FC-TDA was performed using various PPI network setups.
For a small network (500 nodes, 1200 edges, sample size 100), permutations and Local Mixed Model
(LMM) computations took 45.3 and 20.5 seconds, respectively, totalling 65.8 seconds shown in Table
4. Figure 11 compares the performance of various models in terms of LRT (Likelihood Ratio Test)
Score and Signal-to-Noise Ratio (SNR). The proposed system, integrating Quantum Graphs, Fractional
Calculus, and Topological Data Analysis (TDA), achieves the highest LRT Score (12.74) and SNR (32.8
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dB), indicating superior accuracy and noise resilience. This demonstrates that combining quantum,
fractional, and topological methods enhances both signal clarity and model robustness in protein
network analysis.

Figure 12. Comparison of performance measures (Error)

Figure 12 evaluates different systems based on Mean Squared Error (MSE), Relative Local Noise
(RLN), Relative Connectivity Noise (RCN), and Spectral Gap. The proposed model—combining
Quantum Graphs, Fractional Calculus, and TDA outperforms all others, achieving the lowest MSE
(0.018), RLN (0.12), and RCN (0.08), alongside the highest spectral gap (0.312), indicating strong
stability, lower error, and better community separation. This confirms the effectiveness of the proposed
hybrid approach for precise and stable dynamic PPI network analysis.

5. Conclusions

This study introduces a novel QuantumGraph-Based Differential Model integrating Fractional Calculus
and Topological Data Analysis for dynamic characterization of Protein-Protein Interaction networks.
The proposed method effectively captures complex temporal dynamics and structural patterns, achiev-
ing superior performance over existing models. Experimental results show improvements in AUC-ROC
by 8%, enhanced dynamic consistency, and higher topological fidelity. The approach also demonstrates
lower MSE and faster computational times, confirming its accuracy and efficiency. These outcomes
highlight the model’s capability to reliably analyse PPIN dynamics, providing valuable insights into
biological interactions. Future research will explore broader biological applications and advanced
quantum techniques for further enhancements.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication
of this paper.
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