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Abstract. This paper is devoted to the theoretical study of an asymmetric max-stable copula in dimension
two derived from a class of copulas previously introduced in a previous work. This particular copula,
constructed as an asymmetric extension of the Brown-Resnick copula, can be used to model structures of
extreme spatial dependencies with asymmetry between the margins. Given the complexity of the density,
particularly in higher dimensions, we recommend the use of the pairwise likelihood method for parameter
estimation. This approach, which is well suited to models with complex dependencies, allows efficient
inference from bivariate margins. This work thus provides a sound theoretical basis for future applications
of this copula to multivariate extreme data.
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1. Introduction

The study of dependence between random variables is still a crucial issue in many fields, particu-
larly in finance, insurance and climatology. One of the most widely used approaches at the moment,
especially in the non-Gaussian framework, is copulas. Copulas are tools that can be used to describe
the dependence structure independently of the margins, and therefore play a fundamental role in this
study.

There are several families of copulas in the literature, but not all of them are suitable for modelling
certain extreme phenomena whose behavior is unpredictable. Most are symmetrical, whereas in
reality the symmetry assumption is too restrictive. To compensate for the shortcomings of these
symmetrical copulas, asymmetrical copulas constructed either by marginal transformations or by other
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transformations on existing copulas have been developed. On this point, we can cite a few authors
who have worked in this direction.

Rodriguez-Lallena and Ubeda-Flores [13] introduce a class of asymmetric bivariate copulas that
generalizes some families of copulas already known. Kim et al [7] and Messarr and Najjari [11] extend
the method of Rodriguez-Lallena and Ubeda-Flores by constructing a new family of symmetric and
asymmetric copulas. Alfonsi and Brigo [1] proposed a new method for constructing asymmetric
copulas based on periodic functions. Liebscher [10] in turn contributed by proposing two multivariate
asymmetric copula construction methods based on the method proposed by Khoudradji in 1995 [8] in
his thesis. The firstmethod is constructed using products of copulas, while the second is a generalization
of families of Archimedean copulas. Still in the history of those who contributed to the construction
of asymmetric copulas, we can mention Duran [6] who proposed a method based on the product of
copulas but with powerful arguments. Wu [15] proposed a new method for constructing asymmetric
copulas using a mixture of basic copulas and a convex combination of asymmetric copulas that can
have different tail dependencies in different directions. Di Bernardino and Rullière [2] constructed a
multivariate family of copulas by generalising some known families using a Σ distortion matrix.

In a previous work, we developed a general class of asymmetric copulas, making it possible to
generate a variety of copulas adapted to different contexts [?]. Among these, a specific copula has
been constructed, inspired by the structure of the Brown-Resnick copula, but incorporating marginal
transformations or mechanisms to model asymmetric dependencies. Although this copula has been
introduced, its theoretical properties have not yet been explored in depth.

This paper explores the theoretical properties of this asymmetric copula, evaluates its behaviour
through simulations and analyses its ability to capture extreme spatial dependence.

The aim of this approach is to demonstrate the usefulness of our copula in practical contexts and to
further the understanding of asymmetric dependencies in climatology. It thus constitutes a significant
contribution to the literature on asymmetric copulas by providing an in-depth analysis of a specific
model and highlighting its potential for modelling climate dependencies.

2. Preliminary

2.1. Definition of a copula. Copulas are fundamental tools in probability theory for modelling the
dependence between several random variables. They allow the marginal distributions of these variables
to be appropriately related to their joint distributions. Without loss of generality, we will focus on
copulas of dimension 2, i.e. bivariate copulas.

Definition 1. [12] A copula is a function C : [0, 1]2 −→ [0, 1] satisfying the following conditions:
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i) The boundary conditions: ∀u, v ∈ [0, 1],

C(u, 0) = C(0, v) = 0 (1)

C(u, 1) = u (2)

C(1, v) = v (3)

ii) The 2-increasing condition: ∀u1 ≤ u2 and v1 ≤ v2,

C(u1, v1)− C(u2, v1)− C(u1, v2) + C(u2, v2) ≥ 0. (4)

The notion of copula asymmetry is formally clarified in the following remark:

Remark 1. [12] If C is a symmetric copula then

C(u, v) = C(v, u), ∀u, v ∈ I. (5)

Otherwise, we say that C is asymmetric.

In the field of modelling extreme phenomena, only extreme copulas are suitable. The following
definition tells us more about this notion.

Definition 2. [12] Let n be a positive real constant. An extreme value copula C∗ is a copula which satisfies the

following relation :

C∗(un, vn) =
(
C∗(u, v)

)n
. (6)

2.2. Sklar’s theorem and its inversion. To better understand the role of copulas, it is essential to
consider Sklar’s celebrated theorem, which is a fundamental result in copula theory. This theorem
shows that it is possible to link the principle of copulas to the distribution function and marginal laws.

Theorem 1. [12] Let F be a joint distribution function of margins F1 and F2. Then there exists a copula

C : [0, 1]2 −→ [0, 1] such that for all (x, y) ∈ R2, we have:

F (x, y) = C(F1(x), F2(y)). (7)

Furthermore, if F1 and F2 are continuous, then C is unique.

Another way of expressing the copula in terms of the joint distribution and its marginals is given by
the following theorem:

Theorem 2. [12]

Let F be the bivariate distribution function of marginals F1 and F2. The copula C associated with F is given

by:

∀(u, v) ∈ [0, 1]2, C(u, v) = F
(
F−1

1 (u), F−1
2 (v)

)
. (8)
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2.3. New family of max-stable asymmetric spatial copulas. In [?], we constructed a new class of
flexible asymmetric copulas by modifying the Darsow product operator [5]. The following definition
reminds us of the formulation of this construction.

Definition 3. [16] Let C1 and C2 be two symmetrical copulas and α and β be in (0, 1) such that α 6= β. The
α,β
? -product of C1 and C2 is the function C1

α,β
? C2 from I2 to I given by:

(C1
α,β
? C2)(u, v) = u1−αv1−β

∫ 1

0
D2C1(uα, t)D1C2(t, vβ)dt. (9)

Theorem 3. [16] The product C1
α,β
? C2 given in (9) is an asymmetric copula.

Using this theorem, it is now possible to construct several asymmetric copulas from two symmetric
copulas. However, the copulas generated by this class are not always guaranteed to be max-stable,
even if the basic copulas used are. To ensure that the copulas obtained are max-stable, a number of
conditions must be met, as set out in the following proposition.

Proposition 1. [16] Let C1 and C2 be two max-stable copulas such that C = C1
α,β
? C2 is well defined as in

definition 3 . Then the Darsow modified copula C is max-stable if one of the copulas C1 or C2 is Fréchet-Hoeffding

upper bound .

Following on from this proposal, we have constructed a max-stable copula which is also an asym-
metric extension of the Brown-Resnick copula. Let Cs be the copula underlying the Brown-Resnick
max-stable process [18], called the Brown-Resnick copula and given in the following equation:

Cs(us, vs) = exp

[
Φ

(
a(h)

2
+

1

a(h)
log

(
log us
log vs

))
log us + Φ

(
a(h)

2
+

1

a(h)
log

(
log vs
log us

))
log vs

]
.

(10)
where a(h)2 = 2γ(h) with γ(h) the semi-variogram of a Gaussian process centred (Φ(.)) at least at
stationary increments and h the distance between two sites.
By applying the previous proposition, we obtain the asymmetric max-stable spatial copula given by:

Cs(us, vs) = exp

[
(1− α) log us + αΦ

(
a(h)

2
+

1

a(h)
log

(
α log us
β log vs

))
log us

+ (1− β) log vs + βΦ

(
a(h)

2
+

1

a(h)
log

(
β log vs
α log us

))
log vs

]
.

(11)

As well as being asymmetrical, this copula offers flexibility in modelling spatial extremes.
Although this new copula was introduced in the previous article, it has not been studied in depth,

particularly with regard to its theoretical and practical properties. The following section will therefore
be devoted to a detailed analysis of this copula, in order to facilitate its use in the modelling of extreme
spatial events.

Remark 2. Limit case of the copula
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(1) For (α, β) = (1, 1), we would find the classic symmetrical Brown-Resnick copula given in (10).
(2) Also, if (α, β) ∈ {(0, i), (i, 0)},i ∈ [0, 1], then our copula reduces to an independent copula Π(u, v) =

uv.

3. Main Results

3.1. Copula asymmetry. The asymmetry of a copula is essential because it influences the way in which
the dependence between variables manifests itself in different regions of the distribution. In many
cases, the dependence is not symmetrical: in finance, assets are often more correlated in times of crisis,
while in climatology, extreme precipitation can be influenced differently depending on the season or
climate. Formally, this asymmetry can also be manifested by the non-tradability of its margins, i.e. the
order of the variables influences the value of the copula. The following proposition guarantees that the
Brown-Resnick extended copula is asymmetric.

Proposition 2. Let α and β be two different real numbers (α 6= β) such that α;β ∈ [0, 1]. Then the copula Cs

defined in (11) is an asymmetric copula.

Proof. We have:

Cs(us, vs) = exp

[
(1− α) log us + αΦ

(
a(h)

2
+

1

a(h)
log

(
α log us
β log vs

))
log us

+ (1− β) log vs + βΦ

(
a(h)

2
+

1

a(h)
log

(
β log vs
α log us

))
log vs

]
.

(12)

If we swap the margins us and vs, we obtain:

Cs(vs, us) = exp

[
(1− α) log vs + αΦ

(
a(h)

2
+

1

a(h)
log

(
α log vs
β log us

))
log vs

+ (1− β) log us + βΦ

(
a(h)

2
+

1

a(h)
log

(
β log us
α log vs

))
log us

]
.

(13)

Since α 6= β, then it is clear that Cs(us, vs) 6= Cs(vs, us). From the remark 1, we conclude that Cs is an
asymmetric copula. �

3.2. Max-stability of the copula. A copula that is not max-stable does not respect the dependency
structure specific to extreme values. Indeed, the limiting distributions of maxima (as in the analysis of
extreme events) obey a property called max-stability. If a copula is not max-stable, it cannot correctly
represent the dependence between maxima of random variables. Conventional copulas (such as the
normal copula) model the central dependence well, but often underestimate the dependence in the
tails, where the extremes are located. This can lead to significant errors in risk modelling. The copula
we describe here, in addition to being spatial and asymmetric, is also max-stable.

Proposition 3. If Cs is the extended Brown-Resnick copula defined in (11), then Cs is max-stable.
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Proof. Let n be a strictly positive real number. We have:

Cs(uns , v
n
s ) = exp

[
(1− α) log uns + αΦ

(
a(h)

2
+

1

a(h)
log

(
α log uns
β log vns

))
log uns

+ (1− β) log vns + βΦ

(
a(h)

2
+

1

a(h)
log

(
β log vns
α log uns

))
log vns

]
= exp

[
n(1− α) log us + nαΦ

(
a(h)

2
+

1

a(h)
log

(
α log us
β log vs

))
log us

+ n(1− β) log vs + nβΦ

(
a(h)

2
+

1

a(h)
log

(
β log vs
α log us

))
log vs

]
(14)

By factoring by n inside the exponential function, we obtain:

Cs(uns , v
n
s ) = exp

[
n

(
(1− α) log us + αΦ

(
a(h)

2
+

1

a(h)
log

(
α log us
β log vs

))
log us

+ (1− β) log vs + βΦ

(
a(h)

2
+

1

a(h)
log

(
β log vs
α log us

))
log vs

)]
= exp

[
(1− α) log us + αΦ

(
a(h)

2
+

1

a(h)
log

(
α log us
β log vs

))
log us

+ (1− β) log vs + βΦ

(
a(h)

2
+

1

a(h)
log

(
β log vs
α log us

))
log vs

]n
.

Cs(uns , v
n
s ) =

(
Cs(us, vs)

)n
.

(15)

So according to the definition 2, the copula Cs is indeed max-stable. �

3.3. Copula density. The density of a copula is an important element in the modelling process, particu-
larly in the parameter estimation stage for themaximum likelihoodmethod. In the absence of numerical
estimation, we give here the closed expression of the Brown-Resnick extended copula density.

Proposition 4. Let Cs be the Brown-Resnick extended copula defined in (11). Then the density cs associated

with Cs is given by:

cs(us, vs) =
Cs(us, vs)

usvs

[(
(1− β) +

β

a(h)
φ(y) + βΦ(y)− α log us

a(h) log vs
φ(x)

)
×
(

(1− α) +
α

a(h)
φ(x) + αΦ(x)− β log vs

a(h) log us
φ(y)

)
+
α(x− a(h))

a2(h) log vs
φ(x) +

β(y − a(h))

a2(h) log us
φ(y)

] (16)

with: x =
a(h)

2
+

1

a(h)
log

(
α log us
β log vs

)
; y =

a(h)

2
+

1

a(h)
log

(
β log vs
α log us

)

Φ(.) et φ(.) are the distribution function and the density of the standard normal distribution respectively.

3.4. Dependency function and dependency measures.
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Figure 1. Visualization of the Brown-Resnick extended copula: density, contour lines,
and scatter plot for a(h) = 0.46, α = 0.99 and β = 0.96.

Figure 2. Visualization of the Brown-Resnick extended copula: density, contour lines,
and scatter plot for a(h) = 1, α = 0.8 and β = 0.5.

3.4.1. Pickands dependency function. Another way of representing the dependency structure of bivariate
limit laws is via a special function called the Pickands dependency function A : [0, 1]→ [1/2, 1]. This
function can therefore be used to represent any extreme value copula. In the bivariate case, the following
theorem reminds us of the details of this function.

Theorem 4. [12] If C is an extreme value copula, then

C(u, v) = exp

(
log(uv)A

(
log u

log(uv)

))
, (17)

for an appropriate choice of the A function.

In particular, the following constraints must be satisfied:

(1) A(0) = A(1) = 1.

(2) max {t, 1− t} ≤ A(t) ≤ 1, ∀ t ∈ [0, 1].

(3) A is convex.
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The Pickands function completely characterizes bivariate extremal dependence. It is equal to 1 in
case of independence and equal to max(t, 1− t) in case of perfect dependence.
For our max-stable copula given in (11), the pickands dependence function can be summarised in the
following proposition.

Proposition 5. Let Cs be the extreme spatial copula defined in (11), then the Pickands dependence function is

defined by:

A(t) =
[
(1− α) + αΦ(x)

]
t+
[
(1− β) + βΦ(y)

]
(1− t), t ∈ [0, 1]. (18)

where x =
a(h)

2
+

1

a(h)
log

(
αt

β(1− t)

)
and y =

a(h)

2
+

1

a(h)
log

(
β(1− t)
αt

)
Proof. Let Cs be the Brown-Resnick copula denoted by:

Cs(us, vs) = exp

[
(1− α) log us + αΦ

(
a(h)

2
+

1

a(h)
log

(
α log us
β log vs

))
log us

+ (1− β) log vs + βΦ

(
a(h)

2
+

1

a(h)
log

(
β log vs
α log us

))
log vs

]
.

(19)

Let us = s and vs = 1− s. Then equation (19) can be rewritten:

Cs(s, 1− s) = exp

[
(1− α) log s+ αΦ

(
a(h)

2
+

1

a(h)
log

(
α log s

β log(1− s)

))
log s

+ (1− β) log vs + βΦ

(
a(h)

2
+

1

a(h)
log

(
β log(1− s)
α log s

))
log(1− s)

]
.

(20)

Next, let’s ask:

t =
log s

log s+ log(1− s)
and 1− t =

log(1− s)
log s+ log(1− s)

(21)

From (21), we deduce that:

log s = t
(

log s+ log(1− s)
) and log(1− s) = (1− t)

(
log s+ log(1− s)

) (22)

By replacing the expressions for log s and log(1− s) in (23), we obtain:

Cs(s, 1− s) = exp

[
(1− α)t

(
log s+ log(1− s)

)
+ αΦ

(
a(h)

2
+

1

a(h)
log

(
αt

β(1− t)

))
× t
(

log s+ log(1− s)
)

+ (1− β)(1− t)(log s+ log(1− s))

+ βΦ

(
a(h)

2
+

1

a(h)
log

(
β(1− t)
αt

))
(1− t)(log s+ log(1− s))

]
= exp

[(
(1− α)t+ αΦ

(
a(h)

2
+

1

a(h)
log

(
αt

β(1− t)

))
t+ (1− β)(1− t)

+ βΦ

(
a(h)

2
+

1

a(h)
log

(
β(1− t)
αt

))
(1− t)

)(
log(s(1− s))

)]
= exp

[
log
(
s(1− s)

)
A(t)

]
.

(23)
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with
A(t) =

(
1− α

)
t+ αΦ

(
a(h)

2
+

1

a(h)
log

(
αt

β(1− t)

))
t+ (1− β)(1− t)

+ βΦ

(
a(h)

2
+

1

a(h)
log

(
β(1− t)
αt

))(
1− t

)
.

(24)

The function A(t) expressed in (24), normally satisfies the three conditions given in theorem 4. So A is
effectively a function of Pickands. �

The following figure shows how the parameters α and β influence the dependency structure. The
asymmetry can also be seen.

(a): α = 1, β = 1 and a(h) = 0.3
(b): α = 0.99, β = 0.96 and

a(h) = 0.3

(c): α = 0.3, β = 0.7 and
a(h) = 0.3

Figure 3. Visualization of the Pickands dependence function A(t) for different values
of α, β and a(h).

3.4.2. Dependency measures. In this section, we discuss some non-linear dependence measures that can
be expressed in terms of copulas. These are Spearman’s rho and Kendall’s tau, which are measures
that capture dependence over the entire distribution, and tail dependences, which focus essentially on
dependence at the tail of the distribution. The latter are crucial in modelling extreme value dependence.

3.4.2.1 Spearman’s Rho and Kendal’s Tau.

Definition 4. [3, 9] Let C be a bivariate copula. Spearman’s rho and Kendall’s rate as a function of the copula

C are given respectively by:

ρS = 12

∫∫
[0,1]2

C(u, v)dudv − 3 (25)

and

τK = 4

∫∫
[0,1]2

C(u, v)dC(u, v)− 1. (26)
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If we replace our copula (11) in the equations (25) and (26), it would be difficult to calculate the
integrals and give explicit forms in view of the complexity of the extended Brown-Resnick copula. In
this case, the numerical approach is sometimes recommended to analyse the dependence capacity of a
copula. With the function integral2 integrated in the package pracma of the R software, the numerical
calculation can be done without any problem. As an example, Table 1 below summarizes the evolution
of Spearman’s Rho as a function of the parameters α and β of our copula.

Table 1. Values of ρS as a function of α and β for a(h) = 0.5

α\β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 0.072 0.098 0.111 0.120 0.126 0.130 0.133 0.136 0.138 0.139
0.2 0 0.098 0.148 0.180 0.202 0.218 0.231 0.241 0.249 0.256 0.262
0.3 0 0.111 0.180 0.227 0.263 0.290 0.313 0.331 0.346 0.359 0.371
0.4 0 0.120 0.202 0.263 0.310 0.349 0.381 0.408 0.431 0.451 0.469
0.5 0 0.126 0.218 0.290 0.349 0.398 0.439 0.475 0.506 0.534 0.558
0.6 0 0.130 0.231 0.313 0.381 0.439 0.490 0.534 0.574 0.609 0.640
0.7 0 0.133 0.241 0.331 0.408 0.475 0.534 0.587 0.634 0.677 0.716
0.8 0 0.136 0.249 0.346 0.431 0.506 0.574 0.634 0.689 0.740 0.786
0.9 0 0.138 0.256 0.359 0.451 0.534 0.609 0.677 0.740 0.797 0.851
1.0 0 0.139 0.262 0.371 0.469 0.558 0.640 0.716 0.786 0.851 0.911

By looking at the different values of ρS , we can see that the copula studied is flexible and can model
different dependency structures.

3.4.2.2 Upper and lower tail dependency. The indices of the upper λU and lower λL tails are therefore
instruments for measuring the tail of the distribution, unlike the ρS and τK that we saw earlier.
Their expressions in terms of any copula are given in the following theorem.

Lemma 1. [3] Let U and V be uniform random variables on [0, 1] and C the associated copula. Then for all

u, v ∈ I , we have:

P(U ≤ u|V ≤ v) =
C(u, v)

v
(27)

and

P(U > u|V > v) =
1− u− v + C(u, v)

1− v
. (28)
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Theorem 5. [3] Let X and Y be two random variables with joint distribution function F and C the copula

associated with F .If the limits of the equations (27) and (28) exist then

λU = 2− lim
u→1−

1− C(u, u)

1− u
and λL = lim

u→0+

C(u, u)

u
. (29)

Applying the theorem 5, the upper tail indices of the copula studied here is given in the following
proposition.

Proposition 6. Let X and Y be two continuous random variables and Cs the copula associated with X and Y

as defined in (11). Then the indices of the upper and lower tails are defined respectively by:

λU = 2 + α+ β − αΦ

(
a(h)

2
+

1

a(h)
log

(
α(h)

β

))
− βΦ

(
a(h)

2
+

1

a(h)
log

(
β

α

))
. (30)

And

λL = 0. (31)

where Φ(.) denotes the standard normal distribution, a(h) =
√

2γ(h), with γ(h) the semi-variogram, α and β

real numbers in [0, 1].

Proof. Let Cs be the Brown-Resnick copula defined by:

Cs(us, vs) = exp

[
(1− α) log us + αΦ

(
a(h)

2
+

1

a(h)
log

(
α log us
β log vs

))
log us

+ (1− β) log vs + βΦ

(
a(h)

2
+

1

a(h)
log

(
β log vs
α log us

))
log vs

]
.

Posing us = vs, we obtain:

Cs(us, us) = exp

[
log us

(
(1− α) + αΦ

(
a(h)

2
+

1

a(h)
log

(
α

β

))
+ (1− β) + βΦ

(
a(h)

2
+

1

a(h)
log

(
β

α

)))]
.

(32)

simplify, we obtain

Cs(us, us) = u

2−α−β+αΦ

(
a(h)

2
+

1

a(h)
log

(
α

β

))
+βΦ

(
a(h)

2
+

1

a(h)
log

(
β

α

))
s . (33)

Passing now to the limit, we have:

λU = 2− lim
us→1−

1− C(us, us)

1− us

= 2− lim
us→1−

1− u
2−α−β+αΦ

(
a(h)

2
+

1

a(h)
log

(
α

β

))
+βΦ

(
a(h)

2
+

1

a(h)
log

(
β

α

))
s

1− us
.

(34)

Using the hospital rule, we can easily calculate the limit and therefore:

λU = 2 + α+ β − αΦ

(
a(h)

2
+

1

a(h)
log

(
α

β

))
− βΦ

(
a(h)

2
+

1

a(h)
log

(
β

α

))
.
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This therefore corresponds to the result given in (30).
In a similar way, and taking into account the formula for λL given in (29), we obtain λL = 0. �

3.5. Statistical inference. Statistical inference here consists of estimating the parameters of a model in
a general way. In the case of max-stable copulas, parameter estimation is based on methods adapted
to the structural constraints of these models. Unlike other families of copulas, max-stable copulas do
not always have explicit, closed and simple expressions, and the associated densities quickly become
unusable in dimensions greater than 2, i.e. in high dimensions. This makes classical maximum
likelihood estimation impossible in practice.
In our case, the copula studied is an asymmetric extension in dimension 2 of the Brown-Resnick
copula. It therefore inherits the complexity of max-stable processes, while incorporating an asymmetric
dependency. In dimension 2, we were able to obtain the analytical expression of the copula and its
density. This allows us to use the maximum likelihood method for parameter estimation without
any problems. However, in high dimension, it is difficult to obtain the closed form of the asymmetric
multivariate Brown-Resnick copula and even more difficult to talk about its multivariate density.
For these multiple reasons, we adopt the composite estimationmethod, andmore precisely the pairwise
likelihood, which is a well-established technique in the literature [17]. This approach consists of
approximating the full likelihood by the product of the bivariate likelihoods for all pairs of variables.
That is:

`pair(θ) =
∑
i<j

n∑
k=1

log c
(i,j)
θ (uki, ukj), (35)

where c(i,j)
θ denotes the bivariate density of the Brown-Resnick extended copula for the pair (i, j) ,

calculated from the pseudo-observations (uki, ukj), and θ = (a(h), α, β) is the vector of parameters to
be estimated.
The estimate is then obtained by maximising this composite log-likelihood

θ̂ = arg max `pair. (36)

In practice, this maximisation is possible thanks to numerical optimisation algorithms such as L-BFGS-B
and GA (Genetic Algorithm), which make it possible to respect the bounds imposed on the parameters
a(h), α and β of our model.

4. Conclusion

In this paper, we present a new asymmetric max-stable spatial copula in dimension two, con-
structed as an extension of the classical Brown-Resnick spatial copula. This copula can be used to
model extreme asymmetric spatial dependence structures that might be encountered in phenomena
observed in climate or financial data.
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The theoretical analysis carried out established the main properties of the copula, notably its max-
stability, its ability to capture dependencies in the tails and its structural link with the Brown-Resnick
process. Given the inherent complexity of the copula and multivariate density in this framework,
we chose the pairwise likelihood method for parameter estimation, an approach that is now well
established for complex extreme dependence models.

This contribution provides an additional tool for modelling spatially dependent extreme phenomena,
with increased flexibility thanks to the built-in asymmetry. Interesting prospects include the study of
generalisation to higher dimensions, as well as the application of this copula to real datasets, in order
to empirically evaluate its performance compared with existing classical models.
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