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Abstract. We extended the scope to consider operations between general quadratic fuzzy sets, whose
maximummembership values are not necessarily equal to 1. We have proven that themax-min composition
between two fuzzy setswith peak values h1 and h2, where 0 < h1 < h2 < 1, yields a result with amaximum
value equal to h1. Furthermore, we demonstrated that the result of such an operation does not preserve
the form of a quadratic fuzzy set, highlighting a significant structural distinction when extending beyond
normalized fuzzy numbers. The study of general quadratic fuzzy sets-rather than traditional quadratic
fuzzy numbers-opens avenues for broader applications. In particular, our results are expected to contribute
significantly to fields requiring high precision and flexibility, such as fuzzy decision-making systems,
high-dimensional fuzzy control systems, information fusion and sensor data integration, and fuzzy image
processing and segmentation.
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Key words and phrases. max-min composition operator; generalized 3-dimensional quadratic fuzzy sets;
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1. Introduction

Although various types of fuzzy sets and fuzzy numbers are utilized in fuzzy theory, quadratic
fuzzy numbers remain among the most extensively studied and applied. Alongside triangular fuzzy
numbers, quadratic fuzzy numbers represent a classical area of research and have beenwidely employed
in numerous fields, including fuzzy decision making [1], fuzzy numerical computation [2], fuzzy
regression [3], and engineering design and optimization [4].

In fuzzy theory, operators constitute one of the most fundamental and essential components. Unlike
classical sets, fuzzy sets are not defined deterministically; as a result, a variety of operators have been
developed to address different analytical needs and practical applications. In addition to the basic
operator introduced by Professor Lotfi A. Zadeh, the founder of fuzzy theory, other notable operators
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include the Gödel operator [5] and the Łukasiewicz operator [6], both commonly used in fuzzy logic
and fuzzy conditional expressions. Further, the Mamdani operator [7] is widely applied in fuzzy
inference systems, while the Sugeno operator [8] and the Dubois-Prade fuzzy synthesis operator [9]
are employed in various fuzzy reasoning tasks. The Dombi operator [10], a generalized T-norm and
S-norm operator, also plays an important role in this context. These operators have been developed
and refined to suit specific domains, and among them, the Zadeh max-min composition operator is
particularly notable for its broad applicability in fuzzy control systems [11], decision making and
inference [12], and fuzzy database systems.

In our previous work [13], we examined the max-min operator applied to quadratic fuzzy exponents
in one dimension. As the complexity and ambiguity of fuzzy systems increased, the necessity for
dimensional expansion became evident. This led to the extension of the one-dimensional results to
two dimensions, as presented in [14]. In one dimension, the membership function of a quadratic
fuzzy number is represented by a quadratic function. In contrast, in two dimensions, it is described
by a quadratic surface function. Specifically, when a two-dimensional quadratic fuzzy exponent is
intersected by a vertical plane passing through its vertex, the resulting cross-section corresponds to
the original one-dimensional quadratic fuzzy number. It is important to emphasize that dimensional
expansion is not simply achieved by adding an extra variable or component. Rather, it necessitates a
redefinition of operations, transforming the fuzzy operation defined on the real line R into an operation
on the two-dimensional space R2. Furthermore, when the two-dimensional operation is restricted
back to one dimension, it is essential that the original one-dimensional results are preserved, ensuring
consistency and compatibility between the dimensions.

In [15], we further extended our research from the two-dimensional spaceR2 to the three-dimensional
space R3. While a true graphical representation of a quadratic fuzzy number in 3D would require
four-dimensional space—three spatial dimensions plus the membership function value—we addressed
this limitation by expressing the membership function as color intensity, enabling visualization within
a conventional three-dimensional space. When a 3D graph is sliced by a plane passing through the
center of its domain, the resulting cross-sectional view yields a two-dimensional graph, where the
membership values appear as color gradients on the cut surface. If this cross-sectional representation is
plotted as a 3D surface graph of a function defined on a 2D domain, it matches the previously derived
2D result. This correspondence validates the consistency of our dimensional extension. However, the
transition from 2D to 3D is not a trivial extension achieved by simply introducing an additional variable.
Instead, it requires the formulation of a new parametric operation that governs the behavior of fuzzy
operators in three dimensions while ensuring that, when restricted to a lower dimension, the operation
faithfully reproduces the 2D results. This careful design is critical to maintaining both mathematical
integrity and interpretational coherence across dimensions.
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Previous studies have primarily focused on quadratic fuzzy numbers with a maximum membership
value of 1. In such cases, the results of operations also yield fuzzy numbers with a peak value of 1,
typically attained at a single point. However, in this study, we extended the scope to consider operations
between general quadratic fuzzy sets, whose maximummembership values are not necessarily equal to
1. While the operation between two fuzzy numbers with peak membership 1 maintains this maximum,
we have proven that themax-min composition between two fuzzy setswith peak values h1 and h2, where
0 < h1 < h2 < 1, yields a result with a maximum value equal to h1. Furthermore, we demonstrated
that the result of such an operation does not preserve the form of a quadratic fuzzy set, highlighting a
significant structural distinction when extending beyond normalized fuzzy numbers.

2. Preliminaries

We defined the 2-dimensional quadratic fuzzy numbers on R2 as a generalization of quadratic fuzzy
numbers on R. We defined the parametric operations between two 2-dimensional quadratic fuzzy
numbers using region valued α-cuts in R2. We define α-cut and α-set of the fuzzy set A on R with the
membership function µA(x).

Definition 2.1. An α-cut of the fuzzy number A is defined by Aα = {x ∈ R | µA(x) ≥ α} if α ∈ (0, 1]

and A0 = cl{x ∈ R | µA(x) > α}. For α ∈ (0, 1), the set Aα = {x ∈ X | µA(x) = α} is said to be the
α-set of the fuzzy set A, A0 is the boundary of {x ∈ R | µA(x) > α} and A1 = A1.

Definition 2.2. [16] A fuzzy set Awith a membership function

µA(x, y) =

h−
( (x−x1)2

a2
+ (y−y1)2

b2

)
, b2(x− x1)2 + a2(y − y1)2 ≤ ha2b2,

0, otherwise,
where a, b > 0 and 0 < h < 1 is called the the generalized 2-dimensional quadratic fuzzy set and denoted by
[[a, x1, h, b, y1]]

2.

The α-cut Aα of a generalized 2-dimensional quadratic fuzzy set A = [[a, x1, h, b, y1]]
2 is an interior

of ellipse in an xy-plane including the boundary

Aα =
{
(x, y) ∈ R2

∣∣∣ b2(x− x1)2 + a2(y − y1)2 ≤ a2b2(h− α)
}

=
{
(x, y) ∈ R2

∣∣∣ (x− x1)2
a2(h− α)

+
(y − y1)2

b2(h− α)
≤ 1
}
.

Definition 2.3. [17] Let A be a continuous convex fuzzy number defined on R2 and Aα = {(x, y) ∈

R2|µA(x, y) = α} be the α-set of A. Then for all α ∈ (0, 1), there exist continuous functions fα1 (t) and
fα2 (t) defined on [0, 2π] such that

Aα = {(fα1 (t), fα2 (t)) ∈ R2|0 ≤ t ≤ 2π}.
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Definition 2.4. [16] Let A and B be convex fuzzy numbers defined on R2 and

Aα = {(fα1 (t), fα2 (t)) ∈ R2|0 ≤ t ≤ 2π},

Bα = {(gα1 (t), gα2 (t)) ∈ R2|0 ≤ t ≤ 2π}

be the α-sets of A and B, respectively. For α ∈ (0, 1), we define that the parametric addition A(+)pB,
parametric subtraction A(−)pB, parametric multiplication A(·)pB and parametric division A(/)pB of
two fuzzy numbers A and B are fuzzy numbers that have their α-sets as follows.
(1) A(+)pB: (A(+)pB)α = {(fα1 (t) + gα1 (t), f

α
2 (t) + gα2 (t)) ∈ R2|0 ≤ t ≤ 2π}

(2) A(−)pB: (A(−)pB)α = {(xα(t), yα(t)) ∈ R2|0 ≤ t ≤ 2π},where

xα(t) =

f
α
1 (t)− gα1 (t+ π), if 0 ≤ t ≤ π

fα1 (t)− gα1 (t− π), if π ≤ t ≤ 2π

and

yα(t) =

f
α
2 (t)− gα2 (t+ π), if 0 ≤ t ≤ π

fα2 (t)− gα2 (t− π), if π ≤ t ≤ 2π

(3) A(·)pB: (A(·)pB)α = {(fα1 (t) · gα1 (t), fα2 (t) · gα2 (t)) ∈ R2|0 ≤ t ≤ 2π}

(4) A(/)pB: (A(/)pB)α = {(xα(t), yα(t)) ∈ R2|0 ≤ t ≤ 2π},where

xα(t) =
fα1 (t)

gα1 (t+ π)
(0 ≤ t ≤ π), xα(t) =

fα1 (t)

gα1 (t− π)
(π ≤ t ≤ 2π)

and

yα(t) =
fα2 (t)

gα2 (t+ π)
(0 ≤ t ≤ π), yα(t) =

fα2 (t)

gα2 (t− π)
(π ≤ t ≤ 2π)

For α = 0 and α = 1, (A(∗)pB)0 = limα→0+(A(∗)pB)α and (A(∗)pB)1 = limα→1−(A(∗)pB)α, where
∗ = +, −, ·, /.

Theorem 2.5. [16] Let A = [[a1, x1, h1, b1, y1]]
2 and B = [[a2, x2, h2, b2, y2]]

2 (0 < h1 < h2 < 1) be

two generalized 2-dimensional quadratic fuzzy sets. For 0 < α < h1, we have the followings.

(1) parametric addition A(+)pB:

(A(+)pB)α =
{
(x, y) ∈ R2

∣∣∣( x− x1 − x2
a1
√
h1 − α+ a2

√
h2 − α

)2
+
( y − y1 − y2
b1
√
h1 − α+ b2

√
h2 − α

)2
= 1
}
.

(2) parametric subtraction A(−)pB:

(A(−)pB)α =
{
(x, y) ∈ R2

∣∣∣( x− x1 + x2

a1
√
h1 − α+ a2

√
h2 − α

)2
+
( y − y1 + y2

b1
√
h1 − α+ b2

√
h2 − α

)2
= 1
}
.

(3) parametric multiplication A(·)pB: (A(·)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π}, where

xα(t) = x1x2 + (x1a2
√
h2 − α+ x2a1

√
h1 − α) cos t+ a1a2

√
h1 − α

√
h2 − α cos2 t
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and

yα(t) = y1y2 + (y1b2
√
h2 − α+ y2b1

√
h1 − α) sin t+ b1b2

√
h1 − α

√
h2 − α sin2 t.

(4) parametric division A(/)pB: (A(/)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π}, where

xα(t) =
x1 + a1

√
h1 − α cos t

x2 − a2
√
h2 − α cos t

and yα(t) =
y1 + b1

√
h1 − α sin t

y2 − b2
√
h2 − α sin t

.

If α = h1, we have (A(∗)pB)h1 = limα→h−1
(A(∗)pB)α, ∗ = +, −, ·, /, and for h1 < α ≤ h2, by the

Zadeh’s max-min principle operations, we have to define

(A(∗)pB)α = ∅, ∗ = +, −, ·, /

Example 2.6. [16] Let A = [[6, 3, 1
2 , 8, 5]]

2 and B = [[4, 2, 2
3 , 5, 3]]

2. Then by Theorem 2.5, we have
the followings.
(1) For 0 < α < 1

2 , the α-set (A(+)pB)α of A(+)pB is

{
(x, y) ∈ R2

∣∣∣( 18(x− 5)

3
√
3− 6α+ 2

√
4− 6α

)2
+
( 36(y − 8)

8
√
3− 6α+ 5

√
4− 6α

)2
= 1
}
.

(2) For 0 < α < 1
2 , the α-set (A(−)pB)α of A(−)pB is

{
(x, y) ∈ R2

∣∣∣( 18(x− 1)

3
√
3− 6α+ 2

√
4− 6α

)2
+
( 36(y − 2)

8
√
3− 6α+ 5

√
4− 6α

)2
= 1
}
.

(3) For 0 < α < 1
2 , (A(·)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π},where

xα(t) = 6 + (
4

3

√
2− 3α+ 3

√
1− 2α) cos t+

2

3

√
(1− 2α)(2− 3α) cos2 t,

yα(t) = 15 + (
25

9

√
2− 3α+ 6

√
1− 2α) sin t+

10

9

√
(1− 2α)(2− 3α) sin2 t.

(4) For 0 < α < 1
2 , (A(/)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π},where

xα(t) =
54 + 27

√
1− 2α cos t

36− 8
√
2− 3α cos t

, yα(t) =
45 + 18

√
1− 2α sin t

27− 5
√
2− 3α sin t

.

Figure 1. A Figure 2. B
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Figure 3. A1 Figure 4. B1

Figure 5. A(+)B (0 ≤ α ≤ 1
2) Figure 6. A(+)B (12 ≤ α ≤ 1)

Figure 7. A(−)B (0 ≤ α ≤ 1
2) Figure 8. A(−)B (12 ≤ α ≤ 1)

Figure 9. A(·)B (0 ≤ α ≤ 1
2) Figure 10. A(·)B (12 ≤ α ≤ 1)
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Figure 11. A(/)B (0 ≤ α ≤ 1
2) Figure 12. A(/)B (12 ≤ α ≤ 1)

Fuzzy set A have a maximum membership value of 1
2 , and fuzzy set B a maximum of 2

3 . Figures
3 and 4 represent vertical cross-sections of the three-dimensional fuzzy sets shown in Figures 1 and
2, respectively. In classical cases where both fuzzy sets have a maximum value of 1, the result of the
max-min composition operator also yields a fuzzy set with a maximum of 1. However, when the fuzzy
sets have unequal and subunitary maximum values, as in this case, the resulting composition takes
the form of a trapezoidal fuzzy set rather than a traditional quadratic fuzzy number. Notably, in each
result, the maximum membership value of the composition is 1

2 , which is the lower of the two original
maxima. This outcome illustrates the min behavior inherent in the max-min operator. Furthermore, we
observe that the α-cut sets only exist for α ≤ 1

2 . The absence of graphs for α > 1
2 confirms that no α-cut

exists in that range, indicating that the support of the resulting fuzzy set is bounded above by 1
2 .

3. A generalized 3-dimensional quadratic fuzzy set

In this section, we define the generalized 3-dimensional quadratic fuzzy sets onR3 as a generalization
of a quadratic fuzzy numbers on R3. Then we want to define the parametric operations between two
generalized 3-dimensional quadratic fuzzy sets. The α-cuts are regions in R2 but in R3 the α-cuts are
cubics, which makes the existing method of calculations between α-cuts unusable. We interpret the
existing method from a different perspective and apply the method to the cubic valued α-cuts on R3.

Definition 3.1. A fuzzy set Awith a membership function

µA(x, y, z) =


h−

( (x−x1)2
a2

+ (y−y1)2
b2

+ (z−z1)2
c2

)
, if b2c2(x− x1)2

+c2a2(y − y1)2 + a2b2(z − z1)2 ≤ a2b2c2h2,

0, otherwise,

where a, b, c > 0 and 0 < h < 1 is called the generalized 3-dimensional quadratic fuzzy set and denoted by
[[h, a, x1, b, y1, c, z1]]

3.

The α-cut Aα of a 3-dimensional quadratic fuzzy set A = [h, a, x1, b, y1, c, z1]
3 is the following set
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Aα =
{
(x, y, z) ∈ R3

∣∣∣ (x− x1)2
a2

+
(y − y1)2

b2
+

(z − z1)2

c2
≤ h− α

}
=
{
(x, y, z) ∈ R3

∣∣∣ (x− x1)2
a2(h− α)

+
(y − y1)2

b2(h− α)
+

(z − z1)2

c2(h− α)
≤ 1
}
.

Definition 3.2. A 3-dimensional fuzzy number A defined on R3 is called convex fuzzy number if for all
α ∈ (0, 1), the α-cuts

Aα = {(x, y, z) ∈ R3|µA(x, y, z) ≥ α}

are convex subsets in R3.

Theorem 3.3. [18] Let A be a continuous convex fuzzy number defined on R3 and Aα = {(x, y, z) ∈

R3|µA(x, y, z) = α} be the α-set of A. Then for all α ∈ (0, 1), there exist continuous functions fα1 (s), fα2 (s, t)

and fα3 (s, t)(0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 ) such that

Aα = {(fα1 (s), fα2 (s, t), fα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2
}.

Definition 3.4. Let A and B are two continuous convex fuzzy numbers defined on R3 and

Aα = {(x, y, z) ∈ R3|µA(x, y, z) = α}

= {(fα1 (s), fα2 (s, t), fα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2
},

Bα = {(x, y, z) ∈ R3|µB(x, y, z) = α}

= {(gα1 (s), gα2 (s, t), gα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2
}

be the α-sets ofA andB, respectively. For α ∈ (0, 1), we define that the parametric addition, parametric
subtraction, parametric multiplication and parametric division of two fuzzy numbers A and B are
fuzzy numbers that have their α-sets as follows.
(1) parametric addition A(+)pB:

(A(+)pB)α = {(fα1 (s) + gα1 (s), f
α
2 (s, t) + gα2 (s, t), f

α
3 (s, t) + gα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2
}

(2) parametric subtraction A(−)pB:

(A(−)pB)α = {(fα1 (s)− gα1 (s+ π), fα2 (s, t)− gα2 (s+ π, t),

fα3 (s, t)− gα3 (s+ π, t)) ∈ R3|0 ≤ s ≤ π, 0 ≤ t ≤ π

2
},

(A(−)pB)α = {(fα1 (s)− gα1 (s− π), fα2 (s, t)− gα2 (s− π, t),

fα3 (s, t)− gα3 (s− π, t)) ∈ R3|π ≤ s ≤ 2π, 0 ≤ t ≤ π

2
}

(3) parametric multiplication A(·)pB:

(A(·)pB)α = {(fα1 (s) · gα1 (s), fα2 (s, t) · gα2 (s, t), fα3 (s, t) · gα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2
}
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(4) parametric division A(/)pB:

(A(/)pB)α = {( fα1 (s)

gα1 (s+ π)
,

fα2 (s, t)

gα2 (s+ π, t)
,

fα3 (s, t)

gα3 (s+ π, t)
) ∈ R3|0 ≤ s ≤ π, 0 ≤ t ≤ π

2
},

(A(/)pB)α = {( fα1 (s)

gα1 (s− π)
,

fα2 (s, t)

gα2 (s− π, t)
,

fα3 (s, t)

gα3 (s− π, t)
) ∈ R3|π ≤ s ≤ 2π, 0 ≤ t ≤ π

2
}

For α = 0 and α = 1, (A(∗)pB)0 = limα→0+(A(∗)pB)α and (A(∗)pB)1 = limα→1−(A(∗)pB)α, where
∗ = +, −, ·, /.

For 0 < h1 < h2 < 1, let A = [h1, a1, x1, b1, y1, c1, z1]
3 and B = [h2, a2, x2, b2, y2, c2, z2]

3 be
two generalized 3-dimensional quadratic fuzzy sets. If 0 ≤ α < h1, (A(∗)pB)α can be defined same as
Definition 3.4. If α = h1,

(A(∗)pB)h1 = lim
α→h−1

(A(∗)pB)α, ∗ = +, −, ·, /

If h1 < α ≤ h2, by the Zadeh’s max-min principle operations, we have to define

(A(∗)pB)α = ∅, ∗ = +, −, ·, /

Theorem 3.5. Let A = [[h1, a1, x1, b1, y1, c1, z1]]
3 and B = [[h2, a2, x2, b2, y2, c2, z2]]

3 be two generalized

3-dimensional quadratic fuzzy sets. If 0 < h1 < h2 < 1, then we have the followings.

(1) For 0 < α < h1, the α-set of A(+)pB is

(A(+)pB)α =
{
(x, y, z) ∈ R3

∣∣∣( x− x1 − x2
a1
√
h1 − α+ a2

√
h2 − α

)2
+
( y − y1 − y2
b1
√
h1 − α+ b2

√
h2 − α

)2
+
( z − z1 − z2
c1
√
h1 − α+ c2

√
h2 − α

)2
= 1
}
.

(2) For 0 < α < h1, the α-set of A(−)pB is

(A(−)pB)α =
{
(x, y, z) ∈ R3

∣∣∣( x− x1 + x2

a1
√
h1 − α+ a2

√
h2 − α

)2
+
( y − y1 + y2

b1
√
h1 − α+ b2

√
h2 − α

)2
+
( z − z1 + z2

c1
√
h1 − α+ c2

√
h2 − α

)2
= 1
}
.

(3) For 0 < α < h1, (A(·)pB)α = {(xα(s), yα(s, t), zα(s, t)) ∈ R3 | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 }, where

xα(s) = x1x2 + (x1a2
√
h2 − α+ x2a1

√
h1 − α) cos s+ a1a2

√
(h1 − α)(h2 − α) cos2 s,

yα(s, t) = y1y2 + (y1b2
√
h2 − α+ y2b1

√
h1 − α) sin s cos t+ b1b2

√
(h1 − α)(h2 − α) sin2 s cos2 t,

zα(s, t) = z1z2 + (z1c2
√
h2 − α+ z2c1

√
h1 − α) sin s sin t+ c1c2

√
(h1 − α)(h2 − α) sin2 s sin2 t.

Furthermore, we have
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x0(s) = x1x2 + (x1a2
√
h2 + x2a1

√
h1) cos s+ a1a2

√
h1h2 cos

2 s,

y0(s, t) = y1y2 + (y1b2
√
h2 + y2b1

√
h1) sin s cos t+ b1b2

√
h1h2 sin

2 s cos2 t,

z0(s, t) = z1z2 + (z1c2
√
h2 + z2c1

√
h1) sin s sin t+ c1c2

√
h1h2 sin

2 s sin2 t,

xh1(s) = x1x2 + x1a2
√
h2 − h1 cos s,

yh1(s, t) = y1y2 + y1b2
√
h2 − h1 sin s cos t,

zh1(s, t) = z1z2 + z1c2
√
h2 − h1 sin s sin t,

and

(A(·)pB)α = ∅, h1 < α ≤ h2.

(4) For 0 < α < h1, (A(/)pB)α = {(xα(s), yα(s, t), zα(s, t)) ∈ R3 | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 }, where

xα(s) =
x1 + a1

√
h1 − α cos s

x2 − a2
√
h2 − α cos s

, yα(s, t) =
y1 + b1

√
h1 − α sin s cos t

y2 − b2
√
h2 − α sin s cos t

and

zα(s, t) =
z1 + c1

√
h1 − α sin s sin t

z2 − c2
√
h2 − α sin s sin t

.

Furthermore, we have

x0(s) =
x1 + a1

√
h1 cos s

x2 − a2
√
h2 cos s

, y0(s, t) =
y1 + b1

√
h1 sin s cos t

y2 − b2
√
h2 sin s cos t

,

z0(s, t) =
z1 + c1

√
h1 sin s sin t

z2 − c2
√
h2 sin s sin t

and

(A(/)pB)α = ∅, h1 < α ≤ h2.

Proof. Since A and B are continuous convex fuzzy sets defined on R3, by Theorem 3.3, there exists
fα1 (s), g

α
1 (s), f

α
i (s, t), g

α
i (s, t) (i = 2, 3) such that

Aα = {(fα1 (s), fα2 (s, t), fα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2
},

and
Bα = {(gα1 (s), gα2 (s, t), gα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2
}.

Since A = [h1, a1, x1, b1, y1, c1, z1]
3 and B = [h2, a2, x2, b2, y2, c2, z2]

3, we have

fα1 (s) = x1 + a1
√
h1 − α cos s, fα2 (s, t) = y1 + b1

√
h1 − α sin s cos t

fα3 (s, t) = z1 + c1
√
h1 − α sin s sin t

and
gα1 (s) = x2 + a2

√
h2 − α cos s, gα2 (s, t) = y2 + b2

√
h2 − α sin s cos t

gα3 (s, t) = z2 + c2
√
h2 − α sin s sin t.
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(1) Since
fα1 (s) + gα1 (s) = x1 + x2 + (a1

√
h1 − α+ a2

√
h2 − α) cos s,

fα2 (s, t) + gα2 (s, t) = y1 + y2 + (b1
√
h1 − α+ b2

√
h2 − α) sin s cos t

and
fα3 (s, t) + gα3 (s, t) = z1 + z2 + (c1

√
h1 − α+ c2

√
h2 − α) sin s sin t,

we have
(A(+)pB)α =

{
(x, y, z) ∈ R3

∣∣∣( x− x1 − x2
a1
√
h1 − α+ a2

√
h2 − α

)2
+
( y − y1 − y2
b1
√
h1 − α+ b2

√
h2 − α

)2
+
( z − z1 − z2
c1
√
h1 − α+ c2

√
h2 − α

)2
= 1
}
.

(2) If 0 ≤ s ≤ π, 0 < t < π
2 and 0 < α < h1,

fα1 (s)− gα1 (s+ π) = x1 − x2 + (a1
√
h1 − α+ a2

√
h2 − α) cos s,

fα2 (s, t)− gα2 (s+ π, t) = y1 − y2 + (b1
√
h1 − α+ b2

√
h2 − α) sin s cos t

and
fα3 (s, t)− gα3 (s+ π, t) = z1 − z2 + (c1

√
h1 − α+ c2

√
h2 − α) sin s sin t.

In the case of π ≤ s ≤ 2π, 0 < t < π
2 , we have

fα1 (s)− gα1 (s− π) = fα1 (s)− gα1 (s+ π)

fα2 (s, t)− gα2 (s− π, t) = fα2 (s, t)− gα2 (s+ π, t)

and
fα3 (s, t)− gα3 (s− π, t) = fα3 (s, t)− gα3 (s+ π, t).

Thus
(A(−)pB)α =

{
(x, y, z) ∈ R3

∣∣∣( x− x1 + x2

a1
√
h1 − α+ a2

√
h2 − α

)2
+
( y − y1 + y2

b1
√
h1 − α+ b2

√
h2 − α

)2
+
( z − z1 + z2

c1
√
h1 − α+ c2

√
h2 − α

)2
= 1
}
.

(3) Let (A(·)pB)α = {(xα(s), yα(s, t), zα(s, t)) | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 }. From fα1 (s), g

α
1 (s),

fαi (s, t), g
α
i (s, t) (i = 2, 3), we have

xα(s) = x1x2 + (x1a2
√
h2 − α+ x2a1

√
h1 − α) cos s+ a1a2

√
(h1 − α)(h2 − α) cos2 s,

yα(s, t) = y1y2 + (y1b2
√
h2 − α+ y2b1

√
h1 − α) sin s cos t+ b1b2

√
(h1 − α)(h2 − α) sin2 s cos2 t,

zα(s, t) = z1z2 + (z1c2
√
h2 − α+ z2c1

√
h1 − α) sin s sin t+ c1c2

√
(h1 − α)(h2 − α) sin2 s sin2 t.
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Furthermore, we have
x0(s) = x1x2 + (x1a2

√
h2 + x2a1

√
h1) cos s+ a1a2

√
h1h2 cos

2 s,

y0(s, t) = y1y2 + (y1b2
√
h2 + y2b1

√
h1) sin s cos t+ b1b2

√
h1h2 sin

2 s cos2 t,

z0(s, t) = z1z2 + (z1c2
√
h2 + z2c1

√
h1) sin s sin t+ c1c2

√
h1h2 sin

2 s sin2 t,

xh1(s) = x1x2 + x1a2
√
h2 − h1 cos s,

yh1(s, t) = y1y2 + y1b2
√
h2 − h1 sin s cos t,

zh1(s, t) = z1z2 + z1c2
√
h2 − h1 sin s sin t

and
(A(·)pB)α = ∅, h1 < α ≤ h2.

(4) Let (A(/)pB)α = {(xα(s), yα(s, t), zα(s, t)) | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 }. Similarly, we have if 0 < α <

h1,

xα(s) =
x1 + a1

√
h1 − α cos s

x2 − a2
√
h2 − α cos s

yα(s, t) =
y1 + b1

√
h1 − α sin s cos t

y2 − b2
√
h2 − α sin s cos t

and

zα(s, t) =
z1 + c1

√
h1 − α sin s sin t

z2 − c2
√
h2 − α sin s sin t

.

Furthermore, we have

x0(s) =
x1 + a1

√
h1 cos s

x2 − a2
√
h2 cos s

, y0(s, t) =
y1 + b1

√
h1 sin s cos t

y2 − b2
√
h2 sin s cos t

,

z0(s, t) =
z1 + c1

√
h1 sin s sin t

z2 − c2
√
h2 sin s sin t

and

(A(/)pB)α = ∅, h1 < α ≤ h2.

The proof is complete. �

Example 3.6. Let A = [[12 , 6, 3, 8, 5, 4, 7]]
3 and B = [[23 , 4, 2, 5, 3, 6, 4]]

3. Then by Theorem 3.5, we
have the followings.
(1) For 0 < α < 1

2 , the α-set of A(+)pB is

(A(+)pB)α =
{
(x, y, z) ∈ R3

∣∣∣( 3(x− 5)

9
√
2− 4α+ 4

√
6− 9α

)2
+
( 3(y − 8)

12
√
2− 4α+ 5

√
6− 9α

)2
+
( z − 11

2
√
2− 4α+ 2

√
6− 9α

)2
= 1
}
.

(2) For 0 < α < 1
2 , the α-set of A(−)pB is
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(A(−)pB)α =
{
(x, y, z) ∈ R3

∣∣∣( 3(x− 1)

9
√
2− 4α+ 4

√
6− 9α

)2
+
( 3(y − 2)

12
√
2− 4α+ 5

√
6− 9α

)2
+
( z − 3

2
√
2− 4α+ 2

√
6− 9α

)2
= 1
}
.

(3) For 0 < α < 1
2 , (A(·)pB)α = {(xα(s), yα(s, t), zα(s, t)) | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2 },where

xα(s) = 6 + (4
√
6− 9α+ 6

√
2− 4α) cos s+ 4

√
(2− 4α)(6− 9α) cos2 s,

yα(s, t) = 15 + (
25

3

√
6− 9α+ 12

√
2− 4α) sin s cos t+

20

3

√
(2− 4α)(6− 9α) sin2 s cos2 t

and
zα(s, t) = 28 + (14

√
6− 9α+ 8

√
2− 4α) sin s sin t+ 4

√
(2− 4α)(6− 9α) sin2 s sin2 t.

(4) For 0 < α < 1
2 , (A(/)pB)α = {(xα(s), yα(s, t), zα(s, t)) | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2 },where

xα(s) =
9 + 9

√
2− 4α cos s

6− 4
√
6− 9α cos s

yα(s, t) =
15 + 12

√
2− 4α sin s cos t

9− 5
√
6− 9α sin s cos t

and
zα(s, t) =

7 + 2
√
2− 4α sin s sin t

4− 2
√
6− 9α sin s sin t

.

Figure 13. A Figure 14. B

Figure 15. A/2 Figure 16. B/2
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Figure 17. A(+)B (0 ≤ α ≤ 1
2) Figure 18. A(+)B (12 ≤ α ≤ 1)

Figure 19. A(−)B (0 ≤ α ≤ 1
2) Figure 20. A(−)B (12 ≤ α ≤ 1)

Figure 21. A(·)B (0 ≤ α ≤ 1
2) Figure 22. A(·)B (12 ≤ α ≤ 1)

Figure 23. A(/)B (0 ≤ α ≤ 1
2) Figure 24. A(/)B (12 ≤ α ≤ 1)
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Since the domain under consideration is three-dimensional, the membership function values are
visualized using color density. As illustrated in Figures 15 and 16, cross-sectional cuts of the fuzzy sets
allow us to observe the internal membership values through color gradation. By examining the color
bar on the right side of each figure, it can be confirmed that fuzzy set A has a maximum membership
value of 1

2 , while fuzzy setB has a maximum of 2
3 . For each result of the max-min composition operator,

six α-cut surfaces are visualized for the range 0 ≤ α ≤ 1
2 . These α-cuts are clearly distinguishable,

as several overlapping 3D surfaces are rendered in each composite result. Although the system was
designed to visualize six α-cut surfaces in the range 1

2 ≤ α ≤ 1 as well, only a single surface is actually
displayed for each case. Moreover, each of these matches the graph corresponding to α = 1

2 , providing
clear evidence that no α-cut sets exist for α > 1

2 . Consistent with the two-dimensional case, the results
of the max-min composition in three dimensions take the form of trapezoidal fuzzy sets, rather than
traditional quadratic fuzzy numbers. The maximum membership value of each composite result is 1

2 ,
which corresponds to the minimum of the two original maxima. Furthermore, we observe that α-cuts
exist only for 0 ≤ α ≤ 1

2 . The absence of any visualized α-cuts for α > 1
2 confirms that the support

of the resulting fuzzy set is bounded above by 1
2 . This visual evidence provides a strong graphical

validation of Theorem 3.5, which states that when applying the max-min composition operator to fuzzy
sets with maximum values h1 and h2(where 0 < h1 < h2 < 1), the resulting fuzzy set will have a
maximum value of h1, and α-cut sets will exist only for 0 ≤ α ≤ h1.

4. Conclusion

In Chapter 2, we analyzed the max-min composite operator applied to general two-dimensional
quadratic fuzzy sets. Given two such sets A and B, with respective maximum membership values h1
and h2 (where 0 < h1 < h2 < 1) , we found that the resulting α-cuts from the operation exist only for
0 < α < h1; that is, no α-cuts exist for values greater than h1. We illustrated this behavior through a
graphical example. Upon interpreting the resulting graphs, we observed that operations such asA(+)B

and A(−)B largely preserve the quadratic fuzzy form in the outer sections of the domain. However,
the overall shape more closely resembles that of a trapezoidal fuzzy set, where the graph is composed
of quadratic curves on both ends and a flatter central section. In contrast, the remaining two operations
yielded more complex structures, emphasizing the utility of graphical representations in enhancing
interpretability and application.

In Chapter 3, we extended our computations to general three-dimensional quadratic fuzzy sets. As
with the two-dimensional case, two primary structural results emerged: one resembling a trapezoidal
shape, and the other displaying complex, non-quadratic structures. While a 3D graph was presented
for illustrative purposes, it is more challenging to directly perceive similarities with the 2D case.
This is because the membership values in 3D are represented as color intensities, revealing only the
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values along the outer surface of the fuzzy set. To fully understand the membership distribution, it is
necessary to analyze cross-sectional views. From such cross-sectional analysis, we observed that the
color intensity remains relatively uniform in the central region, suggesting that the overall structure
maintains a trapezoidal-like profile, similar to the 2D case.

These findings further reinforce the value of studying general quadratic fuzzy sets, which extend
beyond the limitations of classical quadratic fuzzy numbers. The ability to model non-normal fuzzy
sets and capture a broader range of uncertainty structures makes these results especially applicable
in domains demanding high precision and flexibility, including fuzzy decision-making systems [19],
high-dimensional fuzzy control systems [20], information fusion and sensor data integration [21], and
fuzzy image processing and segmentation [22].
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