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Abstract. Let Fn denote the n-th Fibonacci number for n ∈ N. For everym ∈ N, we define the P -Fibonacci
sequence Pm,n by the recurrence

Pm,n = FmFn(Fn+1 − Fn) + Fm+1(Fn)
2.

In this paper, we investigate the structure and properties of the P-Fibonacci sequences, which arise
from specific algebraic combinations of Fibonacci numbers. Through analytical exploration and pattern
recognition, we uncover and prove several intriguing identities related to these sequences. We also present
illustrative examples to highlight their recurring behaviors. This study not only contributes to the theoretical
understanding of Fibonacci-related sequences but also lays groundwork for potential applications and
further research in combinatorics, number theory, and algorithmic design.
2020 Mathematics Subject Classification. 11B39; 11B83; 11A07.
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1. Introduction

The Fibonacci sequence is one of the most well-known and widely studied sequences in number
theory. It was first introduced in 1202 by Leonardo of Pisa—better known as Fibonacci—in his book
Liber Abaci, which presented the famous rabbit population problem. The name "Fibonacci," derived
from filius Bonacci (son of Bonacci), was later popularized and has since become synonymous with the
sequence itself [4] [6].

Beyond pure mathematics, the Fibonacci sequence is frequently observed in nature. In 2003, Posa-
mentier and Lehmann in [5] highlighted various natural patterns linked to Fibonacci numbers – the
number of spirals of seeds in a sunflower is the Fibonacci pairs: 13 (left-oriented spirals): 21 (right-
oriented spirals), 21:34, 34:55, 55:89, and 89:144 which ensures an optimal packing of the seeds. Also,
the leaf arrangement (Phyllotaxis) of some plants follows the Golden Ratio of the Fibonacci numbers
φ ≈ 1.618, which enables them to receive the maximum amount of sunlight for photosynthesis.
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From a theoretical standpoint, Fibonacci numbers have long attracted attention for their rich structure
and intriguing properties. In 1961, Vorob’ev [6] explored foundational identities of the sequence, while
Burton [3] later expanded on these results in 2010, establishing additional algebraic and combinatorial
relationships. More recently, Khaochim and Pongsriiam [2] examined the order of appearance of
Fibonacci number products in modular arithmetic.

Building upon these foundational works, this paper introduces and investigates a new class of
sequences derived from the products of Fibonacci numbers. Specifically, we define the P-Fibonacci
sequence Pm,n, which generalizes the relationship between Fn and Fn+m using a two-parameter for-
mula involving both multiplicative and additive components of the Fibonacci terms. Through this
formulation, we uncover new identities, explore summation properties, and reveal recursive patterns
embedded within this novel structure.

2. Preliminaries

In this section, we present the foundational definitions and theorems necessary for the development
of our results. These include basic number-theoretic concepts such as the greatest common divisor and
properties of the Fibonacci sequence.

Definition 1. [3] Let a and b be integers, with at least one of them nonzero. The greatest common
divisor of a and b, denoted by gcd(a, b), is the positive integer d satisfying the following:

(a) d | a and d | b.
(b) If c | a and c | b, then c ≤ d.

Theorem 2.1. [3] If k > 0, then gcd(ka, kb) = kgcd(a, b).

Definition 2. [3] Two integers a and b, not both zero, are said to be relatively prime if gcd(a, b) = 1.

Theorem 2.2. [3] Let a and b be integers, not both zero. Then a and b are relatively prime if and only if
there exist integers x and y such that 1 = ax+ by.

Theorem 2.3. [1] If a and b are two consecutive integers such that a = n and b = n+ 1, where n ∈ Z,
then a and b are relatively prime.

Definition 3. [2] A Fibonacci sequence (Fn)n≥1 is defined by F1 = F2 = 1, and Fn = Fn−1 + Fn−2 for
n ≥ 3. Each term of the Fn is called a Fibonacci number.

We now present some important identities related to the Fibonacci sequence obtained from [3,6, 7].

Theorem 2.4. For all n ∈ N, gcd(Fn, Fn+1) = 1.
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Theorem 2.5. The greatest common divisor of two Fibonacci numbers is a Fibonacci number, that is,
gcd(Fm, Fn) = Fgcd(m,n).

Theorem 2.6. Let n ∈ N. Then the sum of the first n Fibonacci numbers is given by

F1 + F2 + F3 + · · ·+ Fn−1 + Fn = Fn+2 − 1.

Theorem 2.7. Let n ∈ N. Then the sum of the squares of the first n Fibonacci numbers is given by

(F1)
2 + (F2)

2 + (F3)
2 + · · ·+ (Fn)

2 = FnFn+1.

Consider the table below that consists of the sequences of products of Fn and Fn+m for 1 ≤ m ≤ 5.

Table 1. Sequences of Products of Fn and Fn+m for 1 ≤ m ≤ 5

n Fn FnFn+1 FnFn+2 FnFn+3 FnFn+4 FnFn+5

1 1 1 2 3 5 8
2 1 2 3 5 8 13
3 2 6 10 16 26 42
4 3 15 24 39 63 102
5 5 40 65 105 170 275
6 8 104 168 272 440 712
7 13 273 442 715 1157 1872
8 21 714 1155 1869 3024 4893
9 34 1870 3026 4896 7922 12818
10 55 4895 7920 12815 20735 33550
11 89 12816 20737 33553 54290 87843
12 144 33552 54288 87840 142128 229968
... ... ... ... ... ... ...

The first pattern that most of us could possibly observe from Table 1 is that, for 3 ≤ m ≤ 5, the nth
terms of each sequences can be obtained by adding the two nth terms coming respectively from two
preceding sequences. And, if you continue the process of multiplying Fn and Fn+m, the pattern repeats
form > 5 since

FnFn+m + FnFn+m+1 = Fn(Fn+m + Fn+m+1) = FnFn+m+2.

Now, another pattern emerged within the terms of each sequence, that is, we can express them as a
combination of Fibonacci numbers, as shown in Tables 2 to 6.
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Table 2. Sequence of Products of Fn and Fn+m form = 1

n Fn FnFn+1

1 1 1 = (1)(0) + (1)2

2 1 2 = (1)(1) + (1)2

3 2 6 = (2)(1) + (2)2

4 3 15 = (3)(2) + (3)2

5 5 40 = (5)(3) + (5)2

6 8 104 = (8)(5) + (8)2

7 13 273 = (13)(8) + (13)2

8 21 714 = (21)(13) + (21)2

... ... ...
n Fn FnFn+1 = Fn(Fn+1 − Fn) + (Fn)

2

Table 3. Sequence of Products of Fn and Fn+m form = 2

n Fn FnFn+2

1 1 2 = (1)(0) + (2)(1)2

2 1 3 = (1)(1) + (2)(1)2

3 2 10 = (2)(1) + (2)(2)2

4 3 24 = (3)(2) + (2)(3)2

5 5 65 = (5)(3) + (2)(5)2

6 8 168 = (8)(5) + (2)(8)2

7 13 442 = (13)(8) + (2)(13)2

8 21 1155 = (21)(13) + (2)(21)2

... ... ...
n Fn FnFn+2 = Fn(Fn+1 − Fn) + 2(Fn)

2
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Table 4. Sequence of Products of Fn and Fn+m form = 3

n Fn FnFn+3

1 1 3 = (2)(1)(0) + (3)(1)2

2 1 5 = (2)(1)(1) + (3)(1)2

3 2 16 = (2)(2)(1) + (3)(2)2

4 3 39 = (2)(3)(2) + (3)(3)2

5 5 105 = (2)(5)(3) + (3)(5)2

6 8 272 = (2)(8)(5) + (3)(8)2

7 13 715 = (2)(13)(8) + (3)(13)2

8 21 1869 = (2)(21)(13) + (3)(21)2

... ... ...
n Fn FnFn+3 = 2Fn(Fn+1 − Fn) + 3(Fn)

2

Table 5. Sequence of Products of Fn and Fn+m form = 4

n Fn FnFn+4

1 1 5 = (3)(1)(0) + (5)(1)2

2 1 8 = (3)(1)(1) + (5)(1)2

3 2 26 = (3)(2)(1) + (5)(2)2

4 3 63 = (3)(3)(2) + (5)(3)2

5 5 170 = (3)(5)(3) + (5)(5)2

6 8 440 = (3)(8)(5) + (5)(8)2

7 13 1157 = (3)(13)(8) + (5)(13)2

8 21 3024 = (3)(21)(13) + (5)(21)2

... ... ...
n Fn FnFn+4 = 3Fn(Fn+1 − Fn) + 5(Fn)

2

Through computational observation and analysis of the products FnFn+m for small values ofm, a
clear structure begins to emerge in the resulting expressions. As shown in Tables 2 to 6, for values
m = 1 throughm = 5, each product can be rewritten in the form

FnFn+m = amFn(Fn+1 − Fn) + bm(Fn)
2,
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Table 6. Sequence of Products of Fn and Fn+m form = 5

n Fn FnFn+5

1 1 8 = (5)(1)(0) + (8)(1)2

2 1 13 = (5)(1)(1) + (8)(1)2

3 2 42 = (5)(2)(1) + (8)(2)2

4 3 102 = (5)(3)(2) + (8)(3)2

5 5 275 = (5)(5)(3) + (8)(5)2

6 8 712 = (5)(8)(5) + (8)(8)2

7 13 1872 = (5)(13)(8) + (8)(13)2

8 21 4893 = (5)(21)(13) + (8)(21)2

... ... ...
n Fn FnFn+5 = 5Fn(Fn+1 − Fn) + 8(Fn)

2

where am = Fm and bm = Fm+1, the Fibonacci numbers themselves. This recurring structure is
summarized in the Table 7, and it reveals a fascinating self-similarity: Fibonacci numbers not only
define the sequence Fn, but also govern the coefficients in expressions involving their shifted products.

Table 7. General Equation of the Product Sequences of Fn and Fn+m

m FnFn+m

1 FnFn+1 = Fn(Fn+1 − Fn) + (Fn)
2

2 FnFn+2 = Fn(Fn+1 − Fn) + 2(Fn)
2

3 FnFn+3 = 2Fn(Fn+1 − Fn) + 3(Fn)
2

4 FnFn+4 = 3Fn(Fn+1 − Fn) + 5(Fn)
2

5 FnFn+5 = 5Fn(Fn+1 − Fn) + 8(Fn)
2

... ...
m FnFn+m = FmFn(Fn+1 − Fn) + Fm+1(Fn)

2

From this observation, we define a new sequence, termed the P-Fibonacci sequence, in the following
section.

3. Main Results

Definition 4. Letm,n ∈ N. The P-Fibonacci sequence, denoted by Pm,n, of each pair Fn and Fn+m for every

m is defined by

Pm,n = FmFn(Fn+1 − Fn) + Fm+1(Fn)
2.
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A term of the P-Fibonacci sequence is called a P-Fibonacci number.

This formula captures the consistent structure observed in the initial tables and extends the product
relationship between Fn and Fn+m into a two-parameter sequence. We then analyze the properties of
this new sequence, starting with closed-form summation formulas for the casem = 1.

3.1. Summation Identities of P-Fibonacci Sequence.

Theorem 3.1. Let n ∈ N. Then,
n∑

i=1

P1,i =

(Fn+1)
2, if n is odd,

(Fn+1)
2 − 1, if n is even,

where P1,i = FiFi+1, and Fn denotes the nth Fibonacci number.

Proof. We consider two cases depending of the parity of n.
Case 1: If n is odd, then n = 2k − 1 for some k ∈ N. We proceed by induction on k.

i) When k = 1, so n = 1:
1∑

i=1

P1,i = F1F2 = (1)(1) = 1 = (F2)
2.

ii) Assume that for some s ∈ N,
n∑

i=1

P1,i =
2s−1∑
i=1

P1,i = (F(2s−1)+1)
2 = (F2s)

2.

We show it holds for n = 2(s+ 1)− 1 = 2s+ 1.

Note that
n∑

i=1

P1,i =
2s+1∑
i=1

P1,i = P1,1 + P1,2 + P1,3 + · · ·+ P1,2s−1 + P1,2s + P1,2s+1

Using the inductive hypothesis and Theorem 2.7,
2s+1∑
i=1

P1,i = (F2s)
2 + P1,2s + P1,2s+1

= (F2s)
2 + F2sF2s+1 + F2s+1F2s+2

= (F2s)
2 + F2sF2s+1 + F2sF2s+1 + (F2s+1)

2

= (F2s + F2s+1)
2

= (F2s+2)
2.

Hence, the identity holds for k = s+ 1 ∈ N.
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Thus, for odd n,
n∑

i=1

P1,i = (Fn+1)
2.

Case 2: If n is even, then n = 2k for some k ∈ N. We proceed by induction on k.

i) When k = 1, so n = 2:

2∑
i=1

P1,i = P1,1 + P1,2 = F1F2 + F2F3 = 3 = (F2+1)
2 − 1.

ii) Assume that for some s ∈ N,
n∑

i=1

P1,i =
2s∑
i=1

P1,i = (F2s+1)
2 − 1.

We show it holds for n = 2(s+ 1) = 2s+ 2.

Note that
n∑

i=1

P1,i =
2s+2∑
i=1

P1,i = P1,1 + P1,2 + P1,3 + . . .+ P1,2s + P1,2s+1 + P1,2s+2

Using the inductive hypothesis and Theorem 2.7,
2s+2∑
i=1

P1,i = (F2s+1)
2 − 1 + P1,2s+1 + P1,2s+2

= (F2s+1)
2 − 1 + F2s+1F2s+2 + F2s+2F2s+3

= (F2s+1)
2 − 1 + F2s+1F2s+2 + F2s+1F2s+2 + (F2s+2)

2

= (F2s+1 + F2s+2)
2 − 1

= (F2s+3)
2 − 1.

Hence, the identity holds for k = s+ 1 ∈ N.

Thus, for even n,
n∑

i=1

P1,i = (Fn+1)
2 − 1.

�

Example 3.1. Let n = 5. Then,
5∑

i=1

P1,i = P1,1 + P1,2 + P1,3 + P1,4 + P1,5 = 1 + 2 + 6 + 15 + 40 = 64 = (F5+1)
2.
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Example 3.2. Let n = 4. Then,
4∑

i=1

P1,i = P1,1 + P1,2 + P1,3 + P1,4 = 1 + 2 + 6 + 15 = 24 = (F4+1)
2 − 1.

Building on the result established in Theorem 3.1, which characterizes the sum
n∑

i=1

FiFi+1

in terms of the square of a Fibonacci number, we now generalize this identity. Specifically, we consider
sums of the form

n∑
i=1

Pm,i.

The result, presented in Theorem 3.2, expresses this sum in terms of Fibonacci numbers and reflects
a similar parity distinction based on whether n is odd or even.

Theorem 3.2. Letm,n ∈ N. Then,

n∑
i=1

Pm,i =

Fm(Fn+1)
2 + FnFn+1(Fm+1 − Fm), if n is odd,

Fm

(
(Fn+1)

2 − 1
)
+ FnFn+1(Fm+1 − Fm), if n is even.

Proof. Letm,n ∈ N. By Definition 4, we have
n∑

i=1

Pm,i =
n∑

i=1

[
FmFi(Fi+1 − Fi) + Fm+1(Fi)

2
]

=
n∑

i=1

FmFi(Fi+1 − Fi) +
n∑

i=1

Fm+1(Fi)
2

= Fm

n∑
i=1

Fi(Fi+1 − Fi) + Fm+1

n∑
i=1

(Fi)
2

= Fm

[
n∑

i=1

FiFi+1 −
n∑

i=1

(Fi)
2

]
+ Fm+1

n∑
i=1

(Fi)
2.

Now, we will consider two cases:

Case 1: If n is odd, then by Theorem 3.1 and Theorem 2.7,
n∑

i=1

Pm,i = Fm

[
n∑

i=1

FiFi+1 −
n∑

i=1

(Fi)
2

]
+ Fm+1

n∑
i=1

(Fi)
2

= Fm

[
(Fn+1)

2 − FnFn+1

]
+ Fm+1(FnFn+1)

= Fm(Fn+1)
2 − Fm(FnFn+1) + Fm+1(FnFn+1)

= Fm(Fn+1)
2 + FnFn+1(Fm+1 − Fm).
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Case 2: If n is even, then by Theorem 3.1 and Theorem 2.7,
n∑

i=1

Pm,i = Fm

[
n∑

i=1

FiFi+1 −
n∑

i=1

(Fi)
2

]
+ Fm+1

n∑
i=1

(Fi)
2

= Fm

[(
(Fn+1)

2 − 1
)
− FnFn+1

]
+ Fm+1

[
FnFn+1

]
= Fm

(
(Fn+1)

2 − 1
)
− Fm(FnFn+1) + Fm+1(FnFn+1)

= Fm

(
(Fn+1)

2 − 1
)
+ FnFn+1(Fm+1 − Fm).

�

Example 3.3. Let n = 5 andm = 4. Then,
5∑

i=1

P4,i = P4,1 + P4,2 + P4,3 + P4,4 + P4,5 = 5 + 8 + 26 + 63 + 170 = 272.

On the other hand,

F4(F5+1)
2 + F5F5+1(F4+1 − F4) = 3 · 82 + 5 · 8 · (5− 3) = 3 · 64 + 40 · 2 = 272.

Example 3.4. Let n = 4 andm = 3. Then,
4∑

i=1

P3,i = P3,1 + P3,2 + P3,3 + P3,4 = 3 + 5 + 16 + 39 = 63.

On the other hand,

F3((F4+1)
2 − 1) + F4F4+1(F3+1 − F3) = 2(52 − 1) + 3 · 5 · (3− 2) = 2 · 24 + 15 = 63.

After generalizing the sum of products of consecutive Fibonacci numbers in Theorem 3.1 to shifted
index sums in Theorem 3.2, we now turn our attention to horizontal and double-index summations
involving these terms. To support the next major result, we first introduce a simple but essential identity
regarding the sum of shifted Fibonacci numbers.

This identity, formalized in Lemma 3.3, allows us to express a sum of terms
n∑

i=1

Fi+1

in a compact closed form. It plays a key role in simplifying the expressions that arise when summing
rows or full rectangular blocks of Fibonacci product terms.

Lemma 3.3. Let n ∈ N. Then
n∑

i=1

Fi+1 = Fn+3 − 2.

Proof. Let n ∈ N. We will now prove by induction on n.
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i.) When n = 1,
1∑

i=1

Fi+1 = F2 = 1.

Also,
F1+3 − 2 = F4 − 2 = 3− 2 = 1.

ii.) Assume that the identity holds for some k ∈ N, that is,
k∑

i=1

Fi+1 = Fk+3 − 2.

We aim to show that it also holds for n = k + 1.
Now,

k+1∑
i=1

Fi+1 =
k∑

i=1

Fi+1 + Fk+2.

By inductive hypothesis,
k+1∑
i=1

Fi+1 = Fk+3 − 2 + Fk+2 = Fk+4 − 2.

This completes the inductive step. �

Using this lemma, we establish Theorem 3.4, which focuses on a horizontal summation—that is,
summing across the row index iwhile keeping the column index n fixed.

Theorem 3.4. Letm,n ∈ N. Then,
m∑
i=1

Pi,n = FnFn+1(Fm+2 − 1) + (Fn)
2(Fm+1 − 1).

Proof. Letm,n ∈ N. By Definition 4,
m∑
i=1

Pi,n =
m∑
i=1

[
FiFn

(
Fn+1 − Fn

)
+ Fi+1(Fn)

2
]

=
(
FnFn+1 − (Fn)

2
) m∑
i=1

Fi + (Fn)
2

m∑
i=1

Fi+1.

Using Theorem 2.6 and Lemma 3.3, we have
m∑
i=1

Pi,n =
(
FnFn+1 − (Fn)

2
)(
Fm+2 − 1

)
+ (Fn)

2(Fm+3 − 2)

= FnFn+1(Fm+2 − 1) + (Fn)
2(Fm+3 − Fm+2 − 1)

= FnFn+1(Fm+2 − 1) + (Fn)
2(Fm+1 − 1).

�
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Example 3.5. Letm = 5 and n = 4. Then,
5∑

i=1

Pi,4 = P1,4 + P2,4 + P3,4 + P4,4 + P5,4 = 15 + 24 + 39 + 63 + 102 = 243.

Also,

F4F4+1(F5+2 − 1) + (F4)
2(F5+1 − 1) = 3 · 5 · (13− 1) + 32 · (8− 1) = 180 + 63 = 243.

Building upon Theorem 3.4, we arrive at Theorem 3.5, which presents the main result: a formula for
the double sum

m∑
i=1

n∑
j=1

Pi,j ,

the total sum over anm× n rectangle of Fibonacci products. As in Theorem 3.1, the final form depends
on whether n is odd or even, capturing a subtle pattern in the interplay of Fibonacci sequences.

Theorem 3.5. Letm,n ∈ N. Define Pi,j = FiFj+1. Then,

m∑
i=1

n∑
j=1

Pi,j =

(Fn+1)
2(Fm+2 − 1) + FnFn+1(Fm+1 − 1), if n is odd,(

(Fn+1)
2 − 1

)
(Fm+2 − 1) + FnFn+1(Fm+1 − 1), if n is even.

Proof. Letm,n ∈ N.
Case 1: Suppose n is odd. Using Theorem 3.2,

m∑
i=1

n∑
j=1

Pi,j =

m∑
i=1

[
Fi(Fn+1)

2 + FnFn+1(Fi+1 − Fi)
]

= (Fn+1)
2

m∑
i=1

Fi + FnFn+1

[
m∑
i=1

Fi+1 −
m∑
i=1

Fi

]
.

By Theorem 2.6 and Lemma 3.3,
m∑
i=1

n∑
j=1

Pi,j = (Fn+1)
2(Fm+2 − 1) + FnFn+1

[
(Fm+3 − 2)− (Fm+2 − 1)

]
= (Fn+1)

2(Fm+2 − 1) + FnFn+1(Fm+1 − 1).

Case 2: Suppose n is even. Using Theorem 3.2,
m∑
i=1

n∑
j=1

Pi,j =
m∑
i=1

[
Fi

(
(Fn+1)

2 − 1
)
+ FnFn+1(Fi+1 − Fi)

]
=
(
(Fn+1)

2 − 1
) m∑
i=1

Fi + FnFn+1

[
m∑
i=1

Fi+1 −
m∑
i=1

Fi

]
.

By Theorem 2.6 and Lemma 3.3,
m∑
i=1

n∑
j=1

Pi,j =
(
(Fn+1)

2 − 1
)
(Fm+2 − 1) + FnFn+1

[
(Fm+3 − 2)− (Fm+2 − 1)

]
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=
(
(Fn+1)

2 − 1
)
(Fm+2 − 1) + FnFn+1(Fm+1 − 1).

�

Example 3.6. Letm = 4 and n = 3. Then,
4∑

i=1

3∑
j=1

Pi,j = P1,1 + P1,2 + P1,3 + P2,1 + P2,2 + P2,3 + P3,1 + P3,2 + P3,3 + P4,1 + P4,2 + P4,3

= 1 + 2 + 6 + 2 + 3 + 10 + 3 + 5 + 16 + 5 + 8 + 26 = 87.

Also,
(F3+1)

2(F4+2 − 1) + F3F3+1(F4+1 − 1) = 32 · (8− 1) + 2 · 3 · (5− 1) = 87.

Example 3.7. Letm = 4 and n = 3. Then,
3∑

i=1

4∑
j=1

Pi,j = P1,1 + P1,2 + P1,3 + P1,4 + P2,1 + P2,2 + P2,3 + P2,4 + P3,1 + P3,2 + P3,3 + P3,4

= 1 + 2 + 6 + 15 + 2 + 3 + 10 + 24 + 3 + 5 + 16 + 39 = 126.

Also,

((F4+1)
2 − 1)(F3+2 − 1) + F4F4+1(F3+1 − 1) = (25− 1)(5− 1) + 3 · 5 · (3− 1) = 126.

3.2. GCD of P-Fibonacci Sequence. To explore the greatest common divisors within the P-Fibonacci
sequence, we begin by establishing a fundamental number-theoretic result. Lemma 3.6 states that every
two consecutive odd integers are relatively prime. Building on this idea, we derive two significant
results that link the structure of the P-Fibonacci sequence to the classical Fibonacci numbers.

Lemma 3.6. Every two consecutive odd integers are said to be relatively prime.

Proof. Let a = 2k + 1 and b = 2k + 3 be two consecutive arbitrary odd integers for some k ∈ Z. Note
that if we let two integers x = k + 1 and y = −k, then

ax+ by = (2k + 1)(k + 1) + (2k + 3)(−k)

= 2k2 + 3k + 1− 2k2 − 3k

= 1.

Thus, by Theorem 2.2, 2k+1 and 2k+3 are relatively prime. Since 2k+1 and 2k+3 are two consecutive
arbitrary odd integers, therefore, every two consecutive odd integers are relatively prime. �

Example 3.8. Let a = 5 and b = 7. Note that if we let x = 3 and y = −2, then

ax+ by = (5)(3) + (7)(−2) = 15− 14 = 1.
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Theorem 3.7. Let n ∈ N. Then gcd(P1,n, P1,n+1) = Fn+1.

Proof. Let n ∈ N. By Definition 4,

P1,n = F1Fn(Fn+1 − Fn) + F2(Fn)
2 = FnFn+1.

and
P1,n+1 = F1Fn+1(Fn+2 − Fn+1) + F2(Fn+1)

2 = Fn+1Fn+2.

Now, using Theorem 2.1 and Theorem 2.5, we have

gcd(Pm,n, Pm,n+1) = gcd(P1,n, P1,n+1)

= gcd(FnFn+1, Fn+1Fn+2)

= Fn+1

[
gcd(Fn, Fn+2)

]
= Fn+1

[
Fgcd(n,n+2)

]
. (1)

Note that if n is odd, that is, n = 2k − 1 for some k ∈ Z+,

gcd(n, n+ 2) = gcd
(
2k − 1, (2k − 1) + 2

)
= gcd(2k − 1, 2k + 1)

= 1 (2)

since 2k − 1 and 2k + 1 are two consecutive odd integers, in which by Lemma 3.6, they are relatively
prime. Using equations (1) and (2),

gcd(Pm,n, Pm,n+1) = Fn+1F1 = Fn+1.

Note also that if n is even, that is, n = 2k for some k ∈ Z+,

gcd(n, n+ 2) = gcd(2k, 2k + 2)

= 2gcd(k, k + 1)

= 2(1) = 2 (3)

since k and k + 1 are two consecutive integers, in which by Theorem 2.3, they are relatively prime.
Using equations (1) and (3),

gcd(Pm,n, Pm,n+1) = Fn+1F2 = Fn+1.

Therefore, gcd(P1,n, P1,n+1) = Fn+1. �

Example 3.9. Let n = 7 andm = 1. Now,

gcd(P1,7, P1,8) = gcd(F7F8, F8F9) = F8 gcd(F7, F9) = F8 gcd(13, 34) = F8 · 1 = F7+1.
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Theorem 3.8. Letm,n ∈ N. Then gcd(Pm,n, Pm+1,n) = Fn.

Proof. Letm,n ∈ N. By Definition 4 and Theorem 2.1,

gcd(Pm,n, Pm+1,n) = gcd(FnFn+m, FnFn+m+1)

= Fn

[
gcd(Fn+m, Fn+m+1)

]
.

Note that Fn+m and Fn+m+1 are two consecutive Fibonacci numbers. So, by Theorem 2.4,
gcd(Fn+m, Fn+m+1) = 1. Thus,

gcd(Pm,n, Pm+1,n) = gcd(FnFn+m, FnFn+m+1)

= Fn

[
gcd(Fn+m, Fn+m+1)

]
= Fn(1)

= Fn.

�

Example 3.10. Letm = 4 and n = 7. Now,

gcd(P4,7, P4+1,7) = gcd(P4,7, P5,7) = gcd(1157, 1872) = 13 = F7.

In Theorem 3.7, we show that for any n ∈ N, the greatest common divisor of two consecutive terms
in the first order P-Fibonacci sequence satisfies

gcd(P1,n, P1,n+1) = Fn+1.

Further generalizing, Theorem 3.8 asserts that for anym,n ∈ N, the greatest common divisor of two
terms from successive orders at the same index satisfies

gcd(Pm,n, Pm+1,n) = Fn.

These results highlight the deep interconnection between P-Fibonacci sequences and classical Fi-
bonacci numbers through their gcd properties.

4. Conclusion

The results presented in this paper open several avenues for further exploration in the field of
Fibonacci number theory and its applications. The formulation of the P-Fibonacci sequence reveals
a novel structure embedded within the classical Fibonacci sequence, particularly in the interaction
between terms Fn and Fn+m. Future researchers are encouraged to investigate generalizations of this
sequence under different recurrence relations, such as those involving Lucas numbers or Tribonacci-
type sequences, to determine whether similar patterns or identities emerge.

In addition, the closed-form summation identities and recursive properties derived for Pm,n suggest
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potential applications in discrete mathematics, coding theory, and cryptographic algorithms that
utilize number-theoretic properties. Further study may focus on combinatorial interpretations, matrix
representations, or connections to modular arithmetic and prime factorizations within the sequence.
Finally, as this work primarily considers integer-valued Fibonacci sequences, future research could also
examine analogous formulations in generalized Fibonacci sequences defined over rings or fields.
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