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AsstrACT. In this paper, we introduce and analyse a new algorithm for finding a common solution of
the set of solutions of a Mixed Equilibrium Problem and the set of fixed points of a finite family of p-
demicontractive mappings. We prove a strong convergence result for the sequence generated by the
algorithm and prove that the sequence converges strongly to a common solution of Mixed Equilibrium
Problem and the set of fixed points of a finite family of y-demicontractive mappings.
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1. INTRODUCTION

The theory of Equilibrium Problems (EP) has profoundly influenced the advancement of numerous
scientific disciplines. This theoretical framework has emerged as a vital source of inspiration for
addressing diverse problems in economics, optimization, and operations research. It provides a unified
and generic approach to tackle challenges across these fields, encompassing variational inequalities,

fixed point theory, Nash equilibrium, and game theory as special cases.

The concept of EP was first introduced in 1994 by Blum and Oettli [1] and Noor and Oettli [6].
Formally, the EP is defined as follows:

Let X be a real Hilbert space, C # () a closed and convex subset of 3, and F' : £ x £ — R an equilibrium
function. The EP involves finding a point (* € £ such that

F(C*,¢) 20, VCe&.

The solution to this problem is denoted as £ P(F). Over the years, the EP framework has been extended

and generalized by numerous researchers, as seen in [8-10,16,17].
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Mixed Equilibrium Problem (MEP). One of the notable generalizations of EP is the Mixed Equilibrium
Problem (MEP). The MEP aims to find a point (* € £ such that

F(Cm) +(G(C),n = ¢) +h(n, () = h(¢C7,¢7) =20, Vnek,

where G : £ — ¥ is a nonlinear mapping, and F,h : £ x £ — R are two bifunctions. The solution
set of MEP is denoted by M EP(F, h). This formulation encapsulates a broad spectrum of problems,
including fixed point problems, saddle point problems, variational inequality problems, optimization

problems, and the equilibrium problem itself as special cases [1,4,6,15].

Iterative Methods for EP and MEP. In recent years, various iterative methods have been developed to
approximate solutions for EP and MEP. These methods are often designed to find a common element
between the solutions of equilibrium problems and the fixed points of finitely or infinitely many
mappings. Yao et al. [15] introduced a novel hybrid iterative algorithm for identifying a common point
between the fixed points of an infinite family of nonexpansive mappings and the solutions of MEP.
Kuman and Jaiboon [5] analyzed a hybrid iterative scheme to find a common point among the solutions
of MED, fixed points of an infinite family of nonexpansive mappings, and solutions to variational
inequalities for {-Lipschitz continuous and relaxed (m, v)-cocoercive mappings in Hilbert spaces. Yao
etal. [14] proposed an extragradient method to approximate a common element between the fixed
points of a demicontractive mapping and the solutions of MEP. Shehu [12] developed a hybrid iterative
method to address a system of generalized mixed equilibrium problems, strict pseudocontractive

mappings, and variational inequality problems in real Hilbert spaces.

This paper presents a new algorithm tailored for a finite family of ;i-demicontractive mappings. The
proposed algorithm is designed to strongly converge to a common solution of the Mixed Equilibrium
Problem (MEP) and the set of fixed points of these mappings. By leveraging advanced analytical
techniques, we demonstrate the algorithm’s robustness and efficiency in finding common solutions

within this framework.

2. PRELIMINARIES

Definition 2.1. A mapping ® : ¥ — X is said to be

(a) monotone, if
((¢) = @(n), ¢ —m) 20,V¢,n € X

(b) pseudomonotone, if

<(I)(C)777_ C> >0 = <(I)(77)777_ C> > 03V<7n € Z;



Asia Pac. J. Math. 2025 12:74 3of 14

(c) contraction, if 3 a constant 0 < 1 < 1 such that

12(C) = @) < pll€ —nll,v¢,n € %
(d) L-Lipschitz continuous, if
12(C) = ()|l < LI = nll, V¢, n € %

(e) p-demicontractive if F'(®) # () and 3 a constant 0 < p < 1, with
12(¢) = ¢MMI* < lic = ¢TI1* + ull¢ = ()%, ¥¢ € 3,¢T € F().

Definition 2.2. [7]. A Hilbert space X is said to satisfy the Opial property if, for every weakly convergent
sequence () with weak limit ¢ € ¥ it holds:

liminf ||(, — ¢|| < liminf ||{, — n||
n—o00 n—00
foralln € ¥ with ¢ # .

Lemma 2.3. [13] Suppose (,n € X and v € [0, 1]. Then following hold true:

@) IS En? = I<I? £ 2(¢m) + lInll*
(®) IS+ nll* < K+ 2(n, ¢ +n);
(©) v¢+ A =w)nll> <vIKI?+ 1 =v)|nl? = v(1 = v)|I¢ =7l

Lemma 2.4. Suppose {u,} C RT, {v,} C Rand {\,} C (0,1) such that > X\, = oo,
n=1
Pnt1 < (1 = Ap)in + A, ¥n € N.

Iflim sup v, < 0 and for any subsequence { i, } of { pn } satisfying lim inf (pin, 41 — ptn,) > 0 then lim p,, =
1—00 n—oo

n—oo

Definition 2.5. A bifunction F : £ x £ — R is called as 2-monotone if
F(¢n) + F(n,9) + F(9,0) <,V¢,n,9 € E.

Lemma 2.6. [2] Suppose ¥ is a real Hilbert space and € # () is a closed and convex subset of 3. Suppose
F,h: & x & — Rarenonlinear mappings. Suppose for any n € X and for any ¢ € € 3a bounded subset D¢ C &
and n¢ € € in such a way that for each ¥ € £/ D¢

1
Now define a mapping TF" % — Eas:
T ) = {c € £ F(G0) +h(9,0) ~ h(G, Q) + {0~ . C ) 0,9 € 5},

here r € R*. Then the following conclusions hold:
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(a) T (n) £ 0, v € %
(b) T isa single valued mapping;

(c) TF"isa firmly nonexpansive mapping.
3. MaIN Resutrs

Throughout this section, we assume that ¥ is a real Hilbert space and € is a nonempty, closed and
convex subset of 3. G : ¥ — ¥ is a inverse strongly monotone mapping, f : ¥ — ¥ is contraction with

0 <k<1land ®;: & — & is a finite family of p-demicontractive mappings with (| F(®;) # 0. The
=1

1=
n

solution set = = {¢ € MEP(F,h) N () F(®;)} is nonempty.
i=1

Assumption 3.1. Suppose F' : £ x £ — Rand h : £ x £ — R are two bifunctions and satisfy below

conditions:

(@) F(¢,¢) =0,¥Ce&;

(b) bifunction F' is monotone
F((,0)+ F(9,() <0,V¢, 0 € &;
(c) the bifunction h is generalized skew-symmetric
(¢, €) = 1(C, D) + h(0,0) = h(d,m) + h(n,n) —h(n,¢) = 0,YC,0,n € E.

(d) forany ¢ € £,9 — F(¢,9) is lower semi continuous and convex;

(e) bifunction h(-,?) is convex, and bifunction (-, -) is weakly continuous;
Algorithm 3.2. Given T > 0. Let (o, (; € X. Define

min {T’ m’ if G # gn—l}

T, otherwise.

T, =

fn = Cn + Tn(Cn - Cnfl)a

Un = ‘I)S’Lh(fn — G (&),

wp = 'nnn + (1 - Fn)q)i(nn))
Cn+1 = XTLF(CH) + wpCp + Th@p.

Here Q, = {€ € X : (& — mG(&n) — Un,Un — &) = 1G (90, )} and {xn}, {wn}, {m} C [0,1] with
Xn +wn + 7 =1,r, < L, Ty €[0,1). Let following conditions also satisfied:

o0
(1) lim x5, =0, > Xxn = 00;
n—oo n:O
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2Q)0<c<wy m™m<d<l;
(3) lim infr, > 0;

n—oo
(4) lim Y= =;

n—oo Xn

(5) liminf(T, = ¢) > 0.

Lemma 3.3. [3] Suppose € # () is a closed and convex subset of ¥.. Suppose I’ : £ x & — R is a 2-monotone,
h : & x & — R is a generalized skew symmetric bifunction satisfying the Assumption 3.1 and G : € — 2
is a monotone and Lipschitz continuous on € with L > 0. If the sequence {(,} is generated by (3.2) and
¢ € MEP(F, L), then we have

I — CHI? < 1€ = CTI2 = (1= (raL)®)[[9n — &nl|?, V0 > 1. (3.1)

Lemma 3.4. Suppose &, E, F , h, G, ®; are defined as above with E # ) and satisfying Assumptions 3.1. Then
the sequence {(, } generated by Algorithm 3.2 is bounded.

Proof. Let (' € MEP(F,h), then we have
1€ — ¢t = 11¢n + TalCn — Gom1) — T
< IGn = <Ml + LallGn = Gamrl
<160 = €+ X <260 = Gocall

Since lim Lz = ( and hence lim &ch—g’n_lﬂ = 0,s03 M; > 0such that &ch—fn_lH < My,Vn €
Xn n—oo Xn Xn

N. o
Now we get
1€n = ¢TI < 116 = ¢TIl + xnMa, ¥ > o (32)
[ = ¢TI? = T + (1 = L) @i(na) — 712

= [T (nn = ¢ + (1= T0) (i) — ¢1I?
< Dol = ¢TI+ (1= To)[[@i () — ¢TI* = Ton(1 = T 1130 — P () >
< Tl = ¢TI+ (1 =To) (llmn = TP + pillmn — @i(ma) ()
— T (1 =Tl — @) |12
= [l = CTI* = (1= T0) (T = )| — @) |12
< Jlmm = ¢T1%.

We get

[ — ¢TI < Jlmn = ¢TI (3.3)
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From (3.1), we get
7 — ¢HI < 1€ = ¢TIl (3:4)
Now again
1Gar1 = Tl = [IxnF (6n) + wnn + Tazom — ¢T|
= IXn(F n(n) = 1) + wn(Gn = ¢1) + a(@n — ¢
< XallF (G0) = F I+ xnllF (€H) = Pl + wnllGn = ¢TIl + (1= X — wn)lwn = (]
< XnkllGn = ¢+ xallF (€T) = CHI - wnllGn = ¢TI+ (1 = xn = wn)lleon — ¢TI-
Now applying equations (3.2), (3.3) and (3.4), we get
11 = €Tl < Xk l|Gn = CHI+ X llF(CT) = ¢TIl + wnllGn = Tl
+ (1= xn = wn) |G = Tl + X M1
< xnkl1Gn = T+ xnllF(ST) = ¢TI+ (1 = X1 = €Tl + XM
M+ |F(¢h) - <TH>

< (1= (1 = K6 = €1+ 1 ke (L

M+ (¢h — ¢
1-k '

gmax{ucn—dn,

Now using induction, we get

My + I (¢h = ¢f) } |

160 = 61 < max o = o7, I (35)

Hence the sequence {(,} is bounded, and thus the sequences {9, }, {n,}, {w,} are also bounded. O

Theorem 3.5. Suppose X, E, F , h, G, ®; are defined as above with = # () and satisfying Assumptions 3.1. Then
the sequence {(,,} generated by Algorithm 3.2 converges strongly to a point ' € =, where ¢t = P=f (¢1).

Proof. Suppose ¢ t € E, then we can easily see that mapping P=f is contraction mapping. Using the
Banach contraction mapping principle, 3 a unique point (' € Z such that (T = P=f (¢1). It gives

(rch - ¢-h<ovtes (3.6)
Now,

160 = CTII7 = (|G + TolGn — Gu1) — ¢TI
= [1¢n = CT12+ 270 (G — €1, G = Gt + L2]Gn — G P
<16 = CH2+ 2700160 = CaallliGn = CHL 4+ Y211¢n — Cuon)?

= 160 = T2+ Tullén = Gam1 1120160 — <l + TallGn — Guall]

Ty
= HCn - CTHQ + TTZ”Cn - <n—1H[2H<n - CTH + Xn - 7HC7L - Cn—lm
Xn
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< IGn = SHIP + Tallén = Gaall[211Gn — STl + xn M)
< IGn = CHIP + LallGn = Gu1 | M2, (37)
here
My = sup(2]¢, - CHl + xn M.

Again

16nr1 = CHIP = lxnF (Gn) + wnln + Tawon — T
< lwn (G = ¢ + 7w = CHIZ + 2xa(F (Ga) = ¢ Gurn = ¢F)
< willén = CTZ + il — ¢TI + 207160 = CMllln = ¢
+ 2xn (F (Gn) = ¢ Gur — ¢T)
< wallén = CT% + mallwn = ¢TI + wara(l1Gn — ¢TI + llewn — ¢FI1?)
+2xn(F (Ga) = F (€N, Gor = €1 4 20 (F (CT) = ¢F, G = ()
< wa(wn + T)[16n = CFIIP + T (wn + 7))l — ¢TI

+ 2xn{F (Gn) = F(C): Grn = €T+ 2xn (F(¢T) = €T Gupa = ¢T).
Now using equations (3.3) and (3.4) we get

| Cnt1 — CTH2 < wn(wn + 7) |G — CTHQ + Tn((wn + 7)) |16 — CTHQ

+ 2Xn<F(Cn) - F(CT)a Cn-i—l - CT> + 2Xn<F(CT) - CT’ Cn-i—l - CT>

Now applying (3.7) to the above equation, we get

1641 = CTI? < wnlwn + ) 1Gn = ST + 7 ((wn + 7)) IGn — ¢TI
+ Ta((@n + 7)) TallGn = Gar|| Mo
+2Xn(F (6n) = F (€N Garn = ¢ + 2x(F (€T = (T, Gun = )
< wa(wn + )60 = CHIP + 7 ((wn + 7)) 160 — ¢TI
+ Ta((Wn + 7)) TallGn = Gama|| Mo
+ Xk | Gn = CIIZ + Xkl Gntr = CTIIP + 2xn (F (ST) = ¢T, Guga = ¢T)
< (wn +70) 1160 = CHIP + 7 ((@n + 7)) Tl Gn = ot | M2
+ Xk | Gn = CIIZ 4 xnkl s — CTIIP + 2xn (F (C1) = ¢T, Guga — ¢T)
< (1= 2xn + Xak) 160 = ¢TI+ X2 1Gn = CTIP + 7a((@n + 7)) TallGn = Gua | M2

+ Xk Gns1 — CTIP + 2xn (F (1) = ¢, Gapr — €T).
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Simplifying above equation, we get

2 n 1-— 2 n 1 —k‘
Gt — ¢TI < < >§(><)> Gn — 2 + X(Xk)

1 T, YnM: 1
|:T(()k)”gn Cn 1||M2 + 2(1 }1) + (1 — k;) <F(CT) _ €T7CTL+1 -

— (1- 2 =D g, - gt 20 =By,

n - n _k ,

<(1- 2’§(1)> I - ¢t + 2=,

where
M3 = sup ||<n - CTHQ;
neN
M’ = supIl,,
neN
_ |0 =xn) T X M3 1 o
L, = 2xn(l— k) 1Gn = Cu1l| M2 + 21— k) + =5 (F (¢ =T Gt —

¢h

.

To conclude our proof, we utilize Lemma 2.4. For that it is sufficient to prove that lim sup I,, < 0 for

any subsequence {||¢,, — (||} of {||¢, — ¢T||} with the condition

timinf {61 = €'l = 6o =<'l } 2 0.

to establish this assume that there exists a subsequence { ||y,

(3.8) holds.

tim inf { Gug1 = ¢TI = 6o, — ¢TI

— ¢} of {[I¢n

n—o0

= timinf { (1iGur1 = ¢l = 6u, = ¢T11) (IGoers = ¢l = lGne = ¢TI) | 2 0

Now,

1Gngt1 = €T < wny (@nye + T )i = ST + T (@i, + Ty ) [y

< Wny (wnk + Tnk)HCﬂk - CTHQ + Tnk(wnk + Tnk)”nnk

— Tny, (wnk + Tnk)(]‘ - Fnk)(Fnk - M)Hnnk -

+ 2Xnk<F<an) - F(CU? an-‘rl - <T> + 2Xnk <F(CT>

< wny (Wny, + T )Gy, — CTHQ + Tog, (W + T )Gy, —

+ Ty Ty (wmc + Tnk)”@lk - an—1||M2

— Ty (Wnk + Tnk)(l - Fnk)(rnk - M)Hﬁm -

+ 2Xn (F () — F (1), G — €T+ 2x0m, (F (CT)

;i (11n,,)|I?

;i (11, )|I?

—¢TP?
- CT) an-i-l - CT>
- ¢

— ¢ G — ¢1)
¢t

— (M 1 — €D

(3.8)

— (']} in such a way that

(3.9)
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< Wiy, (Wny, + 7o) [[Gny, — CTHZ + T (W, + T )G — CTH2

+ Ty Toy (Wnk + Tnk)||<nk - an71||M2

— Ty, (Wny, + T ) (1 = T ) (Trye = ) |70, — (I>i(77nk)‘|2

+ Xk G = CI2 + X Bll g1 = ST+ 2xm, O (ST) = €T Gy = 1)
< (@ng + 7o) 216 = CHIZ + Loy P (Wi + T )G, — Grie—1 /1Mo

= Ty (Wi, + Ty ) (1 = Ty ) (T — ) |70, — <I>¢(77nk)\\2

XK G = CHI 4 X Bl = I + 2, (F (€T = ¢ Gnpn = €F)
< (1= 2xmy + X F) G, = CHIP 4 X 16 = ¢TI

+ Ty, Ty, (Wnk + Tnk)Han - an71||M2

= Ty (Wny, + T ) (1 = Ty ) (T, — ) |70, — <I>i(77nk)H2

+ XKl — T 4 X Kl — CTIIZ 4 250, (F (CF) = ¢F, G — €1

Simplifying the above equation, we get

IGnas — T2 < (1

It gives us

And we get

(1 — (1= &
- 2l =B g, gty b=

T (1= Xy ) T Xny M3 1 i t T
nE -~ SNng— M —_ ,Cn —

[ 2 (L — R) 16 = G2l 2+2(1_k)+(1_k)<F(C) ¢t s — ¢

n (wn +Tn )
T 0 Tn) T )l = i)

2xn, (1 — k) 2, (1 — k)

< |10 7 . — 1|12 kinn
_< 1 —xn,k G =M™+ 1 — xnk k

n (wn +Tn )
B W(l = Py ) (T, — ,u)”nnk - q)i(nnk)Hz

2xn, (1 — k)
ng

_ Ty (wny, + Tny,)

1— Xnkk (1 - Fnk)(rnk - M)Hﬁnk - Qi(nnk)HQ'

. Tn (Wn, + Tn
lim sup (’Ma )T — ) <I>i<nnk>||2)

k—o0 1- Xnkk
2xn,, (1 — k)

M/_ _ 'I' 2
el I G = 1)

< limsup (H@zk ey

k—o0

< —timinf (JlGu1 = ¢HI2 = llGa, — ¢TII7) < 0.
k—o00

[, — @i, )] = 0. (3.10)
— 00
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If we follow the same approach as above, we can easily get
i [l = &, || = 0. (3.11)
We also have
2
F,h
Hﬁnk - 77nkH2 = H(I)viz (gnk - TnkG(fnk)) - q)rnank (ﬁnk - rnkG(/ﬁTLk))H
<N = T GEnn)) = Py = 70, GWn, )1
< Nl = On I + (rn )1 G (Eni) — G0, )2
< Hfﬂk B 197%”2 + (rnkL)QHgnk B 1971/9”2
< (1 (rn, L)) 1n, = O 17
Applying the above equation (3.11), we get
klggo [Py = 1y || = 0. (3.12)
Again we have
Hwnk = i |l = HFnknnk +(1- Ly ) @i (1) — nnkH =(1- Fnk)H(I)i(nnk) = Mg |-
Again applying (3.10) to the above equation, we get
Jim e, =, | = 0. (3.13)
Now
Th,
Hgnk - anH < T”k”Cﬂk - an—lu = Xny T”gnk - an—l”
ng
and we can easily get from the above equation that
kli)nolo [€n, = Cniell = 0. (3.14)
Using above limits, we can also get
klggo ||19nk - fnkH < kli)ngo ||19nk - anH + kh—>nc}o ||€nk - §Rk|| =0,
klggo ||19nk - anH < Icli)Hc}o ||19nk - gnk” + kh_fgo ||€nk - §Rk|| =0,
klggo [@n,, — i ll < kli_?olo @ny, = i || + kh_)nolo 7y, = Gyl = 0,
klggo 7y, = G|l < klinc}o [ klggo [9n), = Gy [l = 0. (3.15)

Now we prove that limsup II,,, < 0. To prove this it is sufficient to prove that
k—o0

limsup(F (¢') — ¢F, Guerr — ¢T) <0

k—o0
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Suppose < (. ¢ is a subsequence of {(,, } such that
PP k; q k

timsup(F (¢") = ¢7, Guy, 11— ¢) = limsup(r (¢") = 7, Gurr — ¢ (3.16)

j—o0 k—o0

Now we prove that klim |Cni+1 — Gnp Il = 0. So we have
—00

Han-‘rl - an” - HXleF(an) +wnk<nk + Ty @y, — an”
= HXnk (F(an) - an) + kaCRk + Ty, (wnk - an> - (1 — Xnp — Tnk)CﬂkH
= Hanc (F(an) - an) + Ty, (wnk - an)H

< XnkHF(an) - anH + Tnk”wnk - an”

Applying condition (1) and (3.13), we get
i [[Cags — Goy | = 0. (317)
—00

Since the sequence {(,} is bounded in ¥ there exists a subsequence {(,, } of {(,} which converges
weakly in . Suppose (,, — ¢* € . From (3.15), we can get that {7, } and {¥,, } also converges
weakly to ¢*. SInce ¥,, = &5 (€, — r,G(£n)), we get

F(9,0) + R0, 00) — By ) + (9 — Oy, Iy — (En — 1 G(En))) > 0,V € £.

n

using the monotonicty of F', we get

1

Tn

h(9,9y,) — h(0n,0p) + — (0 — O, O — &n) > F(9,0,) + (G(&n), ¥ — 9),V0 € E.

Hence V¥ € €&,

Nk

W9, n,) — (O, O, ) + <q9 — U, > > F(9,9n,) + (G(Eny ), Oy — 1) (3.18)

For any v € (0, 1), we can see that ¥, = v 4+ (1 — v)(* € £. Then from (3.18), we get

(G(Vy), 0y —On,,)) > (G(W) — G(Uy,,), 0y — Ony.) — h(V0, Vn,) + h(Dp,) — R(Dy, On,.)
ﬁnk - gnk

Nk

+h(ﬂ”k’0nk) - <19—19nk’ > +F(0ua19nk)
Since the mapping G is monotone and Lipschitz continuous, we also have
i ([G(@n,) = G(&n) || < lim L[y, — &n, ]| = 0.
—00 k—oo
and hence
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Using the assumption 3.1 and the above inequality (3.19), we have

h(9y,¢") = h(C*, (7)) = F(9,,C) — (G(0y), 9, — (7).
Now,

0= F(d,,0,)
< UF(0,,0) + (1 — v)F(¥,,¢")
< vF(y,9) + (1 = v)[h(0y, (") = h(C7,C7) +(G(V0), 0y — )]
=vF(0y,9) + (1 = v)[A(0, ¢*) = h(C*, )] + (1 = v)(G (), v + (1L — )" — ()

= F(9y,9) + (1 = v)[h(?, (") = h(C", C7) +(G(90), 9 — ()] (3.20)
For v — 0, we get
F(C0) + h(9,¢7) = () +(F (), 0 = ¢7) 2 0,V €€,

and it gives us (* € M EP(F, h). Further using the demiclosedness of ®; and (3.10) and (3.15), we get
¢* € ) F(®;). Hence ¢* € =. Now finally, using (3.6), (3.16) and (3.17), we get
i=1

limsup(F (¢") = ¢', Gusr — ¢1) = limsup(F (¢1) — ¢T, Gupr1 — Gy

k—o00 k—o0

+ limsup(F(CT) — T, Cng — CT>

k—o0
= Tim (F (¢") = ¢ G, =€)
= (F(¢) = ¢¢ = ()
<0. (3.21)

Applying Lemma 2.4, we get that the sequence {(,} generated by Algorithm 3.2 converges to
(teE O

4. ExamMPLEs

Example 4.1. Let ¥ = Rand £ = [0,1], define G(¢{) = 3(, F : E x & - Ras F({,n) = (¢ —2)(n—C),
forall¢(,ne and h:E xE - Rash((,n) =n—Cforall{,n € E. Here MEP(F,h) = {%} Define
mappingsF:€—>8byF(§):§,<I>1:€—>8by
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and @5 : £ — £ by

3 3

171f0§C§17
Da(¢) =

5, if3<¢<1

2
Here = = {( € MEP(F,h) N () F(®;)} = {2} and all the conditions of Theorem 3.5 are satisfied.
i=1

Hence the sequence {¢,} generated by Algorithm (3.2) converges strongly to 2.
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