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Abstract. In this paper, we study a non-autonomous differential system of even dimension n and aim
to determine the conditions that ensure the existence of periodic solutions. Using the classical another
first-order averaging theory, we establish sufficient conditions for the existence of these solutions.
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1. Introduction

One of the fundamental aspects of the qualitative theory of differential systems is the study of periodic
orbits including their existence, number, and stability. For example, the study of periodic solutions in
predator-preymodels helps ecologists analyze the cyclical fluctuations in animal populations, providing
insights for better wildlife management. In engineering, detecting periodic solutions in systems such as
electrical circuits or mechanical vibrations is essential for maintaining stability and avoiding resonance
effects that could cause system failure. It also plays a fundamental role in climate research, the medical
field, and various other areas of study. In general, the study of phenomena with known periodic
solutions facilitates the control and prediction of their outcomes.

Typically, it is difficult to find periodic solutions of differential systems using exact mathematical
methods, and in many cases, it is not possible at all. Averaging theory is a useful method that helps
researchers study periodic solutions in these systems. This method begins with the works of Lagrange
and Laplace. For more explanations about averaging theory, see the books by Verhulst [1] and Sanders
and Verhulst [2]. The main idea of the averaging theory is to reduce the complex problem of finding
periodic solutions to finding the zeros of a system of nonlinear equations.
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Many researchers have studied problems related to the periodic behavior of solutions in higher-order
differential equations and systems. Several papers, including [ [3], [4], [5], [6], [7], [8], [9], [10]],
provide useful examples and contributions in this area.

In [11], the authors studied the periodic solutions of a four-dimensional system using the averaging
method of the form 

ẋ

ẏ

ż

u̇

 =

−y + h1(t)

x+ h2(t)

−u+ h3(t)

z + h4(t)

+ ε


P1 (x, y, z, u)

P2 (x, y, z, u)

P3 (x, y, z, u)

P4 (x, y, z, u)

 , (1)

where Pi are polynomials in the variables x, y, z and u of degree n, hi(t) are 2π−periodic functions
with i = 1, 4, and ε is a small parameter.

In [12], the authors provide sufficient conditions for the existence of periodic solutions for the
differential system (2) 

ẋ

ẏ

ż

u̇

 =

y

−x− εG(t, x, y, z, u)

u

−z − εH(t, x, y, z, u),

(2)

where G and H are 2π-periodic functions in the variable t and ε is a small parameter.
In [13], the authors provide sufficient conditions for the existence of periodic solutions for the

differential system (3)

ẋ = y, ẏ = −x− εF (t, x, y, z, u, v, w)

ż = u, u̇ = −z − εG (t, x, y, z, u, v, w)

v̇ = w, ẇ = −v − εH (t, x, y, z, u, v, w) ,

(3)

where F , G and H are 2π-periodic functions in the variable t and ε is a small parameter.
In this work, we investigate the existence of periodic solutions in system (4) using another first order

averaging method

ẋ1 = −x2 + f1(t) + εR1 (x1, x2, x3, x4, x5, x6, ..., xn−1, xn)

ẋ2 = x1 + f2(t) + εR2 (x1, x2, x3, x4, x5, x6, ..., xn−1, xn)

ẋ3 = −x4 + f3(t) + εR3 (x1, x2, x3, x4, x5, x6, ..., xn−1, xn)

ẋ4 = x3 + f4(t) + εR4 (x1, x2, x3, x4, x5, x6, ..., xn−1, xn)
... ... ...

ẋn−1 = −xn + fn−1(t) + εRn−1 (x1, x2, x3, x4, x5, x6, ..., xn−1, xn)

ẋn = xn−1 + fn(t) + εRn (x1, x2, x3, x4, x5, x6, ..., xn−1, xn) ,

(4)
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where each Ri is a polynomial of degreemi in the variables xi, fi(t) are 2π−periodic functions with
i = 1, n, where n is even and ε denotes a small parameter.

2. Statement of the main result

We now present the main result in the form of the following theorem.

Theorem 1. We consider the system defined by (4), and define the following set of equations

F1(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 1
2π

2π∫
0

(cos(t)R1(A(t)) + sin(t)R2(A(t)))dt,

F2(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 1
2π

2π∫
0

(− sin(t)R1(A(t)) + cos(t)R2(A(t)))dt,

F3(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 1
2π

2π∫
0

(cos(t)R3(A(t)) + sin(t)R4(A(t)))dt,

F4(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 1
2π

2π∫
0

(− sin(t)R3(A(t)) + cos(t)R4(A(t)))dt,

...
...

...

Fn−1(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 1
2π

2π∫
0

(cos(t)Rn−1(A(t)) + sin(t)Rn(A(t)))dt,

Fn(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 1
2π

2π∫
0

(− sin(t)Rn−1(A(t)) + cos(t)Rn(A(t)))dt,

where A(t) = (a1(t), a2(t), a3(t), a4(t), ..., an−1(t), an(t)) which is represented by the following expression

a1(t) = cos(t)x1,0 − sin(t)x2,0 +
t∫
0

(cos(t− s)f1 (s)− sin(t− s)f2(s)) ds,

a2(t) = sin(t)x1,0 + cos(t)x2,0 +
t∫
0

(sin(t− s)f1 (s) + cos(t− s)f2(s)) ds,

a3(t) = cos(t)x3,0 − sin(t)x4,0 +
t∫
0

(cos(t− s)f3 (s)− sin(t− s)f4(s)) ds,

a4(t) = sin(t)x3,0 + cos(t)x4,0 +
t∫
0

(sin(t− s)f3 (s) + cos(t− s)f4(s)) ds,

...
...

...

an−1(t) = cos(t)xn−1,0 − sin(t)xn,0 +
t∫
0

(cos(t− s)fn−1 (s)− sin(t− s)fn(s)) ds,

an(t) = sin(t)xn−1,0 + cos(t)xn,0 +
t∫
0

(sin(t− s)fn−1 (s) + cos(t− s)fn(s)) ds.

If the following conditions are satisfied
2π∫
0

(cos(s)f1 (s) + sin(s)f2(s))ds = 0,

2π∫
0

(− sin(s)f1 (s) + cos(s)f2(s)) ds = 0,

2π∫
0

(cos(s)f3 (s) + sin(s)f4(s)) ds = 0,

2π∫
0

(− sin(s)f3 (s) + cos(s)f4(s)) ds = 0,

(5)
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...
...

...
2π∫
0

(cos(s)fn−1 (s) + sin(s)fn(s))ds = 0,

2π∫
0

(− sin(s)fn−1 (s) + cos(s)fn(s)) ds = 0,

then for every
(
x∗1,0, x

∗
2,0, x

∗
3,0, x

∗
4,0, ..., x

∗
n−1,0, x

∗
n,0

)
solution of the system

Fk (x1,0, x2,0, x3,0, x4,0, . . . , xn−1,0, xn,0) = 0, k = 1, n,

and satisfying

det

(
∂ (F1,F2,F3,F4, ...,Fn−1,Fn)

∂ (x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0)

) ∣∣∣(x∗1,0,x∗2,0,x∗3,0,x∗4,0,...,x∗n−1,0,x
∗
n,0)
6= 0.

The differential system (4) possesses a periodic solution

(x1(t, ε), x2(t, ε), x3(t, ε), x4(t, ε), ..., xn−1(t, ε), xn(t, ε))t ,

which tends toward the periodic solution given by

x1(t) = cos(t)x∗1,0 − sin(t)x∗2,0 +
t∫
0

(cos(t− s)f1 (s)− sin(t− s)f2(s)) ds

x2(t) = sin(t)x∗1,0 + cos(t)x∗2,0 +
t∫
0

(sin(t− s)f1 (s) + cos(t− s)f2(s)) ds

x3(t) = cos(t)x∗3,0 − sin(t)x∗4,0 +
t∫
0

(cos(t− s)f3 (s)− sin(t− s)f4(s)) ds

x4(t) = sin(t)x∗3,0 + cos(t)x∗4,0 +
t∫
0

(sin(t− s)f3 (s) + cos(t− s)f4(s)) ds

...
...

...

xn−1(t) = cos(t)x∗n−1,0 − sin(t)x∗n,0 +
t∫
0

(cos(t− s)fn−1 (s)− sin(t− s)fn(s)) ds

xn(t) = sin(t)x∗n−1,0 + cos(t)x∗n,0 +
t∫
0

(sin(t− s)fn−1 (s) + cos(t− s)fn(s)) ds,

concerning the differential system
ẋ1 = −x2 + f1(t)

ẋ2 = x1 + f2(t)

ẋ3 = −x4 + f3(t)

ẋ4 = x3 + f4(t)
...

...

ẋn−1 = −xn + fn−1(t)

ẋn = xn−1 + fn (t) ,

when ε→ 0, it is important to note that this solution is periodic with a period of 2π.

Theorem 1 is proved using the averaging theory for the study of periodic orbits, as explained in
Section 3. A complete proof is given in Section 4. In Section 5, we provide two examples to illustrate
how the theorem can be applied.
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3. Another first order averaging theory

We consider the problem of the bifurcation of T - periodic solutions from differential systems of the
form

ẋ = F0 (t, x) + εF1 (t, x) + ε2F2(t, x, ε), (6)

with ε ∈ (−ε0, ε0), for ε0 sufficiently small. Here the functions F0, F1 : R × Ω → Rn and F2 :

R× Ω× (−ε0, ε0)→ Rn are C2 functions, T-periodic in the first variable and Ω is an open subset of Rn.
One of the main assumptions is that the unperturbed system

ẋ = F0 (t, x) , (7)

has a submanifold of periodic solutions.
Let x (t, z) be the solution of system (7) such that x(0, z) = z.We write the linearized system of the

unperturbed system along the periodic solution x(t, z) as

ẏ = DxF0(t, x(t, z, 0))y. (8)

In what follows we denote byMz(t) some fundamental matrix of the linear differential system (8),
and by ξ : Rk × Rn−k → Rk the projection of Rn onto its first k coordinates ξ(x1, ..., xn) = (x1, ...., xk).

Theorem 2. Let V ∈ Rk be open bounded with Cl(V ) ⊂ Ω, and let β0 : Cl(V )→ Rn−k be a C2 function. We

assume

(1) Z = {zα = (α, β0 (α)) , α ∈ Cl (V )} ⊂ Ω and that for each zα ∈ Z the solution x(t, zα) of (7) is
T-periodic.

(2) for each zα ∈ Z there is a fundamental matrixMzα(t) of (8) such that theM−1zα (0) −M−1zα (T ) has

in the right up corner the k × (n− k) zero matrix, and in the right down corner a (n− k)× (n− k)

matrix ∆α with det(∆α) 6= 0.

Remark 3. This proof was first given by Roseau [14]. A shorter version is available in [15].

We consider the function F : Cl (V )→ Rk defined by

F (α) = ξ

(∫ T

0
M−1zα (t)F1 (t, x (t, zα)) dt

)
. (9)

If there exists a ∈ V with F (a) = 0 and det
((

dF
dα

)
(a)
)
6= 0, then there is a T−periodic solution

x (t, ε) of system (6) such that x (0, ε)→ zα as ε→ 0.

We assume that there exists an open set V with Cl(V ) ⊂ Ω such that for each z ∈ Cl (V ) , x (t, z, 0)

is T−periodic, where x (t, z, 0) denotes the solution of the unperturbed system (7) with x (t, z, 0) = z.

The set Cl (V ) is isochronous for the system (6); i.e. it is a set formed only by periodic orbits, all of them
having the same period. Then, an answer to the problem of the bifurcation of T -periodic solutions
from the periodic solution x (t, z, 0) contained in Cl (V ) is given in the following result.
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Theorem 4. (Perturbations of an isochronous set)

We assume that there exists an open and bounded set V withCl (V ) ⊂ Ω such that for each z ∈ Cl (V )

the solution x (t, z) is T-periodic, then we consider the function F : Cl(V )→ Rn as

F (z) =
1

T

T∫
0

M−1z (t, z)F1 (t, x(t, z)) dt. (10)

If there exists a ∈ V such that F (a) = 0 and

det ((dF/dz) (a)) 6= 0, (11)

then there exists a T -periodic solution x (t, ε) of system (6) such that x(0, ε)→ a as ε→ 0.

Theorem 5. Under the assumptions of Theorem (4), for small ε ensures the existence and uniqueness of a

T-periodic solution x(t, ε) of system (6) such that x(0, ε) → a as ε → 0, and if all eigenvalues of the matrix

(dF/dz) (a) have negative real parts, then the periodic solution x(t, ε) is stable. If some of the eigenvalue has

positive real part the periodic solution x(t, ε) is unstable.

4. The proof of theorem

Using the results from Section 3, system (4) can be rewritten as system (6), with

x =



x1

x2

x3

x4
...

xn−1

xn


, F0(t, x) =



−x2 + f1 (t)

x1 + f2 (t)

−x4 + f3 (t)

x3 + f4 (t)

...
−xn + fn−1 (t)

xn−1 + fn (t)


,

and

F1 =



R1 (x1, x2, x3, x4, x5, x6, ..., xn−1, xn)

R2 (x1, x2, x3, x4, x5, x6, ..., xn−1, xn)

R3 (x1, x2, x3, x4, x5, x6, ..., xn−1, xn)

R4 (x1, x2, x3, x4, x5, x6, ..., xn−1, xn)
...

Rn−1 (x1, x2, x3, x4, x5, x6, ..., xn−1, xn)

Rn (x1, x2, x3, x4, x5, x6, ..., xn−1, xn)


.



Asia Pac. J. Math. 2025 12:75 7 of 13

We examine the periodic solutions of system (4) under n is even. By using

x1

x2

x3

x4
...

xn−1

xn


= eAt



x1,0

x2,0

x3,0

x4,0
...

xn−1,0

xn,0


+

t∫
0

eA(t−s)



f1 (s)

f2 (s)

f3 (s)

f4 (s)

...
fn−1 (s)

fn (s)


ds,

where

A =



0 −1 0 0 · · · 0 0

1 0 0 0 · · · 0 0

0 0 0 −1 · · · 0 0

0 0 1 0 · · · 0 0
... ... ... ... . . . ... ...
0 0 0 0 0 0 −1

0 0 0 0 0 1 0


.

Hence, the following result is obtained

x1(t) = cos(t)x1,0 − sin(t)x2,0 +
t∫
0

(cos(t− s)f1 (s)− sin(t− s)f2(s)) ds

x2(t) = sin(t)x1,0 + cos(t)x2,0 +
t∫
0

(sin(t− s)f1 (s) + cos(t− s)f2(s)) ds

x3(t) = cos(t)x3,0 − sin(t)x4,0 +
t∫
0

(cos(t− s)f3 (s)− sin(t− s)f4(s)) ds

x4(t) = sin(t)x3,0 + cos(t)x4,0 +
t∫
0

(sin(t− s)f3 (s) + cos(t− s)f4(s)) ds

... ... ...

xn−1(t) = cos(t)xn−1,0 − sin(t)xn,0 +
t∫
0

(cos(t− s)fn−1 (s)− sin(t− s)fn(s)) ds

xn(t) = sin(t)xn−1,0 + cos(t)xn,0 +
t∫
0

(sin(t− s)fn−1 (s) + cos(t− s)fn(s)) ds.

These solutions are periodic, having a period 2π if and only if

x1(0)

x2(0)

x3(0)

x4(0)

...
xn−1(0)

xn(0)


=



x1(2π)

x2(2π)

x3(2π)

x4(2π)

...
xn−1(2π)

xn(2π)


.
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The conditions for the periodicity of these solutions are defined in Statement (5) of Theorem (1). It is
evident that the set of periodic solutions has a dimension of n. Consequently, we aim to identify the
periodic solutions of system (4) by determining the zeros z = (x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) of
the system F(z) = 0, where F(z) is defined in (10). The fundamental matrixM(t) of the differential
system described in equation (8) is given by

M (t) = Mz (t) =



cos(t) − sin(t) 0 0 · · · 0 0

sin(t) cos(t) 0 0 · · · 0 0

0 0 cos(t) − sin(t) · · · 0 0

0 0 sin(t) cos(t) · · · 0 0
... ... ... ... . . . ... ...
0 0 0 0 0 cos(t) − sin(t)

0 0 0 0 0 sin(t) cos(t)


.

By computing the function F(z), we obtain the following system

F1(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 0,

F2(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 0,

F3(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 0,

F4(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 0,
... ...

Fn−1(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 0,

Fn(x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 0,

where F1, F2, F3,F4,..., Fn are defined in Theorem (1).
Then for every (x∗1,0, x∗2,0, x∗3,0, x∗4,0, ..., x∗n−1,0, x∗n,0) solution of the system

Fk (x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0) = 0, (12)

k = 1, n, provide periodic orbits of the system (4) with ε 6= 0 being sufficiently small if they are
simple, i.e. if

det

(
∂ (F1,F2,F3,F4, ...,Fn−1,Fn)

∂ (x1,0, x2,0, x3,0, x4,0, ..., xn−1,0, xn,0)

) ∣∣∣(x∗1,0,x∗2,0,x∗3,0,x∗4,0,...,x∗n−1,0,x
∗
n,0)
6= 0.

For every root (x∗1,0, x
∗
2,0, x

∗
3,0, x

∗
4,0, ..., x

∗
n−1,0, x

∗
n,0) of system (12), there exists a 2π-periodic solution

(x1(t, ε), x2(t, ε), x3(t, ε), x4(t, ε), ..., xn−1(t, ε), xn(t, ε))t ,

of the differential system (4) with ε 6= 0 sufficiently small, which tends to the periodic solution given
in the statement of Theorem (1) of the differential system
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ẋ1 = −x2 + f1(t)

ẋ2 = x1 + f2(t)

ẋ3 = −x4 + f3(t)

ẋ4 = x3 + f4(t)
... ... ...

ẋn−1 = −xn + fn−1(t)

ẋn = xn−1 + fn (t) ,

when ε→ 0. The demonstration of Theorem (1) has been proved.

5. Applications

In this section, we present two examples to illustrate the results obtained in Theorem (1). The first
system is in dimension 4, and the second one is in dimension 10.

Example 6. This example illustrates the results obtained in Theorem (1), we consider the differential system (4)
with n = 4 and

F0 (t, x) =


−x2 + sin(t)

x1 + cos(t)

−x4 − sin(t)

x3 − cos(t)

 , F1 (t, x) =


2x1 − x2 + x1x2

3x1 + x2 − x1x2
x3 − 2x4 + x3x4

x3 + 2x4 − x3x4

 .

The conditions (5) can be easily verified

2
2π∫
0

cos(s) sin(s)ds = 0,

2π∫
0

(
− sin2(s) + cos2(s)

)
ds = 0,

−2
2π∫
0

cos(s) sin(s)ds = 0,

2π∫
0

(
sin2(s)− cos2(s)

)
ds = 0.

By calculating the functions F1,F2,F3 and F4, we obtain the following results

F1 (x1,0, x2,0, x3,0, x4,0) =
3

2
x1,0 − 2x2,0 +

1

2
,

F2 (x1,0, x2,0, x3,0, x4,0) = 2x1,0 +
3

2
x2,0 +

1

2
,

F3 (x1,0, x2,0, x3,0, x4,0) =
3

2
x3,0 −

3

2
x4,0 − 1,

F4 (x1,0, x2,0, x3,0, x4,0) =
3

2
x3,0 +

3

2
x4,0 − 1.

The system F1 = F2 = F3 = F4 = 0, has a unique real solution, which can be given by
(
− 7

25 ,
1
25 ,

2
3 , 0
)
. The

eigenvalues of the Jacobian matrix are
(
3
2 − 2i, 32 + 2i, 32 −

3
2 i,

3
2 + 3

2 i
)t
, which have four positive real parts.

Since

det

(
∂ (F1,F2,F3,F4)

∂ (x1,0, x2,0, x3,0, x4,0)

) ∣∣∣(− 7
25
, 1
25
, 2
3
,0) =

225

8
6= 0,
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then the differential system (4) with n = 4 has an unstable periodic solution,


x1(t, ε)

x2(t, ε)

x3(t, ε)

x4(t, ε)

 tending to the

unstable periodic solution
x1(t) = − 7

25 cos(t)− 1
25 sin(t),

x2(t) = 1
25 cos(t) + 18

25 sin(t),

x3(t) = 2
3 cos(t),

x4(t) = −1
3 sin(t),

of the differential system
ẋ1 = −x2 + sin(t),

ẋ2 = x1 + cos(t),

ẋ3 = −x4 − sin(t),

ẋ4 = x3 − cos(t),

when ε→ 0.

Example 7. Consider the differential system (4) with n = 10 and

F0(t, x) =



−x2 + sin(t) cos(t)

x1 + sin2(t)

−x4 + sin(t) cos(t)

x3 + cos2(t)

−x6 + sin(t) cos(t)

x5 + sin2(t)

−x8 + sin(t) cos(t)

x7 + sin2(t)

−x9 + sin(t) cos(t)

x10 + cos2(t)



, F1(t, x) =



2x1x2 + 2x1 − 2x2

−2x1x2 + 2x1 + 2x2

−x3x4 − x3 + x4

x3x4 − x3 − x4
x25 − x3 − x4 − 3x5

x6x7 + x6 − x7
−x6x7 + x6 + x7

−x28 + x6 + x7 + 3x8

x9 + 4

x10 + 1



.

Conditions (5) can be readily verified
2π∫
0

(
sin(s) cos2(s) + sin3(s)

)
ds = 0,

2π∫
0

(
− sin2(s) cos(s) + cos(s) sin2(s)

)
ds = 0,

2π∫
0

(
sin(s) cos2(s) + sin(s) cos2(s)

)
ds = 0,

2π∫
0

(
− sin2(s) cos(s) + cos3(s)

)
ds = 0,

2π∫
0

(
sin(s) cos2(s) + sin3(s)

)
ds = 0,

2π∫
0

(
− sin2(s) cos(s) + cos(s) sin2(s)

)
ds = 0,

2π∫
0

(
sin(s) cos2(s) + sin3(s)

)
ds = 0,

2π∫
0

(
− sin2(s) cos(s) + cos(s) sin2(s)

)
ds = 0,

2π∫
0

(
sin(s) cos2(s) + sin(s) cos2(s)

)
ds = 0,

2π∫
0

(
− sin2(s) cos(s) + cos3(s)

)
ds = 0 .



Asia Pac. J. Math. 2025 12:75 11 of 13

Computing the functions F1,F2,F3,F4,F5,F6,F7,F8,F9 and F10 we find

F1 (x1,0, x2,0, x3,0, x4,0, x5,0, x6,0, x7,0, x8,0, x9,0, x10,0) =
5

2
x1,0 −

5

2
x2,0 +

5

2
,

F2 (x1,0, x2,0, x3,0, x4,0, x5,0, x6,0, x7,0, x8,0, x9,0, x10,0) =
5

2
x1,0 +

5

2
x2,0 +

5

2
,

F3 (x1,0, x2,0, x3,0, x4,0, x5,0, x6,0, x7,0, x8,0, x9,0, x10,0) = −7

6
x3,0 +

4

3
x4,0 −

7

9
,

F4 (x1,0, x2,0, x3,0, x4,0, x5,0, x6,0, x7,0, x8,0, x9,0, x10,0) = −7

6
x3,0 −

4

3
x4,0 −

7

9
,

F5 (x1,0, x2,0, x3,0, x4,0, x5,0, x6,0, x7,0, x8,0, x9,0, x10,0) = −1

2
x3,0 −

1

2
x4,0 −

15

8
x5,0

− 1

8
x7,0 +

1

2
x8,0 −

7

3
,

F6 (x1,0, x2,0, x3,0, x4,0, x5,0, x6,0, x7,0, x8,0, x9,0, x10,0) =
1

2
x3,0 −

1

2
x4,0 −

13

8
x6,0

− 1

2
x7,0 +

1

8
x8,0 −

1

6
,

F7 (x1,0, x2,0, x3,0, x4,0, x5,0, x6,0, x7,0, x8,0, x9,0, x10,0) =
1

2
x5,0 +

7

8
x6,0 + 2x7,0

− 3

8
x8,0 +

5

2
,

F8 (x1,0, x2,0, x3,0, x4,0, x5,0, x6,0, x7,0, x8,0, x9,0, x10,0) = −5

8
x5,0 +

1

2
x6,0 +

5

8
x7,0 + 2x8,0,

F9 (x1,0, x2,0, x3,0, x4,0, x5,0, x6,0, x7,0, x8,0, x9,0, x10,0) = x9,0 +
2

3
,

F10 (x1,0, x2,0, x3,0, x4,0, x5,0, x6,0, x7,0, x8,0, x9,0, x10,0) = x10,0.

The stability of the periodic solutions corresponding to a simple zero of Fi, i = 1, 10 is determined by the

eigenvalues of the Jacobian matrix.

The system F1 = F2 = F3 = F4 = F5 = F6 = F7 = F8 = F9 = F10 = 0, has one solution given by

(−1, 0,−2
3 , 0,−1, 0,−1, 0,−2

3 , 0)t, the eigenvalues of the Jacobian matrix are



2.5− 2.5i

2.5 + 2.5i

−1.25− 1.244432043i

−1.25 + 1.244432043i

1.88782929 + 0.4102156479i

1.88782929− 0.4102156479i

−1.512758664

−1.762899916

1

1



,
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which have six positive real parts. Since

det

(
∂ (F1,F2,F3,F4,F5,F6,F7,F8,F9,F10)

∂ (x1,0, x2,0, x3,0, x4,0, x5,0, x6,0, x7,0, x8,0, x9,0, x10,0)

) ∣∣∣(−1,0,− 2
3
,0,−1,0,−1,0,− 2

3
,0) =

111475

288
,

then the differential system (4) with n = 10 has an unstable periodic solution

(x1(t, ε), x2(t, ε), x3(t, ε), x4(t, ε), x5(t, ε), x6(t, ε), x7(t, ε), x8(t, ε), x9(t, ε), x10(t, ε))
t ,

tending to the unstable periodic solution

x1 (t) = −1
2 (cos(2t) + 1) ,

x2 (t) = −1
2 sin(2t),

x3 (t) = −1
6 cos(2t)− 1

2 ,

x4 (t) = 1
6 sin(2t),

x5 (t) = −1
2(cos(2t) + 1),

x6 (t) = −1
2 sin(2t),

x7 (t) = −1
2(cos(2t) + 1),

x8 (t) = −1
2 sin(2t),

x9 (t) = −1
6 cos(2t)− 1

2 ,

x10 (t) = 1
6 sin(2t),

of the differential system

ẋ1 = −x2 + sin(t) cos(t),

ẋ2 = x1 + sin2( t),

ẋ3 = −x4 + sin(t) cos(t),

ẋ4 = x3 + cos2(t),

ẋ5 = −x6 + sin(t) cos(t),

ẋ6 = x5 + sin2(t),

ẋ7 = −x8 + sin(t) cos(t),

ẋ8 = x7 + sin2(t),

ẋ9 = −x9 + sin(t) cos(t),

ẋ10 = x10 + cos2(t),

when ε→ 0.

Conclusion

In this work, we analyzed periodic solutions of non-autonomous polynomial differential system of
even dimension n by applying the another first-order averaging theory, and we established sufficient
criteria for the existence of periodic solutions of system (4).
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