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Abstract. In the current study, we presented new continuous statistical distribution, a Neutrosophic
Inverse Gamma Distribution. This distribution represents a combination of a classical inverse gamma
distribution and the neutrosophic analysis, with the aim of studying the effect of the uncertainty part in the
data in statistical analyses. The first part of the study included the most important theoretical properties of
the new distribution, namely the first and second moments and variance, as well as the formula for the
estimators of the Neutrosophic Inverse Gamma Distribution parameters using the maximum likelihood
method. On the practical side, we used theR program version (2.3.4) to generate data distributed according
to the inverse gamma distribution with size (n = 100) based on the simulation method. The parameters
were estimated in two cases, the first is for the classic inverse gamma distribution (without adding the
uncertainty part), The second case is estimating the parameters of the neutrosophic distribution (by adding
the uncertainty part). It turns out that the inverse neutrosophic gamma distribution is more flexible and
realistic than the classical model for data that are characterized by ambiguity or difficulty in measurement.
2020 Mathematics Subject Classification. 35Q35.
Key words and phrases. neutrosophic; inverse gamma distribution; a simulation method.

1. Introduction

Real-world data is fraught with ambiguity, unknown conditions, and challenges, and it is not possible
to estimate a specific value for statistical features in this context, which lacks precision. In these cases,
traditional probabilities fail to provide accurate results. Recent progress has been made in modeling
these imprecise situations, using fuzzy logic and neutrosophic [1–6].

The inverse gamma distribution is a two-parameter family of continuous probability distributions
defined on the positive real numbers [7].

In 1995, Florentine Smarandache defined the concept of neutrosophic logic using three symbols: T, I,
and F. T represents a true value, I represents the indeterminate or uncertain value, and F represents

DOI: 10.28924/APJM/12-77

©2025 Asia Pacific Journal of Mathematics

1

https://doi.org/10.28924/APJM/12-77


Asia Pac. J. Math. 2025 12:77 2 of 11

a false value.A field of philosophy that explores the origin, nature, and scope of neutrality. Huang
emphasized that this concept alters the mechanistic understanding of human culture, implying that
something cannot exist or not exist simultaneously due to certain uncertainties [8–10].

In 1998, the field of neutrosophic Statistics was established by by Florentine Smarandache, who fur-
ther sophisticated and validated its theories in 2014. Neutrosophic statistics serves as a generalization
of interval statistics, as it is based on the examination of intervals. Neutrosophic statistics pertains to
a dataset in which some or all elements possess a degree of uncertainty. Ambiguous, together with
the techniques employed to evaluate this data. Classical statistics is distinguished from neutrosophic
statistics by its reliance on deterministic data, whereas neutrosophic statistics incorporates both de-
terministic and uncertain data. When the value of the uncertain data is zero, neutrosophic statistics
corresponds precisely to classical statistics. Consequently, neutrosophic statistics is regarded as more
adaptable than classical statistics. Given the prevalence of uncertain data over deterministic data in our
environment, there is a greater necessity for neutrosophic statistical techniques compared to classical
methods. The unspecified parameters of the classical inverse gamma distribution in neutrosophic
logic allow for the management of all potential circumstances encountered during the analysis of real
data [11–17].

The gamma distribution is a probability model used to represent data whose values are always
positive, while the inverse gamma distribution remains under research and is limited in use in practical
applications [18–21].

2. Inverse Gamma Distribution

The inverse_gammadistribution is a significant continuous statistical distribution in statisticalmodels.
The probability density function for this distribution is articulated as follows:

g(x, γ, ϑ) =
ϑγ

Γ(γ)
x−(γ+1)exp(− ϑ/x) (1)

Such that:
γ: The shape parameter.
ϑ: The scale parameter.

Γ(γ) =

∫ ∞
0

xγ−1 exp (−x) dx = (γ˘1)!, γ ∈ z+.

The inverse_gamma distribution is an asymmetric distribution, which makes it suitable for modeling
data with high variance or data containing outliers. It is widely used in Bayesian statistics as a prior dis-
tribution for the coefficients of regression models. The most important properties of the inverse_gamma
distribution are the mathematical expectation, variance, and moment function, as we notice in Eqs. (2),
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(3), and (4).

E(X) =
ϑ

γ − 1
, γ > 1. (2)

V ar(X) =
ϑ2

(γ − 2)2 (γ − 1)
, γ > 2. (3)

E(Xn) =

∫ ∞
−∞

xn g (x) dx

=

∫ ∞
0

xn
ϑγ

Γ(γ)
x−(γ+1) exp(− ϑ/x)dx

=
ϑγ

Γ(γ)

∫ ∞
0

xn−γ−1 exp(− ϑ/x)dx

=
ϑγ

Γ(γ)

∫ ∞
0

x−(γ−n+1) exp(− ϑ/x)dx

=
ϑγ

Γ(γ)
Γ(γ − n)

=
ϑγ

(γ − 1)!
(γ − n+ 1)! (4)

3. Mathematical Foundations for Neutrosophic Modeling

This section presents the fundamental notion of the neutrosophic set, which pertains to statistical
models that extend fuzzy set data models. Classical statistics typically involves distinct or precise
values during data analysis. In neutrosophic theory, data can assume any form, as uncertainty might
emerge in diverse forms contingent upon the nature of the problem being addressed. The elements of
the Neutrosophic group are known by three independent compounds x(T, I, F ) where:
T : is the belonging (truth).
I : is the indeterminacy (vagueness).
F : is the non-belonging (falsehood).

The components (T, I, F ) represent numbers or intervals. In the Neutrosophic model, these compo-
nents are classified into three states as shown below:

S =


T + I + F = 1, Steady situation

T + I + F < 1, Incomplete situation

T + I + F > 1, Paradoxical situation

Because of the importance of neutrosophic analysis in determining the effect of the ambiguity part
of any data in statistical analyses and making appropriate decisions, the neutrosophic formula was
defined on many known statistical distributions as in the following examples:
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3.1. A Neutrosophic Normal Distribution. The density function of Neutrosophic (normal) distribu-
tion probability, is as follows [11]:

fη (t) =
1

ση
√

2π
e
− (t−µη)2

2σ2η ; t, µη, ση > 0. (5)

3.2. A Neutrosophic Exponential Distribution. The density function of Neutrosophic (Exponential)
distribution probability, is as follows [22]:

fη (t) = ληe
−tλη ; t, λη > 0 (6)

3.3. Neutrosophic GammaDistribution. The density function of Neutrosophic (Gamma) distribution
probability, is as follows [23]:

fη (t) =
vη
uη

Γ(uη)
tuη−1e−tvη ; t, uη, vη > 0 (7)

3.4. Neutrosophic Beta Distribution. The density function of Neutrosophic (Beta) distribution proba-
bility, is as follows [24]:

fη (t) =
tuη−1(1− t)vη−1

β(uη, vη)
; t > 0 (8)

where uη, vη are the neutrosophic shape parameters.

3.5. Neutrosophic Weibull Distribution. The density function of Neutrosophic (Weibull) distribution
probability, is as follows [25]:

fη (t) =
vη
uη
tvη−1e

−
(
t
uη

)vη
; t, uη, vη > 0 (9)

In our current study, the Neutrosophic formula is defined as in the equation below:

t = u+ ε (10)

Where is the specific value and ε is the Unspecified value which is a real number.

αη ∈ [αL, αU ].

4. Neutrosophic inverse_gamma Distribution(NIGD)

The neutrosophic inverse_gamma distribution represents an extension of the classical model by
incorporating elements of uncertainty and ambiguity into the distribution parameters and data. In
this framework, shape and scale parameters, as well as observed data, are expressed as neutrosophic
numbers to facilitate modeling of incomplete or inconsistent data. This model is suitable for real-world
applications such as survival analysis, risk modeling, and Bayesian inference, where data are often
imprecise or partial.
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The density function of random variable t for the neutrosophic inverse_gamma distribution with
two parameters uη, vη > 0 as follows:

fη (t) =
vη
uη

Γ(uη)t1+uηe
vη
t

, t > 0 (11)

where Γ(·) is the neutrosophic gamma function. In the following theorems, we present the most
important properties of the neutrosophic inverse_gamma distribution.

Theorem 4.1. The first moment of NIGD is
vη

uη − 1

Proof.

Eη (t) =

∫ ∞
0

tfη (t) dt =

∫ ∞
0

t
vη
uη

Γ (uη) t1+uη
e−

vη
t dt (12)

=

∫ ∞
0

vη
uη

Γ (uη) tuη
e−

vη
t dt

=

∫ ∞
0

1

Γ(uη)

(vη
t

)uη
e−

vη
t dt (13)

put x =
vη
t in result (3), we have

∴ Eη (t) =
vη

uη − 1

�

Theorem 4.2. The second moment of NIGD is

v2
η

(uη − 1) (uη − 2)
.

Proof.

Eη
(
t2
)

=

∫ ∞
0

t2fη (t) dt =

∫ ∞
0

t2
vη
uη

Γ(uη)t1+uη
e−

vη
t dt (14)

=

∫ ∞
0

vη
uη

Γ(uη)t−1+uη
e−

vη
t dt

= vη

∫ ∞
0

1

Γ(uη)

(vη
t

)uη−1
e−

vη
t dt (15)

put x =
vη
t in result (5), we have

∴ Eη
(
t2
)

=
v2
η

(uη − 1) (uη − 2)
.

�

Theorem 4.3. The variance of NIGD is
v2
η

(uη − 1)2 (uη − 2)
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Proof.

V arη(t) = Eη
(
t2
)
− Eη (t)2 (16)

=
v2
η

(uη − 1) (uη − 2)
− vη

2

(uη − 1)2

=
vη

2

uη − 1

[
uη − 1− uη + 2

(uη − 1) (uη − 2)

]

∴ V arη(t) =
v2
η

(uη − 1)2 (uη − 2)

R-th order statistics

fi,j (t) = Ci,j [F (t)]i−1 [1− F (t)]j−i fη (t)

fi,j (t) = Ci,j [F (t;u, v)]i−1 [1− F (t;u, v)]j−i fη (t;u, v)

∴ f i,j (t) = Ci,j

[
Γ(uη,

vη
t )

Γ(uη)

]i−1 [
1−

Γ(uη,
vη
t )

Γ(uη)

]j−i
vη
uη

Γ (uη) t1+uη
e−

vη
t (17)

Smallest order statistics

f1,j (t) = jη

[
1−

Γ(uη,
vη
t )

Γ(uη)

]i−1
vη
uη

Γ (uη) t1+uη
e−

vη
t (18)

Largest order statistics

fj,j (t) = jη

[
Γ(uη,

vη
t )

Γ(uη)

]i−1
vη
uη

Γ (uη) t1+uη
e−

vη
t (19)

Reliability function

Υη (t) = 1− fη (t) = 1− vη
uη

Γ (uη) t1+uη
e−

vη
t

∴ Υη (t) =
Γ (uη) t

1+uη − vηuηe−
vη
t

Γ (uη) t1+uη
(20)

Hazard function

ζη (t) =
fη (t)

Υη (t)
=

vη
uη

Γ(uη)t1+uη
e−

vη
t

Γ(uη)t1+uη−vηuη e−
vη
t

Γ(uη) t1+uη

∴ ζη (t) =
vη
uη t−1−uηe−

vη
t

Γ (uη) − vηuη t−1−uηe−
vη
t

(21)

�
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5. Estimation Parameters of Neutrosophic inverse_gamma Distribution

The maximum likelihoodmethod (ML) is considered one of the most important statistical estimation
methods because it gives consistent and low-biased estimates. We adopted this method to find the
estimates of the parameters for the Neutrosophic inverse_gamma Distribution.

Let tη1, tη2, . . . , tηm Be a random sample from Neutrosophic inverse_gamma Distribution, then the
logarithm of the likelihood function in result (1), becomes

L (u, v) = −mLnΓ (uη) +muηLn (vη)− (uη + 1)Ln

(
m∏
i=1

ti

)
− vη

m∑
i=1

t−1
i (22)

∂L

∂vη
=
muη
vη
−

m∑
i=1

t−1
i ,

∂L

∂vη
= 0

∴ vη =
muη∑m
i=1 t

−1
i

(23)

∂L

∂uη
=
−mΓ′(uη)

Γ (uη)
+mLn (vη)− Ln

(
m∏
i=1

ti

)
,
∂L

∂uη
= 0

Γ′(uη)

Γ (uη)
− Ln (vη) +

1

n
Ln

(
m∏
i=1

ti

)
= 0

Put ψ (uη) =
Γ′(uη)
Γ(uη) , we have

ψ (uη)− Ln (vη) +
1

n
Ln

(
m∏
i=1

ti

)
= 0

Let
Z(uη) = ψ (uη)− Ln (vη) +

1

n
Ln

(
m∏
i=1

ti

)
, (24)

substitute result (18) in result (19), we have that

Z(uη) = ψ (uη)− Ln
(

muη∑m
i=1 t

−1
i

)
+

1

n
Ln

(
m∏
i=1

ti

)

Z(uη) = ψ (uη)− Ln (m)− Ln(uη)− Ln
(

1∑m
i=1 t

−1
i

)
+

1

n
Ln

(
m∏
i=1

ti

)
By using Newton – Raphson method to find uη, repeating until convergence

uηm+1 = uηm −
Z(uη)

Z′(uη)

Using method of moment estimate for uη as initial guess, we have that

uη = ψ−1

(
loguη0 −

m∑
i=1

t−1
i − log t

)
(25)

where ψ is the digamma function. Substituted the value of uη in result (18) to get vη.
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6. The Application

In this aspect, we generated data distributed in the inverse_gamma distribution based on the simula-
tion method. 100 values were generated when γ = 3 and ϑ = 10, as shown in Table 1 in an appendix
by using the R programming language, version (2.3.4).

Table 1. Classical data
u u u u u u u u u u

2.951 3.9063 3.5249 10.6111 3.3301 4.1107 3.3629 18.371 3.1508 5.909
3.3346 2.1251 5.5969 7.0643 3.0685 3.3835 10.6088 10.0328 3.734 2.1115
3.7455 5.9002 3.4582 3.9855 3.8692 8.9565 4.5828 9.7629 5.888 18.4424
6.291 4.1164 6.2276 3.1783 2.3976 15.3642 4.4493 4.9516 2.0136 3.6919
2.3518 3.062 2.0158 5.1327 1.4723 9.138 2.0944 4.8657 2.5153 1.6815
2.4799 2.9391 5.4922 6.9804 5.6057 3.505 9.6195 4.3486 4.1447 3.047
3.1191 4.6529 1.8147 3.2764 7.8212 3.1885 3.1457 2.5203 5.53 11.1129
3.2611 5.9771 4.6702 2.2051 6.6472 5.6534 7.7228 2.6973 4.6076 19.4246
2.8313 3.0059 3.5729 3.0908 2.7972 1.4175 4.2196 2.8964 8.7649 2.079
1.5787 4.7676 1.6384 4.9721 4.0157 11.9714 5.3665 4.1613 4.2252 3.2245

To verify the data type, a Q-Q plot was used, as shown in Figure 1 below. It was found that the
data approximated a straight line (which indicates the data conformity to the theoretical distribution).
There was no deviation from the line, indicating that the data conformed to the distribution.

Figure 1. Q-Q plot of the data

The Kolmogorov-Smirnov test was also applied. The statistic value = 0.11972 showed that the
p-value = 0.1138, which is greater than 0.05. It can be said that the data is distributed according to the
inverse_gamma distribution.
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After adding the uncertainty component to the generated data in Table 2 in an appendix, we re-
estimated it, as the data became complete, as shown in Table 3:

Table 2. Neutrosophic data
u+ ε u+ ε u+ ε u+ ε u+ ε u+ ε u+ ε u+ ε u+ ε u+ ε

3.0996 4.1031 3.7024 10.6111 3.4978 4.3178 3.3629 19.2964 3.3095 6.2066
3.5026 2.2321 5.8788 7.0643 3.2231 3.5539 10.6088 10.5382 3.9221 2.2179
3.9342 6.1974 3.6324 3.9855 4.0641 9.4076 4.5828 10.2547 6.1846 19.3713
6.2910 4.3237 6.5413 3.1783 2.5184 16.1381 4.4493 5.2010 2.1150 3.8779
2.3518 3.2162 2.1173 5.1327 1.5465 9.5983 2.0944 4.8657 2.6420 1.7662
2.4799 3.0871 5.7688 6.9804 5.8881 3.6815 9.6195 4.3486 4.3535 3.2005
3.1191 4.8873 1.9061 3.2764 8.2152 3.3491 3.1457 2.5203 5.8085 11.6727
3.4254 6.2782 4.9054 2.2051 6.6472 5.9382 8.1118 2.6973 4.8397 20.4030
2.9739 3.1573 3.7529 3.0908 2.7972 1.4889 4.4321 2.8964 9.2064 2.1837
1.6582 5.0077 1.7209 4.9721 4.0157 12.5744 5.6368 4.1613 4.4380 3.3869

Table 3. Parameter estimation by using MLE
Case Distribution Parameters AIC

1 Inverse Gamma
γ̂ 462.5238

462.5238
ϑ̂ 13.80175

2 Neutrosophic inverse_gamma
ûη 485.42

485.42
v̂η 15.47848

In the first case, we estimated the parameters (γ̂, ϑ̂ ) Without the uncertainty part (classical data).
In the second case, we estimated the parameters (ûη, v̂η) With the uncertainty part, i.e., the presence of
the neutrosophic condition in the data. We found differences in the estimated values in both cases. The
estimated parameters (ûη, v̂η) for the neutrosophic data were larger than the parameters estimated in
the data after deducting the uncertainty part. Hence, we conclude, according to neutrosophic logic,
that neutrosophic statistics yield more accurate results than classical statistics, rather than ignoring
the uncertainty. Therefore, it can be said that the inverse_gamma distribution for neutrosophic data is
more accurate than the classical inverse_gamma distribution when the data contains uncertainty.

7. Conclusions

In reality, data encompasses ambiguity and indeterminacy. We postulated that certain data may
follow an inverse gamma distribution, and we extended the traditional inverse gamma distribution to
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the neutrosophic inverse gamma distribution. We established multiple characteristics of the neutro-
sophic inverse_gamma distribution: expectation, variance, R-th moment, survival function, hazard rate
function, and prevalent forms of classification statistics. We applied the neutrosophic inverse_gamma
distribution to a dataset generated using the R programming language, version (2.3.4), and found
that in real-world data characterized by uncertainty and inaccuracy, Parameter estimation using the
neutrino inverse_gamma distribution is more accurate and realistic than parameter estimation using
the classical inverse_gamma distribution for uncertain and indeterminate data.
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