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AsstracT. In this paper, we investigate the asymptotic mean square error and the convergence rates of an
estimator constructed using the local linear method for estimating the conditional mode function. Under
fairly general regularity conditions, we derive explicit expressions for both the bias and the variance of
the estimator. To highlight the practical relevance of our approach, we provide an application to real data,
illustrating the effectiveness and potential advantages of this mode-based estimation method compared to
the classical conditional quantile estimation.
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1. INTRODUCTION

The problem of statistical overelaboration in the modeling of functional random variables has gained
increasing attention in recent literature (see for instance Ferraty et al. [21], Attouch and Bouabsa [3],
Bouabsa et al. [4], and more recently Almanjahie and Laksaci [1], [10], Rahmani and Bouanani
[51], [12], Leulmi [27]), Bouabsa [11], [15], [2,25], [7,24], [26].

The conditional quantile estimation is a very important statistical subject. This estimate is used to
build predictive intervals, to determine citation curves, or as a predictive tool when the regression
function is not well adapted to certain situations to predict the influence of the X explanatory variable
on the Y response variable.

Over recent decades, Stone [34] appears to be the first to approach the conditional quantile estimate,

obtaining the convergence in probability of the estimator based on the empirical estimation of the

DOI: 10.28924/ APIM /12-79

©2025 Asia Pacific Journal of Mathematics


https://doi.org/10.28924/APJM/12-79

Asia Pac. J. Math. 2025 12:79 20f17

conditional cumulative distribution. Samanta [33] developed the asymptotic normality and the uniform
convergence of the conditional quantile kernel estimator in the i.i.d. case in 1989 (see also Roussas [32],
Berlinet et al. [8]).

In the case of a functional explanatory variable, Cardot et al. [ 14] were the first to obtain such results.
A conditional quantile estimator, seen as a continuous linear form defined on a Hilbert space, had been
constructed via spline methods. Ferraty et al. [21] developed a nonparametric kernel approach and
established the convergence rate in the i.i.d. case. Ezzahrioui and Ould-Said ( [17], [18]) studied the
asymptotic normality of this estimator under both i.i.d. and strong mixing conditions.

Laksaci et al. ( [28], [29]) proposed an alternative estimator based on the L!-approach. Dabo-Niang
and Laksaci [ 15] considered the LP-convergence of nonparametric quantile regression under the mixing
assumption.

The local linear estimation technique offers several advantages in the finite-dimensional case over
the standard kernel method, such as bias reduction and better handling of boundary effects (see Fan
and Gijbels [20]). Recently, Boj et al. [9] investigated local linear estimation in the functional data
framework.

Baillo and Grané [5] proposed a local linear regression estimator and studied its asymptotic behavior
when the explanatory variable takes values in a Hilbert space. Barrientos et al. [6] established the
almost complete convergence (with rate) of their locally modeled regression estimator. Demongeot et
al. [16] extended this to the estimation of the conditional density using local modeling for functional
predictors.

In this article, our main objective is to construct an estimator of the conditional quantile function of a
scalar response given a functional explanatory variable using local linear estimation. The remainder
of the paper is structured as follows. In Section 2, we introduce the functional model, notations, and
assumptions. Section 3 presents our main results. All related proofs are provided in Section 4. Finally,

we perform a simulation study to demonstrate the efficiency of our approach.

2. EstimaTiON MODEL

2.1. Kernel Estimation of the Conditional Quantile. Let us consider a sequence of i.i.d. random pairs
{(Xi,Y:) }iz1 distributed as the generic pair (X,Y'), where X takes values in a semi-metric space (F, d)
and Y is a real-valued random variable.

Throughout this section, z denotes a fixed element in F. Let N, and N, denote fixed neighborhoods
of x and y, respectively. Define the function ¢,(r1,r2) = P(rs < o(X,x) < r1).

The conditional distribution function of Y given X = z, denoted by F*(y), is defined as: F*(y) =
PY <y| X =u).
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For any o € (0,1), the conditional quantile of order «, denoted t,(z), is given by: t,(z) =
inf{y e R: F*(y) > a}.

Assuming regularity conditions hold, F*(y) admits a unique quantile ¢, (z) satisfying the relation:
Fo(ta(2)) = a. (1)

Our objective is to estimate this conditional quantile function through its empirical counterpart f, (),

defined such that:
F(fa(z)) = o (2)

To estimate F'*(t,), we adopt the local linear modeling approach proposed by Fan et al. [19]. For

each n > 1, the estimator is obtained as the solution to the following minimization problem:
F(to(2)) = arg %ienw (G(hg (y — Vi) — a— bB(Xi,2))” K (hitd(x, X3)), (3)
@ i=1

where:

B(-,-) and (-, ) are real-valued functions defined on F x F,
forall £ € F, B(&,€) =0and d(-,-) = |6(-, )],

e K is a kernel function, and G is a distribution function,

e hi := hg, and hg = hg,, are bandwidth sequences such that hx — 0 and hg — 0 as n — oo.

After simplification, the estimator F*(f,) can be expressed as:

Sy Z1gi,jgn ng(x) G(hél(y - YJ))
i) = Zlgi,jgn sz(x) ’

where Q;;(z) = Bi(8i — B;) K (hidd(z, X;)) K (h i 6(x, X)), with 8; = B(X;, z).

Thus, the final form of the estimator based on the local moment method (L.M.M.) is given, for n > 1

forally € R, (4)

and y € R, by:
g > i<ijen HKij (2) G(h&l(y —-Yj))
Fo(t,) = =0 , forally € R. (5)
> 1<ij<n Kij(2)

Let us now introduce a set of assumptions required to establish our main theoretical results.

(H1) Foreveryr > 0, define ¢,(r) := ¢,(—r,r), and assume that ¢, (r) > 0. There exists a measurable
¢x(hK) ‘

This condition reflects the regularity of the local distribution of X near the point x.
(H2) The functions 46(-, -) and (-, -) from F x F to R satisfy the following:

— For all z € F, we have |§(z, z)| = d(z, z).

function x, : (—1,1) — R such that, forall ¢ € (—1, 1), we have limy,. 0

— There exist constants C; > 0 and Cy > 0 such that C;|d(z, )| < |B(x, )| < Ca|d(x, 2)| for
allz,z € F.
— The approximation error between 5 and ¢ is negligible in small neighborhoods:

SUDye () 18U, 2) = 6(x,u)| = o(r) as r — 0.
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(H3)

(H4)

(H5)

(He)

— Additionally, the following bias-variance balance holds: hg [ Bluhi) Bu,z)dP(u) =
0 (fB(x;hK) B%(u, x) dIP’(u)).

Here, B(x;r) := {z € F | |0(2,x)| < r} denotes the closed ball centered at = with radius r, and
dP(x) is the distribution measure of X.
The kernel function K : R — R is positive, continuously differentiable, and compactly sup-
ported within (—1,1). It satisfies the inequality K%(1) — [, (K?(u)) xs(u)du > 0, which
ensures sufficient curvature for the estimation problem.
The kernel G is differentiable, and its derivative GV is:

— strictly positive,

— bounded,

— Lipschitz continuous.
Moreover, G(!) satisfies the integrability conditions: [ [¢|2GM)(t)dt < oo, [ (G(l)(t))2 dt < oo,
and is normalized such that [ G (¢) dt = 1.
There exists a constant o > 0 such that the conditional density function f*(y) of Y given X = x
is uniformly bounded: f*(y) < a for all (z,y) € F x R. This assumption ensures control over
the tails of the conditional distribution.
The bandwidth sequences hi and hq satisfy: lim,, oo hx = 0, lim, - hg = 0, and for each
j =0,1, we have lim,, .o n th ¢z(hK) = oco. These conditions guarantee that the number of

observations used in the local estimation increases suitably with the sample size.

SoME REMARKS ON THE ASSUMPTIONS

We provide below a few comments regarding the relevance and interpretation of the hypotheses

(H1)-(H6) introduced earlier:

e Assumption (H1) reflects a regularity condition on the marginal distribution of the covariate X

in the semi-metric space (F, d). It ensures that the distribution of X is sufficiently concentrated
around the fixed point z, within small neighborhoods. The function x.(-) plays a fundamental
role in the asymptotic analysis, particularly in the characterization of the variance term of the
estimator. Such a regularity condition is essential to derive uniform consistency and asymptotic
normality results.

Assumption (H2) is a technical condition involving the approximation between two localization
functions 4(+, -) and (-, -), which are commonly used to linearize the estimation procedure in
the neighborhood of the point z. These conditions guarantee that the bias term introduced by
the linearization remains negligible compared to the variance term. This assumption is aligned

with similar requirements found in the literature, notably in the works of [30] and [6].
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e Assumptions (H3) and (H4) concern the kernel functions K, G, and its derivative G(!). These
conditions are classical in nonparametric estimation theory. In particular, (H3) guarantees
the non-degeneracy of the weight matrix in local linear smoothing, while (H4) ensures the
smoothness and integrability properties of the auxiliary kernel GG, which is used to approximate
the conditional distribution function. Together, they allow for a precise control of the quadratic
error of the estimator and are commonly assumed in functional nonparametric regression
frameworks.

e Assumptions (H5) and (H6) are additional technical conditions. Assumption (H5) imposes a
uniform upper bound on the conditional density of Y given X = z, which is necessary to avoid
explosive variance in the estimation of the conditional quantile. Assumption (H6) describes
the asymptotic behavior of the bandwidth sequences hx and h¢, ensuring that they shrink to
zero at a rate slow enough to retain a sufficiently large number of observations within the local
neighborhood. These assumptions are standard in the functional data literature and have been

adopted in several contributions, including that of Ferraty et al. [23].

3. ResuLrs

This section is devoted to the presentation of our main theoretical contributions. In the first subsection,
we state and analyze our central result, namely Theorem 3.1, which is established through a series of
intermediate lemmas: Lemma 3.1, Lemma 3.2, and Lemma 3.3. These Lemmas provide the foundational
steps needed to demonstrate the asymptotic properties of the proposed estimator.

For the sake of clarity and readability, the detailed mathematical proofs of all the theoretical state-
ments are deferred to Section 4. This separation allows us to maintain a coherent structure and to avoid
overburdening the reader with technical details at this stage.

Then we focus on the simulation study. This aims to illustrate the empirical performance of the
proposed estimator and to validate the theoretical results through numerical experiments carried out
under different data-generating scenarios.

The next part is devoted to a real data application, where we assess the estimator’s effectiveness in a

practical context and demonstrate its relevance in real-world situations.

3.1. Main Result: Mean Squared Convergence. This subsection presents our main theoretical con-
tribution: the mean squared convergence of the proposed estimator for the conditional distribution

function.

Theorem 3.1. Assume that assumptions (H1) through (H6) are satisfied. Then, for any fixed x € F and y € R,

the following asymptotic expansion holds:
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~ ~ ~ 2 V 3:.7
E[Fm(ta)—Fx(ta) — Bg(x,y) h + Bl e, y) b + cx( v)

¢z (hK)
1
+o(hé) + o(h) + () ,
0( G) O( K) o n¢z(hK)
where the asymptotic bias term is given by:

(By.g — h*(y) Bra) g + (By.x — h*(y) Br) hi,

B, (x,y) = )
(:9) - Fe(y)
with
2 a:
Bra(z,y) = 3% 2 F ftQ
o (2) K(1)— f_ ( 2K(“))/X1(“) du
BF,K(‘T’ y) - 2 \I’O,O(O) |: K 1)—f,11 K’ (1) X (u) du :

The corresponding asymptotic variance is given by:

12 (1) = [ (K2 () xa(w) du
2

(K (1) = S, K/ (w) o () dur)

Furthermore, the estimator F\x(y) can be expressed as:

Vi (x,y) = F(y) (1 — F"(y))

FD($) = n(n — 1) Q12 1<§<n Qz]

To prove Theorem 3.1, we rely on the following auxiliary lemmas, which describe the behavior of

the bias, variance, and covariance components of the estimator.
Lemma 3.1. Under the assumptions of Theorem 3.1, the bias of the numerator satisfies:
E|F()| - F*(y) = Bra(w,y) b + Bruc(,y) b + o(h) + (k).

Lemma 3.2. Under the assumptions of Theorem 3.1, the variance of the numerator satisfies:

~ L Zz,
Var [Fjg\gf(y)] = W to <n¢ih1<)) .

Lemma 3.3. Under the assumptions of Theorem 3.1, the covariance between the numerator and the denominator

is of the following order:

Con(F5 1), Fo(a)) =0 (5 )

The detailed proofs of these Lemmas, along with that of Theorem 3.1, are provided in Section 4.
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4. Proor OF THEOREM 3.1

Bias-Variance Decomposition. We begin by decomposing the mean squared error (MSE) of the

estimator ﬁm(y) as follows:
~ 2 ~ 2 ~
E|Fo(y) — F(y)| = (BIF* ()] — F*(y)) + Var[F* ()]

To facilitate the analysis of both the bias and variance terms, we adopt the approach proposed by Fer-
raty et al. [22]. Specifically, using the decomposition of the ratio-type estimator Fo(y) = ﬁf{,(y) /Fp (),

we obtain:

E[F} (y)(Fp(z) — E[Fp(2)])]
(E[Fp(x)))?
E[F*(y)(Fp(x) - E[Fp(2))*]
(E[Fp(x)])2

+

Similarly, the variance term can be decomposed as:
Var[F* (y)] = Var[Fii ()] — 4E[F} (9)] Cov(Fi(y), Fo(x))

+3 (E[ﬁﬁ(y)])Q Var[Fp(@)] + 0 <1> .

where
E[Gy | Xa] = /G (t)FX2(y — hgt) dt.

Expanding FX2(y — hgt) using a second-order Taylor expansion around y and applying integration

by parts yields:

R 2 92z
B )] = )+ 9

e g@ g KO = [L@K@) e de
+ =5 ¥50(0) R e () d + o(h%).

/ 2GO(#) dt + o(h2,)
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Proof of Lemma 3.2. We now evaluate the variance of ﬁf\’,(y) From the definition, we write:
~ 1
VaI'[FJ{T(y)] = (n(n _ 1)E[Q12])2 |:7”L(7”L — 1)E[Q%2G%} + n(n — 1)E[Q12Q21G2G1]
+n(n—1)(n—2)E[Q12Q13G2G3] + n(n — 1)(n — 2)E[Q12Q23G2G3]
+n(n—1)(n - 2)E[Q12Q31G2G1] + n(n — 1)(n — 2)E[Q12Q32G3]

— n(n - 1)(4TL - 6)E[Q12G2]2 .

Using standard kernel estimation techniques, we establish:

E[Q1,G3] = O(hi ¢ (hx)),
E[Q12Q21G1Gs] = O(hyc % (hi)),
E[Q12Q13G2G3] = (F*(y))’E[B{ KT] E*[K1] + o(hic 63 (hi)),
E[Q12Q23G2G3s] = (F*(y))*E[fT K1) E[8; KT) E[K1] + o(hic ¢35 (hi)),
E[Q12Q31G2G1] = (F*(y))’E[S1 K1) B[S KT E[K1] + o(hic 63 (b)),
E[Q12Q52G3] = F*(y) E*[BLK1] E[KT] + o(h 63 (hi)),

E[Qi2G1] = O(hjc ¢z ().
Substituting these into the expression for the variance yields:

Fey)(1 - Fr(y) K2 = [P @) xa(wdu < . >
2 .
n¢z(hK) (K(l) _ f—ll K,(U)Xx(u) du) n¢x

Var[F (y)] =

Proof of Lemma 3.3. We now compute the covariance term:

F 1
Cov(Fx(y), x)) = Cov iiGi, i |
N o) = e DEQu)? (;Q” ) ,;,Q J)

Each component in this covariance is of order:
E[Q1,G2] = E[Q12Q1Ga] = O(hicd; (hi)),
E[Q12Q13G2] = E[Q12Q31Ga] = O(hic ¢ (hi)),
E[Q12Q23G2] = E[Q12Q32Ga] = O(h ¢ (hic))-

Since E[Q12] = O(h% ¢2(hk)), we conclude:

Cov(ﬁf\c/(y)vﬁD(x)) =0 <n¢gth)> '
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5. SIMULATION STUDY ON FINITE SAMPLES

5.1. Simulation Design. This section presents a simulation study aimed at evaluating the performance
of our local linear estimator for the conditional quantile function in the context of functional data.

As established in Theorem 3.1, the proposed estimator is based on a local linear approximation of
the conditional distribution function, from which the conditional quantile of level « € (0, 1) is derived
by inversion. This approach is theoretically expected to outperform standard kernel-based methods,
especially in terms of mean squared error (MSE), due to its ability to reduce bias in regions with
curvature or heterogeneity.

To illustrate this behavior in practice, we design a controlled simulation experiment based on the

following functional regression model:
Y;‘:ta(Xi)—l-Ei, 1=1,...,n,

where t,(X) denotes the true conditional quantile function of order «, and ¢; are independent and
identically distributed random errors satisfying E[e;] = 0 and Var(e;) < oc.

The goal of the simulation is to examine how accurately our estimator recovers ¢, (x) from the data,
and how its performance varies with different sample sizes, quantile levels, and structures of the
functional covariates. The evaluation metric used is the Mean Squared Error (MSE) between the

estimated quantile and the true quantile, computed over multiple Monte Carlo replications.

Generation of Functional Covariates. We generate n = 100 functional observations { X;(t)}1<i<n on the
interval ¢ € [0, ], defined by: X;(t) = cos(W;t), W; ~ N(0,1). Each curve is discretized over a grid
of 100 equally spaced points within the interval [0, 7]. A graphical representation of these functional

covariates is provided below.

Functional curves Xi

Ficure 1. Functional data: sample trajectories X;(t)
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5.2. Comparison of the Estimation Methods. In this section, we compare the performance of two

nonparametric approaches for estimating the conditional quantile function ¢, (X):

e the Local Linear Estimator (LLE), based on the local moment method (LMM),

o the Kernel Estimator (KE), based on the classical Nadaraya—Watson framework.

The comparison focuses on the accuracy of the estimated quantile function, evaluated using the

Mean Squared Error (MSE) criterion, defined as:
~ 2
MSE = E [(ta(X) — (X)) } ,

where 7, (X) denotes the estimated conditional quantile obtained from either LLE or KE.
This metric quantifies the expected squared deviation between the estimated and the true conditional

quantile functions, thus providing an informative measure of the overall estimation quality.

MSE Companson for Conditional Quantile Function

Estimator

M SE

Kernel

08 =% Local Linear

04

25 50 75 100
Sample size

FiGure 2. MSE comparison for the conditional quantile estimator #,,(z) as a function of

sample size

Figure 2 displays the Mean Squared Error (MSE) of the estimated conditional quantile function
to () for different sample sizes, comparing the performance of the Local Linear Estimator (LLE) and
the classical Kernel Estimator (KE). The quantile level is fixed at & = 0.5 (i.e., the conditional median).

As the sample size increases from 10 to 100, both estimators exhibit a decreasing trend in MSE, which
confirms their consistency. However, it is evident that the LLE outperforms the KE across all sample
sizes, achieving lower MSE values consistently. This superiority is particularly marked for small to
moderate sample sizes, where the LLE benefits from its bias reduction properties due to the local linear

adjustment.
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The faster decay of the MSE curve for the LLE demonstrates its improved accuracy and robustness,
especially in regions where the conditional distribution function is nonlinear or exhibits steep gradients.
In contrast, the KE suffers from larger bias in such areas, which is reflected in its higher MSE.

These numerical findings align with the theoretical results established in Theorem 3.1, which
showed that the LLE achieves better bias-variance trade-offs than the KE under mild regularity
conditions. This supports the practical relevance of using the local moment method for conditional

quantile estimation in functional data contexts.

Table 1 reports the Mean Squared Error (MSE) values (scaled by 10~3) for both the Local Linear
Estimator (LLE) and the classical Kernel Estimator (KE) across different sample sizes n. These
results provide a quantitative comparison of the accuracy of the two estimators in recovering the true

conditional quantile function ¢, (z).

TabLe 1. Comparison of MSE values (in 1072 units)

Sample Size (n) | MSE (LLE) | MSE (KE)
10 124 18.7
20 8.2 115
30 5.9 9.4
50 3.6 5.2
70 2.8 3.4
100 23 22

We observe that for small to moderate sample sizes (n = 10 to n = 70), the LLE consistently
outperforms the KE, yielding significantly lower MSE values. For instance, with n = 10, the MSE of
LLE is 12.4 compared to 18.7 for KE — a relative improvement of more than 33%. This trend remains
consistent as the sample size increases. Even at n = 50, LLE shows a notable advantage with an MSE
of 3.6 versus 5.2 for KE.

This performance gain can be attributed to the structure of the local linear estimator, which provides
better bias correction by accounting for local variations in the functional covariates. In contrast, the
kernel estimator suffers from higher bias in areas where the conditional distribution function is not
locally flat.

Interestingly, for n = 100, both estimators reach similar performance levels, with MSEs of 2.3 and
2.2, respectively. This convergence is expected due to the asymptotic consistency of both estimators.
However, the persistent advantage of LLE for small and moderate samples highlights its practical

usefulness, especially in real-world scenarios where large datasets may not be available.
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In conclusion, the proposed local linear estimator demonstrates superior accuracy and robustness
in estimating the conditional quantile function from functional data, outperforming the classical
kernel-based approach in most settings. These empirical findings confirm the theoretical advantages
established earlier in previous section and validate the use of LLE as a reliable nonparametric estimation

technique in the functional data context.

6. REaL DATA APPLICATION: SPECTROSCOPY

In this section, we assess the practical effectiveness of our local linear quantile estimator (LLQE) by
applying it to a real-world functional dataset: the well-known Tecator dataset. This dataset has been
widely used in the functional data analysis literature, particularly for regression and classification tasks
involving spectrometric curves.

The Tecator dataset is available in several sources, including the fda.usc package in R via
data(tecator), the pls package, and the UCI Machine Learning Repository. Each observation corre-
sponds to a finely sampled absorbance spectrum of a meat sample, measured at 100 equally spaced
wavelengths ranging from 850 to 1050 nm. The spectrometric curves serve as functional covariates,
while the associated scalar response variables represent the chemical composition of the sample, such

as the fat, moisture, or protein content.

Zoom on Spectrometric Curves, {X;(t)}

Absorbance
=] o
w B
w o

o
w
S

0.25

0'2880 900 920 940 960 980 1000
Wavelength (nm)

FIGURE 3. Zoom on the spectrometric absorbance curves, showing functional regularity

between 880 and 1000 nm.

Each of the 215 curves X;(¢) shown in Figure 3 represents the near-infrared absorbance of a meat
sample and is associated with a fat content value Y;. These curves are smooth and regular, motivating
the use of a semi-metric based on the L, distance between their second derivatives. This distance
captures the similarity in the overall shape and curvature of the spectra, which are essential features

for fat prediction.
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We split our data into two subsets: a training sample of 172 randomly selected observations, and a test

sample consisting of the remaining 43. This splitting strategy allows us to evaluate the generalization
ability of our estimator under realistic prediction conditions.
For our analysis, we focus on estimating the conditional quantile function ¢, (z) at a high quantile
level a = 0.9, using the observed pairs {(X;, ;) }?15. Such quantile-based predictions are particularly
relevant in chemometrics and spectroscopy, where understanding the upper bound of a property such
as fat content is critical for quality control, risk analysis, and decision-making processes.

To account for the local structure of the data, we adopt a smoothing kernel defined by a quadratic
function:

3

K(u) = 5(1 — u?)W¥po 1y (u),

which is used in both the kernel estimator and our proposed local linear quantile approach.

6.1. Estimation Procedure. To evaluate the practical performance of the proposed estimator, we

compare the following two nonparametric methods for conditional quantile estimation:

e The Kernel Quantile Estimator (KQE) based on the Nadaraya-Watson approach.
e The Local Linear Quantile Estimator (LLQE), developed in this work.

The comparison is based on a 10-fold cross-validation scheme. For each fold, the dataset is randomly
partitioned into training and test sets. The estimation is performed using the training data, and the
performance is assessed on the test set.

Let (X;, Y;) denote a test observation. The estimated conditional quantile of order « at X; is denoted
by tAa(X i), which satisfies:

FX(1,(X))) = o

The accuracy is evaluated through the Mean Squared Error (MSE), defined as:

1 Ntest .
MSE = Z (Y; - ta(Xi))Q )
Ttest im1

where nieg is the size of the test set.
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6.2. Results and Discussion.

Estimated Conditional Quantiles vs. Observed Values

%  Kernel QE X
300 Local Linear QE P
k7
X x,/)
%, .27 X
bd
250+ %:’&
X 7%
— x % .sf/‘x%( x
< A
= X % ‘/xgé"
T 200¢ RE KX
S P 2
2 x ;;xf % x
X x
g X X A00%
& 150 XX x* /’x o
7
Fa
/vg’,
77 x
100+ %
b d
,/
)9/
50t s . : - :
100 150 200 250 300

Observed Y
Ficure 4. Estimated conditional quantiles vs. observed fat content (a = 0.9).

Figure 4 shows the scatter plot comparing the estimated quantiles 7 9(X;) to the observed fat values
Y;, for both the LLQE and KQE methods. The LLQE predictions (orange points) lie closer to the
diagonal, suggesting a better alignment with the true values, especially in the upper range of fat content

— a critical region in applications focused on quality assurance.

Mean Squared Error (MSE) Comparison

8

Mean Squared Error
S

2

000

Kernel QE Local Linear QE
Estimator

Ficure 5. Comparison of Mean Squared Error (MSE) between KQE and LLQE methods.

Figure 5 provides a quantitative evaluation. The average MSE obtained by LLQE is significantly
lower (0.032) compared to that of the KQE (0.045), confirming the improved accuracy brought by the
local linear correction. This enhancement is particularly important in functional regression contexts,

where boundary bias and local variation can degrade kernel performance.
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7. CONCLUSION

This real-world application highlights the practical advantages of using the Local Linear Quantile
Estimator in functional regression problems. By effectively accounting for the smooth structure of
spectrometric curves and leveraging localized information through a second-order correction, the
LLQE achieves better accuracy, especially at higher quantile levels. This makes it a valuable tool in
chemometrics, particularly in tasks involving quality monitoring and decision thresholds based on

extreme responses.
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