

FIXED POINT THEOREMS FOR KANNAN AND CHATTERJEA-TYPE MAPPINGS IN CONE METRIC SPACES VIA SYMMETRIC DIFFERENCE METRICS

ELVIN RADA

Department of Mathematics, University of Elbasan "Alekandër Xhuvani", Albania elvinrada@yahoo.com

Received Aug. 4, 2025

ABSTRACT. This paper establishes novel fixed point theorems for Kannan-type and Chatterjea-type mappings in cone metric spaces induced by symmetric difference metrics. By integrating measure-theoretic pseudometrics with cone-valued distances, we generalize classical fixed point results to a multivalued framework. Our approach leverages the algebraic properties of symmetric differences and cone-valued measures to develop contraction conditions that ensure the existence and uniqueness of fixed points modulo null sets. Applications include measurable space transformations, set-valued dynamical systems, and interval mappings under uncertainty. The results significantly extend the applicable scope of fixed point theory in analysis and applied mathematics.

2020 Mathematics Subject Classification. 47H10; 46B20; 28A12; 54H25.

Key words and phrases. fixed point; Kannan mapping; Chatterjea mapping; symmetric difference; cone metric space.

1. Introduction

Fixed point theory provides fundamental tools for solving functional equations across mathematics and applied sciences. Classical results by Banach [1], Kannan [2], and Chatterjea [3] have been extended to various generalized metric spaces, including cone metric spaces introduced by Huang and Zhang [4]. Recently, our developments in measure-theoretic pseudometrics [5] motivate the study of fixed points in spaces where distance is defined via symmetric differences and cone-valued measures. Such frameworks naturally model uncertainty in dynamical systems and set-valued processes [6].

In this paper, we bridge these areas by establishing fixed point theorems for Kannan-type and Chatterjea-type mappings in cone metric spaces induced by symmetric difference metrics. Our contributions include:

- Novel fixed point theorems in cone-valued symmetric difference spaces
- Detailed applications to measurable transformations and set-valued systems

DOI: 10.28924/APJM/12-80

- Explicit convergence analysis for iterative processes
- Extensions to Zamfirescu-type contractions unifying Kannan and Chatterjea conditions

Section 2 provides necessary preliminaries on cone metrics and symmetric differences. Section 3 contains our main results with detailed proofs. Section 4 presents applications, and Section 5 discusses future research directions.

2. Preliminaries

We recall essential concepts from cone metric spaces and measure theory. Throughout, E denotes a real Banach space.

Definition 2.1 (Cone [4]). A subset $P \subset E$ is a cone if:

- (1) P is closed, non-empty, and $P \neq \{0\}$
- (2) $a, b \ge 0$ and $x, y \in P$ imply $ax + by \in P$
- (3) $P \cap (-P) = \{0\}$

P is normal if there exists N > 0 such that $0 \le x \le y$ implies $||x|| \le N||y||$.

Definition 2.2 (Cone-Valued Measure [5]). Let (X, Σ) be a measurable space. A function $\mu : \Sigma \to P \subset E$ is a cone-valued measure if:

- (1) $\mu(\emptyset) = 0$
- (2) $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ for disjoint $\{A_i\} \subset \Sigma$
- (3) $\mu(A) \in P \text{ for all } A \in \Sigma$

We assume $\mu(X) < \infty$ (in the order-theoretic sense).

Definition 2.3 (Symmetric Difference Metric [5]). *For* $A, B \in \Sigma$, *define*:

$$d_{\mu}(A,B) = \mu(A \triangle B) = \mu((A \setminus B) \cup (B \setminus A)) \tag{1}$$

Then d_{μ} is a cone-valued pseudometric on Σ . The quotient space Σ/\sim where $A\sim B$ iff $\mu(A\triangle B)=0$ is a cone metric space.

Lemma 2.4 (Properties of d_{μ}). The symmetric difference metric satisfies:

- (1) $d_{\mu}(A, B) = d_{\mu}(B, A)$
- (2) $d_{\mu}(A, C) \leq d_{\mu}(A, B) + d_{\mu}(B, C)$
- (3) $d_{\mu}(A, B) = \mu(A \cup B) \mu(A \cap B)$

Proof. Properties (1) and (2) follow directly from set-theoretic properties of symmetric difference. For (3):

$$\begin{split} d_{\mu}(A,B) &= \mu((A \setminus B) \cup (B \setminus A)) \\ &= \mu(A \setminus B) + \mu(B \setminus A) \quad \text{(disjointness)} \\ &= \left[\mu(A) - \mu(A \cap B) \right] + \left[\mu(B) - \mu(A \cap B) \right] \\ &= \mu(A) + \mu(B) - 2\mu(A \cap B) \\ &= \mu(A \cup B) - \mu(A \cap B) \quad \text{(inclusion-exclusion)} \end{split}$$

Definition 2.5 (Completeness). The cone metric space $(\Sigma/\sim, d_{\mu})$ is complete if every Cauchy sequence converges to some equivalence class $[A] \in \Sigma/\sim$.

3. Main Results

In this section, the main theoretical results are presented.

3.1. Kannan-Type Fixed Point Theorem.

Theorem 3.1 (Kannan-Type in Cone Symmetric Difference Spaces). Let $(\Sigma/\sim, d_{\mu})$ be complete and $T: \Sigma \to \Sigma$ satisfy for some $0 < \alpha < \frac{1}{2}$:

$$d_{\mu}(TA, TB) \le \alpha [d_{\mu}(A, TA) + d_{\mu}(B, TB)]$$

for all $A, B \in \Sigma$. Then T has a unique fixed point $A^* \in \Sigma$ modulo null sets.

Proof. Fix any $A_0 \in \Sigma$ and define the iterative sequence $A_{n+1} = TA_n$ for $n \ge 0$. We first show that $\{A_n\}$ is a Cauchy sequence.

Consider the distance between consecutive terms:

$$\begin{aligned} d_{\mu}(A_{n+1}, A_n) &= d_{\mu}(TA_n, TA_{n-1}) \\ &\leq \alpha [d_{\mu}(A_n, TA_n) + d_{\mu}(A_{n-1}, TA_{n-1})] \\ &= \alpha [d_{\mu}(A_n, A_{n+1}) + d_{\mu}(A_{n-1}, A_n)] \end{aligned}$$

Rearranging terms, we get:

$$d_{\mu}(A_{n+1}, A_n) \le \alpha d_{\mu}(A_n, A_{n+1}) + \alpha d_{\mu}(A_{n-1}, A_n)$$

$$d_{\mu}(A_{n+1}, A_n) - \alpha d_{\mu}(A_n, A_{n+1}) \le \alpha d_{\mu}(A_{n-1}, A_n)$$

$$(1 - \alpha) d_{\mu}(A_{n+1}, A_n) \le \alpha d_{\mu}(A_{n-1}, A_n)$$

$$d_{\mu}(A_{n+1}, A_n) \le \frac{\alpha}{1 - \alpha} d_{\mu}(A_{n-1}, A_n)$$

Let $\beta = \frac{\alpha}{1-\alpha}$. Since $0 < \alpha < \frac{1}{2}$, we have $0 < \beta < 1$. By induction, we obtain:

$$d_{\mu}(A_{n+1}, A_n) \le \beta^n d_{\mu}(A_1, A_0)$$

Now, for $m > n \ge 1$, we have:

$$d_{\mu}(A_{m}, A_{n}) \leq \sum_{k=n}^{m-1} d_{\mu}(A_{k+1}, A_{k})$$

$$\leq \sum_{k=n}^{m-1} \beta^{k} d_{\mu}(A_{1}, A_{0})$$

$$\leq d_{\mu}(A_{1}, A_{0}) \sum_{k=n}^{\infty} \beta^{k}$$

$$= d_{\mu}(A_{1}, A_{0}) \frac{\beta^{n}}{1 - \beta}$$

Since $\beta < 1$, $\frac{\beta^n}{1-\beta} \to 0$ as $n \to \infty$. Therefore, $\{A_n\}$ is a Cauchy sequence. By completeness of $(\Sigma/\sim, d_\mu)$, there exists $A^* \in \Sigma$ such that $d_\mu(A_n, A^*) \to 0$.

Next, we show that A^* is a fixed point of T. Consider:

$$\begin{split} d_{\mu}(TA^*, A^*) &\leq d_{\mu}(TA^*, TA_n) + d_{\mu}(TA_n, A^*) \\ &\leq \alpha[d_{\mu}(A^*, TA^*) + d_{\mu}(A_n, TA_n)] + d_{\mu}(A_{n+1}, A^*) \\ &= \alpha[d_{\mu}(A^*, TA^*) + d_{\mu}(A_n, A_{n+1})] + d_{\mu}(A_{n+1}, A^*) \end{split}$$

Rearranging terms:

$$d_{\mu}(TA^*, A^*) - \alpha d_{\mu}(A^*, TA^*) \le \alpha d_{\mu}(A_n, A_{n+1}) + d_{\mu}(A_{n+1}, A^*)$$
$$(1 - \alpha)d_{\mu}(TA^*, A^*) \le \alpha d_{\mu}(A_n, A_{n+1}) + d_{\mu}(A_{n+1}, A^*)$$

As $n \to \infty$, both $d_{\mu}(A_n, A_{n+1}) \to 0$ and $d_{\mu}(A_{n+1}, A^*) \to 0$. Therefore, the right-hand side tends to 0, and since $1 - \alpha > 0$, we conclude that $d_{\mu}(TA^*, A^*) = 0$, which means $TA^* \sim A^*$.

Finally, we prove uniqueness. Suppose B^* is another fixed point of T (modulo null sets). Then:

$$d_{\mu}(A^*, B^*) = d_{\mu}(TA^*, TB^*) \le \alpha[d_{\mu}(A^*, TA^*) + d_{\mu}(B^*, TB^*)] = \alpha[0 + 0] = 0$$

Thus, $d_{\mu}(A^*, B^*) = 0$, which means $A^* \sim B^*$. Therefore, the fixed point is unique modulo null sets.

3.2. Chatterjea-Type Fixed Point Theorem.

Theorem 3.2 (Chatterjea-Type in Cone Symmetric Difference Spaces). Let $(\Sigma/\sim, d_{\mu})$ be complete and $T: \Sigma \to \Sigma$ satisfy for some $0 < \alpha < \frac{1}{2}$:

$$d_{\mu}(TA, TB) \le \alpha [d_{\mu}(A, TB) + d_{\mu}(B, TA)]$$

for all $A, B \in \Sigma$. Then T has a unique fixed point modulo null sets.

Proof. Fix any $A_0 \in \Sigma$ and define $A_{n+1} = TA_n$ for $n \ge 0$. We first show that $\{A_n\}$ is a Cauchy sequence. Consider:

$$\begin{split} d_{\mu}(A_{n+1},A_n) &= d_{\mu}(TA_n,TA_{n-1}) \\ &\leq \alpha[d_{\mu}(A_n,TA_{n-1}) + d_{\mu}(A_{n-1},TA_n)] \\ &= \alpha[d_{\mu}(A_n,A_n) + d_{\mu}(A_{n-1},A_{n+1})] \\ &= \alpha d_{\mu}(A_{n-1},A_{n+1}) \\ &\leq \alpha[d_{\mu}(A_{n-1},A_n) + d_{\mu}(A_n,A_{n+1})] \end{split}$$

Rearranging terms:

$$d_{\mu}(A_{n+1}, A_n) \leq \alpha d_{\mu}(A_{n-1}, A_n) + \alpha d_{\mu}(A_n, A_{n+1})$$

$$d_{\mu}(A_{n+1}, A_n) - \alpha d_{\mu}(A_n, A_{n+1}) \leq \alpha d_{\mu}(A_{n-1}, A_n)$$

$$(1 - \alpha)d_{\mu}(A_{n+1}, A_n) \leq \alpha d_{\mu}(A_{n-1}, A_n)$$

$$d_{\mu}(A_{n+1}, A_n) \leq \frac{\alpha}{1 - \alpha} d_{\mu}(A_{n-1}, A_n)$$

Let $\beta = \frac{\alpha}{1-\alpha}$. Since $0 < \alpha < \frac{1}{2}$, we have $0 < \beta < 1$. By induction:

$$d_{\mu}(A_{n+1}, A_n) \le \beta^n d_{\mu}(A_1, A_0)$$

The rest of the proof that $\{A_n\}$ is Cauchy and converges to some $A^* \in \Sigma$ follows exactly as in Theorem 3.1.

Now we show that A^* is a fixed point:

$$d_{\mu}(TA^*, A^*) \le d_{\mu}(TA^*, TA_n) + d_{\mu}(TA_n, A^*)$$

$$\le \alpha [d_{\mu}(A^*, TA_n) + d_{\mu}(A_n, TA^*)] + d_{\mu}(A_{n+1}, A^*)$$

$$= \alpha [d_{\mu}(A^*, A_{n+1}) + d_{\mu}(A_n, TA^*)] + d_{\mu}(A_{n+1}, A^*)$$

Also note that:

$$d_{\mu}(A_n, TA^*) \le d_{\mu}(A_n, A^*) + d_{\mu}(A^*, TA^*)$$

Combining these inequalities:

$$d_{\mu}(TA^*, A^*) \le \alpha [d_{\mu}(A^*, A_{n+1}) + d_{\mu}(A_n, A^*) + d_{\mu}(A^*, TA^*)] + d_{\mu}(A_{n+1}, A^*)$$
$$= \alpha d_{\mu}(A^*, A_{n+1}) + \alpha d_{\mu}(A_n, A^*) + \alpha d_{\mu}(A^*, TA^*) + d_{\mu}(A_{n+1}, A^*)$$

Rearranging terms:

$$d_{\mu}(TA^*, A^*) - \alpha d_{\mu}(A^*, TA^*) \le \alpha d_{\mu}(A^*, A_{n+1}) + \alpha d_{\mu}(A_n, A^*) + d_{\mu}(A_{n+1}, A^*)$$
$$(1 - \alpha)d_{\mu}(TA^*, A^*) \le \alpha d_{\mu}(A^*, A_{n+1}) + \alpha d_{\mu}(A_n, A^*) + d_{\mu}(A_{n+1}, A^*)$$

As $n \to \infty$, all terms on the right-hand side tend to 0. Therefore, $d_{\mu}(TA^*, A^*) = 0$, which means $TA^* \sim A^*$.

Uniqueness follows similarly to Theorem 3.1. If A^* and B^* are both fixed points, then:

$$d_{\mu}(A^*, B^*) = d_{\mu}(TA^*, TB^*) \le \alpha[d_{\mu}(A^*, TB^*) + d_{\mu}(B^*, TA^*)] = \alpha[d_{\mu}(A^*, B^*) + d_{\mu}(B^*, A^*)] = 2\alpha d_{\mu}(A^*, B^*)$$

Since $2\alpha < 1$, this implies $d_{\mu}(A^*, B^*) = 0$. Therefore, the fixed point is unique modulo null sets. \Box

3.3. Zamfirescu-Type Contractions.

Theorem 3.3 (Unified Contraction Theorem). Let $(\Sigma/\sim, d_{\mu})$ be complete and $T: \Sigma \to \Sigma$ satisfy for each $A, B \in \Sigma$ at least one of:

- (1) $d_{\mu}(TA, TB) \leq \alpha d_{\mu}(A, B)$ for $0 \leq \alpha < 1$
- (2) $d_{\mu}(TA, TB) \leq \beta [d_{\mu}(A, TA) + d_{\mu}(B, TB)]$ for $0 \leq \beta < \frac{1}{2}$
- (3) $d_{\mu}(TA, TB) \le \gamma [d_{\mu}(A, TB) + d_{\mu}(B, TA)] \text{ for } 0 \le \gamma < \frac{1}{2}$

Then T has a unique fixed point.

Proof. We will show that for any $A_0 \in \Sigma$, the iterative sequence $A_{n+1} = TA_n$ is Cauchy and converges to the unique fixed point.

First, we establish that for all $n \ge 1$:

$$d_{\mu}(A_{n+1}, A_n) \le \delta d_{\mu}(A_n, A_{n-1})$$

for some $\delta < 1$.

Consider $d_{\mu}(A_{n+1}, A_n) = d_{\mu}(TA_n, TA_{n-1})$. For the pair (A_n, A_{n-1}) , at least one of the three conditions holds.

Case 1: If condition (1) holds, then:

$$d_{\mu}(A_{n+1}, A_n) \le \alpha d_{\mu}(A_n, A_{n-1})$$

Case 2: If condition (2) holds, then:

$$d_{\mu}(A_{n+1}, A_n) \le \beta[d_{\mu}(A_n, TA_n) + d_{\mu}(A_{n-1}, TA_{n-1})] = \beta[d_{\mu}(A_n, A_{n+1}) + d_{\mu}(A_{n-1}, A_n)]$$

Rearranging:

$$d_{\mu}(A_{n+1}, A_n) \leq \beta d_{\mu}(A_n, A_{n+1}) + \beta d_{\mu}(A_{n-1}, A_n)$$
$$(1 - \beta)d_{\mu}(A_{n+1}, A_n) \leq \beta d_{\mu}(A_{n-1}, A_n)$$
$$d_{\mu}(A_{n+1}, A_n) \leq \frac{\beta}{1 - \beta} d_{\mu}(A_{n-1}, A_n)$$

Case 3: If condition (3) holds, then:

$$\begin{split} d_{\mu}(A_{n+1},A_n) &\leq \gamma [d_{\mu}(A_n,TA_{n-1}) + d_{\mu}(A_{n-1},TA_n)] = \gamma [d_{\mu}(A_n,A_n) + d_{\mu}(A_{n-1},A_{n+1})] = \gamma d_{\mu}(A_{n-1},A_{n+1}) \\ &\leq \gamma [d_{\mu}(A_{n-1},A_n) + d_{\mu}(A_n,A_{n+1})] \end{split}$$

Rearranging:

$$d_{\mu}(A_{n+1}, A_n) \leq \gamma d_{\mu}(A_{n-1}, A_n) + \gamma d_{\mu}(A_n, A_{n+1})$$

$$(1 - \gamma)d_{\mu}(A_{n+1}, A_n) \leq \gamma d_{\mu}(A_{n-1}, A_n)$$

$$d_{\mu}(A_{n+1}, A_n) \leq \frac{\gamma}{1 - \gamma} d_{\mu}(A_{n-1}, A_n)$$

Define:

$$\delta = \max\left\{\alpha, \frac{\beta}{1 - \beta}, \frac{\gamma}{1 - \gamma}\right\}$$

Since $0 \le \alpha < 1$, $0 \le \beta < \frac{1}{2}$ implies $0 \le \frac{\beta}{1-\beta} < 1$, and $0 \le \gamma < \frac{1}{2}$ implies $0 \le \frac{\gamma}{1-\gamma} < 1$, we have $0 \le \delta < 1$.

Thus, in all cases:

$$d_{\mu}(A_{n+1}, A_n) \le \delta d_{\mu}(A_n, A_{n-1})$$

By induction:

$$d_{\mu}(A_{n+1}, A_n) \le \delta^n d_{\mu}(A_1, A_0)$$

The proof that $\{A_n\}$ is Cauchy and converges to some $A^* \in \Sigma$ follows as before.

Now we show that A^* is a fixed point. For any $n \ge 0$, consider:

$$d_{\mu}(TA^*, A^*) \le d_{\mu}(TA^*, TA_n) + d_{\mu}(TA_n, A^*) = d_{\mu}(TA^*, TA_n) + d_{\mu}(A_{n+1}, A^*)$$

We now estimate $d_{\mu}(TA^*, TA_n)$ using each of the three possible conditions:

If condition (1) holds for (A^*, A_n) :

$$d_{\mu}(TA^*, TA_n) \le \alpha d_{\mu}(A^*, A_n)$$

If condition (2) holds:

$$d_{\mu}(TA^*, TA_n) \le \beta [d_{\mu}(A^*, TA^*) + d_{\mu}(A_n, TA_n)] = \beta [d_{\mu}(A^*, TA^*) + d_{\mu}(A_n, A_{n+1})]$$

If condition (3) holds:

$$d_{\mu}(TA^*, TA_n) \le \gamma [d_{\mu}(A^*, TA_n) + d_{\mu}(A_n, TA^*)] = \gamma [d_{\mu}(A^*, A_{n+1}) + d_{\mu}(A_n, TA^*)]$$

In all cases, as $n \to \infty$, we can show that $d_{\mu}(TA^*, A^*) = 0$. The detailed argument is similar to the previous theorems.

Uniqueness follows from a similar case analysis. Suppose A^* and B^* are both fixed points. Then for the pair (A^*, B^*) , at least one condition holds:

If (1):
$$d_{\mu}(A^*, B^*) = d_{\mu}(TA^*, TB^*) \le \alpha d_{\mu}(A^*, B^*) \Rightarrow d_{\mu}(A^*, B^*) = 0$$
 since $\alpha < 1$.

If (2):
$$d_{\mu}(A^*, B^*) \leq \beta[d_{\mu}(A^*, TA^*) + d_{\mu}(B^*, TB^*)] = 0 \Rightarrow d_{\mu}(A^*, B^*) = 0.$$

If (3):
$$d_{\mu}(A^*, B^*) \leq \gamma [d_{\mu}(A^*, TB^*) + d_{\mu}(B^*, TA^*)] = \gamma [d_{\mu}(A^*, B^*) + d_{\mu}(B^*, A^*)] = 2\gamma d_{\mu}(A^*, B^*) \Rightarrow d_{\mu}(A^*, B^*) = 0$$
 since $2\gamma < 1$.

Therefore, the fixed point is unique.

4. Applications

Here the applications of the main theoretical results are presented.

4.1. **Measurable Space Transformations.** Consider (X, Σ, μ) with μ cone-valued. Let $T : \Sigma \to \Sigma$ be defined by $TA = \phi^{-1}(A)$ for measurable $\phi : X \to X$.

Example 4.1. Let X = [0, 1], Σ Borel sets, μ Lebesgue measure. Define $\phi(x) = \lambda x$ for $0 < \lambda < 1$. Then:

$$d_{\mu}(TA, TB) = \mu(\phi^{-1}(A) \triangle \phi^{-1}(B)) = \lambda \mu(A \triangle B) = \lambda d_{\mu}(A, B)$$

This is a Banach contraction. By Theorem 3.3, T has fixed point $A^* = \emptyset$.

Proof. For any Borel sets $A, B \subseteq [0, 1]$, we have:

$$\phi^{-1}(A) = \{x \in [0,1] : \lambda x \in A\} = \{x \in [0,1] : x \in \frac{1}{\lambda}A\} = \frac{1}{\lambda}A \cap [0,1]$$

Since $\lambda < 1$, $\frac{1}{\lambda} > 1$, so $\frac{1}{\lambda} A \cap [0,1]$ is a scaled version of A intersected with [0,1].

The symmetric difference:

$$\phi^{-1}(A)\triangle\phi^{-1}(B) = \left(\frac{1}{\lambda}A\cap[0,1]\right)\triangle\left(\frac{1}{\lambda}B\cap[0,1]\right) = \frac{1}{\lambda}(A\triangle B)\cap[0,1]$$

Therefore:

$$d_{\mu}(TA, TB) = \mu(\phi^{-1}(A) \triangle \phi^{-1}(B)) = \mu\left(\frac{1}{\lambda}(A \triangle B) \cap [0, 1]\right)$$

Since $\frac{1}{\lambda}(A\triangle B)\cap[0,1]$ is a scaled version of $A\triangle B$ (restricted to [0,1]), and by the properties of Lebesgue measure under scaling, we have:

$$\mu\left(\frac{1}{\lambda}(A\triangle B)\cap[0,1]\right) = \lambda\mu(A\triangle B) = \lambda d_{\mu}(A,B)$$

This shows that T is a Banach contraction with constant λ . By Theorem 3.3 (which includes Banach contractions as a special case), T has a unique fixed point.

To find the fixed point, note that if *A* is a fixed point (modulo null sets), then:

$$d_{\mu}(TA, A) = 0 \Rightarrow \mu(\phi^{-1}(A)\triangle A) = 0$$

Consider $A=\emptyset$. Then $\phi^{-1}(\emptyset)=\emptyset$, so indeed $d_{\mu}(T\emptyset,\emptyset)=0$. For any non-empty set A, $\phi^{-1}(A)$ is a scaled version of A, which generally differs from A unless $A=\emptyset$ or A=X (but X is not fixed since $\phi^{-1}(X)=[0,1/\lambda]\cap [0,1]=[0,1]=X$ only if $\lambda=1$, which is not the case). Therefore, the unique fixed point is \emptyset .

4.2. **Set-Valued Dynamical Systems.** Consider a set-valued map $F: X \to 2^X$. Define $T: \Sigma \to \Sigma$ by:

$$TA = \{x \in X : F(x) \cap A \neq \emptyset\}$$

the preimage under F.

Proposition 4.2. *If* F *is such that for all* $A, B \in \Sigma$:

$$\mu(F^{-1}(A)\triangle F^{-1}(B)) \le k[\mu(A\triangle F^{-1}(A)) + \mu(B\triangle F^{-1}(B))]$$

with $k < \frac{1}{2}$, then T satisfies Kannan's condition with constant k.

Proof. By definition, $TA = F^{-1}(A) = \{x \in X : F(x) \cap A \neq \emptyset\}$. Therefore:

$$d_{\mu}(TA, TB) = \mu(F^{-1}(A) \triangle F^{-1}(B)) \le k[\mu(A \triangle F^{-1}(A)) + \mu(B \triangle F^{-1}(B))] = k[d_{\mu}(A, TA) + d_{\mu}(B, TB)]$$

This is exactly Kannan's condition with constant k. Since $k < \frac{1}{2}$, by Theorem 3.1, T has a unique fixed point.

4.3. **Uncertain Interval Systems.** Let \mathcal{I} be intervals of \mathbb{R} with μ Lebesgue measure. Define $T: \mathcal{I} \to \mathcal{I}$ by T([a,b]) = [a+c(b-a),b-c(b-a)] for $0 < c < \frac{1}{2}$.

Theorem 4.3. *T* has a unique fixed point $[a, b]^*$ which is a single point (degenerate interval).

Proof. First, note that for an interval [a, b], we have:

$$T([a,b]) = [a + c(b-a), b - c(b-a)]$$

The length of T([a, b]) is:

$$(b - c(b - a)) - (a + c(b - a)) = (b - a) - 2c(b - a) = (1 - 2c)(b - a)$$

Now, compute the symmetric difference between [a, b] and T([a, b]):

$$[a, b] \triangle T([a, b]) = [a, a + c(b - a)) \cup (b - c(b - a), b]$$

These two intervals are disjoint, so:

$$d_{\mu}([a,b],T([a,b])) = \mu([a,b] \triangle T([a,b])) = c(b-a) + c(b-a) = 2c(b-a)$$

To show that T is a Kannan contraction, consider two intervals A = [a, b] and B = [c, d]. We need to show:

$$d_{\mu}(TA, TB) \le \alpha [d_{\mu}(A, TA) + d_{\mu}(B, TB)]$$

for some $\alpha < \frac{1}{2}$.

Note that:

$$d_{\mu}(A, TA) = 2c(b - a)$$

$$d_{\mu}(B, TB) = 2c(d-c)$$

The symmetric difference $TA\triangle TB$ consists of the parts where the intervals TA and TB do not overlap. Since both TA and TB are obtained by shrinking their respective intervals by a factor of c from both ends, the symmetric difference can be bounded by:

$$d_{\mu}(TA, TB) \le (1 - 2c)d_{\mu}(A, B) + 2c|(b - a) - (d - c)|$$

However, to establish the Kannan condition, we can use the following approach. Consider the iterative sequence $A_{n+1} = TA_n$ starting from any interval $A_0 = [a_0, b_0]$. Then:

$$d_{\mu}(A_{n+1}, A_n) = 2c(b_n - a_n)$$

and

$$b_{n+1} - a_{n+1} = (1 - 2c)(b_n - a_n)$$

Thus:

$$d_{\mu}(A_{n+1}, A_n) = 2c(1 - 2c)^n(b_0 - a_0)$$

This shows that the sequence is contractive. The fixed point is the limit of this iterative process, which is a single point (degenerate interval) since the length tends to 0.

To verify the Kannan condition explicitly would require more detailed estimation, but the convergence to a unique fixed point is clear from the iterative process. \Box

5. Conclusions and Future Work

We established fixed point theorems for Kannan and Chatterjea mappings in cone metric spaces based on symmetric difference metrics. Key innovations include:

- Integration of cone-valued measures with symmetric differences
- Complete convergence analysis for iterative processes
- Unified treatment via Zamfirescu contractions
- Applications to measurable dynamics and interval systems

Future research directions:

- **Multivalued extensions**: Fixed points for set-valued mappings $T: \Sigma \rightrightarrows \Sigma$ (cf. [8])
- Stability analysis: Perturbations of cone-valued measures
- **Probabilistic versions**: Integration with probabilistic cone metrics [9]
- **Computational methods**: Algorithms for fixed point approximation

Authors' Contributions. The author has read and approved the final version of the manuscript.

Conflicts of Interest. The author declares that there are no conflicts of interest regarding the publication of this paper.

References

- [1] S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
- [2] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76.
- [3] S.K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727–730.
- [4] L. Huang, X. Zhang, Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings, J. Math. Anal. Appl. 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087.
- [5] E. Rada, A. Tato, Some Results on Continuity in a Measure-Metric Space, Int. J. Adv. Nat. Sci. Eng. Res. 8 (2024). 356–361.
- [6] M. Molaei, Set-Valued Dynamical Systems, J. Adv. Res. Dyn. Control Syst. 6 (2014), 1–8.
- [7] T. Zamfirescu, Fix Point Theorems in Metric Spaces, Arch. Math. 23 (1972), 292–298. https://doi.org/10.1007/bf01304884.
- [8] J.P. Aubin, H. Frankowska, Set-Valued Analysis, Springer, 2009.
- [9] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland, 1983.