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Abstract. This paper establishes novel fixed point theorems for Kannan-type and Chatterjea-type map-
pings in cone metric spaces induced by symmetric difference metrics. By integrating measure-theoretic
pseudometrics with cone-valued distances, we generalize classical fixed point results to a multivalued
framework. Our approach leverages the algebraic properties of symmetric differences and cone-valued
measures to develop contraction conditions that ensure the existence and uniqueness of fixed points
modulo null sets. Applications include measurable space transformations, set-valued dynamical systems,
and interval mappings under uncertainty. The results significantly extend the applicable scope of fixed
point theory in analysis and applied mathematics.
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1. Introduction

Fixed point theory provides fundamental tools for solving functional equations across mathematics
and applied sciences. Classical results by Banach [1], Kannan [2], and Chatterjea [3] have been
extended to various generalized metric spaces, including cone metric spaces introduced by Huang and
Zhang [4]. Recently, our developments in measure-theoretic pseudometrics [5] motivate the study of
fixed points in spaces where distance is defined via symmetric differences and cone-valued measures.
Such frameworks naturally model uncertainty in dynamical systems and set-valued processes [6].

In this paper, we bridge these areas by establishing fixed point theorems for Kannan-type and
Chatterjea-type mappings in cone metric spaces induced by symmetric difference metrics. Our contri-
butions include:

• Novel fixed point theorems in cone-valued symmetric difference spaces
• Detailed applications to measurable transformations and set-valued systems
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• Explicit convergence analysis for iterative processes
• Extensions to Zamfirescu-type contractions unifying Kannan and Chatterjea conditions

Section 2 provides necessary preliminaries on cone metrics and symmetric differences. Section 3
contains our main results with detailed proofs. Section 4 presents applications, and Section 5 discusses
future research directions.

2. Preliminaries

We recall essential concepts from cone metric spaces and measure theory. Throughout, E denotes a
real Banach space.

Definition 2.1 (Cone [4]). A subset P ⊂ E is a cone if:

(1) P is closed, non-empty, and P 6= {0}

(2) a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P

(3) P ∩ (−P ) = {0}

P is normal if there exists N > 0 such that 0 ≤ x ≤ y implies ‖x‖ ≤ N‖y‖.

Definition 2.2 (Cone-Valued Measure [5]). Let (X,Σ) be a measurable space. A function µ : Σ→ P ⊂ E

is a cone-valued measure if:

(1) µ(∅) = 0

(2) µ(
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) for disjoint {Ai} ⊂ Σ

(3) µ(A) ∈ P for all A ∈ Σ

We assume µ(X) <∞ (in the order-theoretic sense).

Definition 2.3 (Symmetric Difference Metric [5]). For A,B ∈ Σ, define:

dµ(A,B) = µ(A4B) = µ((A \B) ∪ (B \A)) (1)

Then dµ is a cone-valued pseudometric on Σ. The quotient space Σ/∼ where A ∼ B iff µ(A4B) = 0 is a cone

metric space.

Lemma 2.4 (Properties of dµ). The symmetric difference metric satisfies:

(1) dµ(A,B) = dµ(B,A)

(2) dµ(A,C) ≤ dµ(A,B) + dµ(B,C)

(3) dµ(A,B) = µ(A ∪B)− µ(A ∩B)
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Proof. Properties (1) and (2) follow directly from set-theoretic properties of symmetric difference. For
(3):

dµ(A,B) = µ((A \B) ∪ (B \A))

= µ(A \B) + µ(B \A) (disjointness)

= [µ(A)− µ(A ∩B)] + [µ(B)− µ(A ∩B)]

= µ(A) + µ(B)− 2µ(A ∩B)

= µ(A ∪B)− µ(A ∩B) (inclusion-exclusion)

�

Definition 2.5 (Completeness). The cone metric space (Σ/ ∼, dµ) is complete if every Cauchy sequence

converges to some equivalence class [A] ∈ Σ/∼.

3. Main Results

In this section, the main theoretical results are presented.

3.1. Kannan-Type Fixed Point Theorem.

Theorem 3.1 (Kannan-Type in Cone Symmetric Difference Spaces). Let (Σ/ ∼, dµ) be complete and

T : Σ→ Σ satisfy for some 0 < α < 1
2 :

dµ(TA, TB) ≤ α[dµ(A, TA) + dµ(B, TB)]

for all A,B ∈ Σ. Then T has a unique fixed point A∗ ∈ Σ modulo null sets.

Proof. Fix anyA0 ∈ Σ and define the iterative sequenceAn+1 = TAn for n ≥ 0. We first show that {An}
is a Cauchy sequence.

Consider the distance between consecutive terms:

dµ(An+1, An) = dµ(TAn, TAn−1)

≤ α[dµ(An, TAn) + dµ(An−1, TAn−1)]

= α[dµ(An, An+1) + dµ(An−1, An)]

Rearranging terms, we get:

dµ(An+1, An) ≤ αdµ(An, An+1) + αdµ(An−1, An)

dµ(An+1, An)− αdµ(An, An+1) ≤ αdµ(An−1, An)

(1− α)dµ(An+1, An) ≤ αdµ(An−1, An)

dµ(An+1, An) ≤ α

1− α
dµ(An−1, An)
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Let β = α
1−α . Since 0 < α < 1

2 , we have 0 < β < 1. By induction, we obtain:

dµ(An+1, An) ≤ βndµ(A1, A0)

Now, form > n ≥ 1, we have:

dµ(Am, An) ≤
m−1∑
k=n

dµ(Ak+1, Ak)

≤
m−1∑
k=n

βkdµ(A1, A0)

≤ dµ(A1, A0)
∞∑
k=n

βk

= dµ(A1, A0)
βn

1− β

Since β < 1, βn

1−β → 0 as n → ∞. Therefore, {An} is a Cauchy sequence. By completeness of
(Σ/∼, dµ), there exists A∗ ∈ Σ such that dµ(An, A

∗)→ 0.
Next, we show that A∗ is a fixed point of T . Consider:

dµ(TA∗, A∗) ≤ dµ(TA∗, TAn) + dµ(TAn, A
∗)

≤ α[dµ(A∗, TA∗) + dµ(An, TAn)] + dµ(An+1, A
∗)

= α[dµ(A∗, TA∗) + dµ(An, An+1)] + dµ(An+1, A
∗)

Rearranging terms:

dµ(TA∗, A∗)− αdµ(A∗, TA∗) ≤ αdµ(An, An+1) + dµ(An+1, A
∗)

(1− α)dµ(TA∗, A∗) ≤ αdµ(An, An+1) + dµ(An+1, A
∗)

As n→∞, both dµ(An, An+1)→ 0 and dµ(An+1, A
∗)→ 0. Therefore, the right-hand side tends to 0,

and since 1− α > 0, we conclude that dµ(TA∗, A∗) = 0, which means TA∗ ∼ A∗.
Finally, we prove uniqueness. Suppose B∗ is another fixed point of T (modulo null sets). Then:

dµ(A∗, B∗) = dµ(TA∗, TB∗) ≤ α[dµ(A∗, TA∗) + dµ(B∗, TB∗)] = α[0 + 0] = 0

Thus, dµ(A∗, B∗) = 0, which meansA∗ ∼ B∗. Therefore, the fixed point is unique modulo null sets. �

3.2. Chatterjea-Type Fixed Point Theorem.

Theorem 3.2 (Chatterjea-Type in Cone Symmetric Difference Spaces). Let (Σ/∼, dµ) be complete and

T : Σ→ Σ satisfy for some 0 < α < 1
2 :

dµ(TA, TB) ≤ α[dµ(A, TB) + dµ(B, TA)]

for all A,B ∈ Σ. Then T has a unique fixed point modulo null sets.
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Proof. Fix any A0 ∈ Σ and define An+1 = TAn for n ≥ 0. We first show that {An} is a Cauchy sequence.
Consider:

dµ(An+1, An) = dµ(TAn, TAn−1)

≤ α[dµ(An, TAn−1) + dµ(An−1, TAn)]

= α[dµ(An, An) + dµ(An−1, An+1)]

= αdµ(An−1, An+1)

≤ α[dµ(An−1, An) + dµ(An, An+1)]

Rearranging terms:
dµ(An+1, An) ≤ αdµ(An−1, An) + αdµ(An, An+1)

dµ(An+1, An)− αdµ(An, An+1) ≤ αdµ(An−1, An)

(1− α)dµ(An+1, An) ≤ αdµ(An−1, An)

dµ(An+1, An) ≤ α

1− α
dµ(An−1, An)

Let β = α
1−α . Since 0 < α < 1

2 , we have 0 < β < 1. By induction:

dµ(An+1, An) ≤ βndµ(A1, A0)

The rest of the proof that {An} is Cauchy and converges to someA∗ ∈ Σ follows exactly as in Theorem
3.1.

Now we show that A∗ is a fixed point:

dµ(TA∗, A∗) ≤ dµ(TA∗, TAn) + dµ(TAn, A
∗)

≤ α[dµ(A∗, TAn) + dµ(An, TA
∗)] + dµ(An+1, A

∗)

= α[dµ(A∗, An+1) + dµ(An, TA
∗)] + dµ(An+1, A

∗)

Also note that:
dµ(An, TA

∗) ≤ dµ(An, A
∗) + dµ(A∗, TA∗)

Combining these inequalities:

dµ(TA∗, A∗) ≤ α[dµ(A∗, An+1) + dµ(An, A
∗) + dµ(A∗, TA∗)] + dµ(An+1, A

∗)

= αdµ(A∗, An+1) + αdµ(An, A
∗) + αdµ(A∗, TA∗) + dµ(An+1, A

∗)

Rearranging terms:

dµ(TA∗, A∗)− αdµ(A∗, TA∗) ≤ αdµ(A∗, An+1) + αdµ(An, A
∗) + dµ(An+1, A

∗)

(1− α)dµ(TA∗, A∗) ≤ αdµ(A∗, An+1) + αdµ(An, A
∗) + dµ(An+1, A

∗)
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As n → ∞, all terms on the right-hand side tend to 0. Therefore, dµ(TA∗, A∗) = 0, which means
TA∗ ∼ A∗.

Uniqueness follows similarly to Theorem 3.1. If A∗ and B∗ are both fixed points, then:

dµ(A∗, B∗) = dµ(TA∗, TB∗) ≤ α[dµ(A∗, TB∗) + dµ(B∗, TA∗)] = α[dµ(A∗, B∗) + dµ(B∗, A∗)] = 2αdµ(A∗, B∗)

Since 2α < 1, this implies dµ(A∗, B∗) = 0. Therefore, the fixed point is unique modulo null sets. �

3.3. Zamfirescu-Type Contractions.

Theorem 3.3 (Unified Contraction Theorem). Let (Σ/∼, dµ) be complete and T : Σ→ Σ satisfy for each

A,B ∈ Σ at least one of:

(1) dµ(TA, TB) ≤ αdµ(A,B) for 0 ≤ α < 1

(2) dµ(TA, TB) ≤ β[dµ(A, TA) + dµ(B, TB)] for 0 ≤ β < 1
2

(3) dµ(TA, TB) ≤ γ[dµ(A, TB) + dµ(B, TA)] for 0 ≤ γ < 1
2

Then T has a unique fixed point.

Proof. We will show that for any A0 ∈ Σ, the iterative sequence An+1 = TAn is Cauchy and converges
to the unique fixed point.

First, we establish that for all n ≥ 1:

dµ(An+1, An) ≤ δdµ(An, An−1)

for some δ < 1.
Consider dµ(An+1, An) = dµ(TAn, TAn−1). For the pair (An, An−1), at least one of the three condi-

tions holds.
Case 1: If condition (1) holds, then:

dµ(An+1, An) ≤ αdµ(An, An−1)

Case 2: If condition (2) holds, then:

dµ(An+1, An) ≤ β[dµ(An, TAn) + dµ(An−1, TAn−1)] = β[dµ(An, An+1) + dµ(An−1, An)]

Rearranging:
dµ(An+1, An) ≤ βdµ(An, An+1) + βdµ(An−1, An)

(1− β)dµ(An+1, An) ≤ βdµ(An−1, An)

dµ(An+1, An) ≤ β

1− β
dµ(An−1, An)

Case 3: If condition (3) holds, then:

dµ(An+1, An) ≤ γ[dµ(An, TAn−1) + dµ(An−1, TAn)] = γ[dµ(An, An) + dµ(An−1, An+1)] = γdµ(An−1, An+1)

≤ γ[dµ(An−1, An) + dµ(An, An+1)]
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Rearranging:
dµ(An+1, An) ≤ γdµ(An−1, An) + γdµ(An, An+1)

(1− γ)dµ(An+1, An) ≤ γdµ(An−1, An)

dµ(An+1, An) ≤ γ

1− γ
dµ(An−1, An)

Define:
δ = max

{
α,

β

1− β
,

γ

1− γ

}
Since 0 ≤ α < 1, 0 ≤ β < 1

2 implies 0 ≤ β
1−β < 1, and 0 ≤ γ < 1

2 implies 0 ≤ γ
1−γ < 1, we have

0 ≤ δ < 1.
Thus, in all cases:

dµ(An+1, An) ≤ δdµ(An, An−1)

By induction:
dµ(An+1, An) ≤ δndµ(A1, A0)

The proof that {An} is Cauchy and converges to some A∗ ∈ Σ follows as before.
Now we show that A∗ is a fixed point. For any n ≥ 0, consider:

dµ(TA∗, A∗) ≤ dµ(TA∗, TAn) + dµ(TAn, A
∗) = dµ(TA∗, TAn) + dµ(An+1, A

∗)

We now estimate dµ(TA∗, TAn) using each of the three possible conditions:
If condition (1) holds for (A∗, An):

dµ(TA∗, TAn) ≤ αdµ(A∗, An)

If condition (2) holds:

dµ(TA∗, TAn) ≤ β[dµ(A∗, TA∗) + dµ(An, TAn)] = β[dµ(A∗, TA∗) + dµ(An, An+1)]

If condition (3) holds:

dµ(TA∗, TAn) ≤ γ[dµ(A∗, TAn) + dµ(An, TA
∗)] = γ[dµ(A∗, An+1) + dµ(An, TA

∗)]

In all cases, as n→∞, we can show that dµ(TA∗, A∗) = 0. The detailed argument is similar to the
previous theorems.

Uniqueness follows from a similar case analysis. Suppose A∗ and B∗ are both fixed points. Then for
the pair (A∗, B∗), at least one condition holds:

If (1): dµ(A∗, B∗) = dµ(TA∗, TB∗) ≤ αdµ(A∗, B∗)⇒ dµ(A∗, B∗) = 0 since α < 1.
If (2): dµ(A∗, B∗) ≤ β[dµ(A∗, TA∗) + dµ(B∗, TB∗)] = 0⇒ dµ(A∗, B∗) = 0.
If (3): dµ(A∗, B∗) ≤ γ[dµ(A∗, TB∗) + dµ(B∗, TA∗)] = γ[dµ(A∗, B∗) + dµ(B∗, A∗)] = 2γdµ(A∗, B∗)⇒

dµ(A∗, B∗) = 0 since 2γ < 1.
Therefore, the fixed point is unique. �
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4. Applications

Here the applications of the main theoretical results are presented.

4.1. Measurable Space Transformations. Consider (X,Σ, µ) with µ cone-valued. Let T : Σ→ Σ be
defined by TA = φ−1(A) for measurable φ : X → X .

Example 4.1. Let X = [0, 1], Σ Borel sets, µ Lebesgue measure. Define φ(x) = λx for 0 < λ < 1. Then:

dµ(TA, TB) = µ(φ−1(A)4φ−1(B)) = λµ(A4B) = λdµ(A,B)

This is a Banach contraction. By Theorem 3.3, T has fixed point A∗ = ∅.

Proof. For any Borel sets A,B ⊆ [0, 1], we have:

φ−1(A) = {x ∈ [0, 1] : λx ∈ A} = {x ∈ [0, 1] : x ∈ 1

λ
A} =

1

λ
A ∩ [0, 1]

Since λ < 1, 1
λ > 1, so 1

λA ∩ [0, 1] is a scaled version of A intersected with [0, 1].
The symmetric difference:

φ−1(A)4φ−1(B) =

(
1

λ
A ∩ [0, 1]

)
4
(

1

λ
B ∩ [0, 1]

)
=

1

λ
(A4B) ∩ [0, 1]

Therefore:

dµ(TA, TB) = µ(φ−1(A)4φ−1(B)) = µ

(
1

λ
(A4B) ∩ [0, 1]

)
Since 1

λ(A4B) ∩ [0, 1] is a scaled version of A4B (restricted to [0, 1]), and by the properties of
Lebesgue measure under scaling, we have:

µ

(
1

λ
(A4B) ∩ [0, 1]

)
= λµ(A4B) = λdµ(A,B)

This shows that T is a Banach contraction with constant λ. By Theorem 3.3 (which includes Banach
contractions as a special case), T has a unique fixed point.

To find the fixed point, note that if A is a fixed point (modulo null sets), then:

dµ(TA,A) = 0⇒ µ(φ−1(A)4A) = 0

Consider A = ∅. Then φ−1(∅) = ∅, so indeed dµ(T∅, ∅) = 0. For any non-empty set A, φ−1(A) is a
scaled version of A, which generally differs from A unless A = ∅ or A = X (but X is not fixed since
φ−1(X) = [0, 1/λ] ∩ [0, 1] = [0, 1] = X only if λ = 1, which is not the case). Therefore, the unique fixed
point is ∅. �
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4.2. Set-Valued Dynamical Systems. Consider a set-valued map F : X → 2X . Define T : Σ→ Σ by:

TA = {x ∈ X : F (x) ∩A 6= ∅}

the preimage under F .

Proposition 4.2. If F is such that for all A,B ∈ Σ:

µ(F−1(A)4F−1(B)) ≤ k[µ(A4F−1(A)) + µ(B4F−1(B))]

with k < 1
2 , then T satisfies Kannan’s condition with constant k.

Proof. By definition, TA = F−1(A) = {x ∈ X : F (x) ∩A 6= ∅}. Therefore:

dµ(TA, TB) = µ(F−1(A)4F−1(B)) ≤ k[µ(A4F−1(A))+µ(B4F−1(B))] = k[dµ(A, TA)+dµ(B, TB)]

This is exactly Kannan’s condition with constant k. Since k < 1
2 , by Theorem 3.1, T has a unique fixed

point. �

4.3. Uncertain Interval Systems. Let I be intervals of R with µ Lebesgue measure. Define T : I → I

by T ([a, b]) = [a+ c(b− a), b− c(b− a)] for 0 < c < 1
2 .

Theorem 4.3. T has a unique fixed point [a, b]∗ which is a single point (degenerate interval).

Proof. First, note that for an interval [a, b], we have:

T ([a, b]) = [a+ c(b− a), b− c(b− a)]

The length of T ([a, b]) is:

(b− c(b− a))− (a+ c(b− a)) = (b− a)− 2c(b− a) = (1− 2c)(b− a)

Now, compute the symmetric difference between [a, b] and T ([a, b]):

[a, b]4T ([a, b]) = [a, a+ c(b− a)) ∪ (b− c(b− a), b]

These two intervals are disjoint, so:

dµ([a, b], T ([a, b])) = µ([a, b]4T ([a, b])) = c(b− a) + c(b− a) = 2c(b− a)

To show that T is a Kannan contraction, consider two intervals A = [a, b] and B = [c, d]. We need to
show:

dµ(TA, TB) ≤ α[dµ(A, TA) + dµ(B, TB)]

for some α < 1
2 .

Note that:
dµ(A, TA) = 2c(b− a)
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dµ(B, TB) = 2c(d− c)

The symmetric difference TA4TB consists of the parts where the intervals TA and TB do not
overlap. Since both TA and TB are obtained by shrinking their respective intervals by a factor of c
from both ends, the symmetric difference can be bounded by:

dµ(TA, TB) ≤ (1− 2c)dµ(A,B) + 2c|(b− a)− (d− c)|

However, to establish the Kannan condition, we can use the following approach. Consider the
iterative sequence An+1 = TAn starting from any interval A0 = [a0, b0]. Then:

dµ(An+1, An) = 2c(bn − an)

and
bn+1 − an+1 = (1− 2c)(bn − an)

Thus:
dµ(An+1, An) = 2c(1− 2c)n(b0 − a0)

This shows that the sequence is contractive. The fixed point is the limit of this iterative process,
which is a single point (degenerate interval) since the length tends to 0.

To verify theKannan condition explicitlywould requiremore detailed estimation, but the convergence
to a unique fixed point is clear from the iterative process. �

5. Conclusions and Future Work

We established fixed point theorems for Kannan and Chatterjea mappings in cone metric spaces
based on symmetric difference metrics. Key innovations include:

• Integration of cone-valued measures with symmetric differences
• Complete convergence analysis for iterative processes
• Unified treatment via Zamfirescu contractions
• Applications to measurable dynamics and interval systems

Future research directions:
• Multivalued extensions: Fixed points for set-valued mappings T : Σ ⇒ Σ (cf. [8])
• Stability analysis: Perturbations of cone-valued measures
• Probabilistic versions: Integration with probabilistic cone metrics [9]
• Computational methods: Algorithms for fixed point approximation
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