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Abstract. This paper investigates the relationship between the extended spectrum of a bounded linear
operator and its group inverse. We also establish a connection between the extended spectrum of the
bounded linear operator and that of its Drazin inverse. As part of our analysis, we prove the following
equality:

σext((BA)
D) = σext((AB)D),

where (BA)D and (AB)D represent the Drazin inverses of BA and AB, respectively.
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1. Introduction and preliminaries

Recently, Alan Lambert [8] established a set of properties related to the extended spectrum for
invertible operators, as outlined in Property 2. Previous studies have also demonstrated this Property 2.

In this article, we propose to extend these properties (Properties 1 and 2) to a broader class of
bounded linear operators, specifically those that possess an inner inverse, a group inverse, or a Drazin
inverse.

LetH be a complex Hilbert space and let B(H) be the algebra of all bounded linear operators onH.
For any operator A ∈ B(H), in the context of spectral theory, a complex number λ is referred to as an
extended eigenvalue of A if there exists a non-zero operator X ∈ B(H) such that AX = λXA. In this
case, X is called the extended eigenvector corresponding to λ. The set of all extended eigenvalues of A
forms the extended spectrum, denoted σext(A). The extended eigenspace associated with λ ∈ σext(A)
is represented by Eext(A, λ) or simply Eext(λ).

Notably, for any operatorA ∈ B(H), the number 1 is always an extended eigenvalue, with the identity
operator I serving as the corresponding extended eigenvector.
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An operator T is called invertible if there exists an operator B ∈ B(H) such that AB = BA = I ,
where I is the identity operator. The inverse of A is denoted by A−1.

Proposition 1. Let A be an invertible operator. Then: If λ ∈ σext(A), then 1
λ ∈ σext(A

−1), where λ is a nonzero

complex number.

Proposition 2. [8] Let A be an invertible operator. Then:

(1) There are positive numbers a and b, with a < b, such that every extended eigenvalue for A is contained

within the annulus Ra,b with inner radius a and outer radius b.

(2) If λ is an extended eigenvalue for A with |λ| 6= 1, then there is a positive integer N such that every

product of N members of Eext(A, λ) is zero. In particular, every operator in Eext(A, λ) is nilpotent of

order no greater than N .

(3) If A has an extended eigenvalue of modulus other than 1, then it has an extended eigenvalue for which

the N in part (2) above may be taken as 2.

In this article, we will demonstrate that both previous properties can be proven for other classes
of bounded linear operators. This includes operators that have a group inverse and a Drazin inverse,
along with specific conditions in certain conditions.

2. Main analysis and results

In this section, we will discuss the primary analysis and the results obtained from the study.

Definition 3. LetA ∈ B(H). An operatorB ∈ B(H) is called an interior inverse ofA if it satisfies the condition:

ABA = A.

Remark 4. If B is the interior inverse of A, the following properties hold:

(1) AB and BA are idempotent projections.

(2) R(AB) = R(A).

Definition 5. LetA ∈ B(H). An operatorB ∈ B(H) is called an exterior inverse ofA if it satisfies the condition:

BAB = B.

Remark 6. If B is the exterior inverse of A, the following properties hold:

(1) AB and BA are idempotent projections.

(2) R(BA) = R(B).

Definition 7. Let A ∈ B(H). An operator B ∈ B(H) is called a generalized inverse of A if it satisfies the

following conditions:
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ABA = A,

BAB = B.

Remark 8. (1) If A has a generalized inverse, it is said that A is g-invertible.

(2) IfB is the generalized inverse ofA, thenAB andBA are two bounded projections ontoR(A) andR(B),

respectively.

Theorem 9. Let A ∈ B(H) and suppose B ∈ B(H) is an interior inverse of A satisfying AB = BA. If λ is a

non-zero complex number and λ ∈ σext(A) such that there exists an operator X ∈ Eext(A;λ) with XA2 6= 0 or

A2X 6= 0, then 1
λ ∈ σext(B).

Proof. Let λ be a non-zero complex number and λ ∈ σext(A). Then there exists an operator X ∈
Eext(A;λ) satisfying:

AX = λXA,

ABAX = λXABA,

BA2X = λXA2B,

BA2X =
1

λ
A2XB or BXA2 =

1

λ
XA2B.

By taking Y = A2X or Y = XA2, it is easy to see that Y ∈ B(H), and according to the hypothesis,
Y 6= 0. Hence, we obtain:

BY =
1

λ
Y B.

Then, 1
λ ∈ σext(B). �

Definition 10. Let A ∈ B(H) with a closed image. The inverse group of A is the operator B ∈ B(H), denoted

B = A#, which satisfies the following conditions:
ABA = A,

BAB = B,

AB = BA.

Remark 11. Let A ∈ B(H) be an invertible operator. Then A is in the group of invertible operators, and

A# = A−1.

Theorem 12. Let A ∈ B(H), and suppose A# ∈ B(H) is the group inverse of A. If λ is a non-zero complex

number and λ ∈ σext(A), then 1
λ ∈ σext(A

#) and

Eext(A;λ) ⊆ Eext(A
#;

1

λ
).
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Proof. Let λ be a non-zero complex number, and λ ∈ σext(A). Then, there exists an operator X ∈
Eext(A;λ) satisfying:

AX = λXA.

We have

A#X = (A#)2AX

= λ(A#)2XA

= λ(A#)2XA2A#

= (A#)2AXAA#

= A#XAA#.

Also,

1

λ
XA# =

1

λ
XA(A#)2

=
1

λ2
AX(A#)2

=
1

λ2
A#A2X(A#)2

= A#XA2(A#)2

= A#XA2A#A#

= A#XAA#.

Therefore:

A#X =
1

λ
XA#.

Then
1

λ
∈ σext(A#) and X ∈ Eext(A#;

1

λ
).

We deduce that for each non-zero complex number λ ∈ σext(A), and for each operator X ∈ Eext(A;λ),
it follows that 1

λ ∈ σext(A
#) and X ∈ Eext(A#; 1

λ). �

Corollary 13. Let A ∈ B(H) be an invertible operator. If λ is a non-zero complex number and λ ∈ σext(A),

then 1
λ ∈ σext(A

−1) and

Eext(A;λ) ⊆ Eext(A
−1;

1

λ
).

Proof. The proof is based on Remark (11). �
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Definition 14. Let A ∈ B(H). We say that B ∈ B(H) is the Drazin inverse of A of index k ∈ N∗ if the

following conditions are satisfied: 
AB = BA,

BAB = B,

Ak+1B = Ak.

The Drazin inverse of A is denoted by AD.

Remark 15. (1) If k = 1, then AD = A#.

(2) If A# exists, then AD = A#.

Theorem 16. Let A ∈ B(H), and suppose AD ∈ B(H) is the Drazin inverse of A. If λ is a non-zero complex

number such that λ ∈ σext(A), and there exists an operator X ∈ Eext(A;λ) with Ak+1X 6= 0 or XAk+1 6= 0,

then 1
λ ∈ σext(A

D).

Proof. Let λ be a non-zero complex number and λ ∈ σext(A) such that there exists a non-zero operator
X ∈ Eext(A;λ) with XAk+1 6= 0 or Ak+1X 6= 0 satisfying the equation:

AX = λXA,

AkX = λAk−1XA,

AkX = λkXAk,

ADAk+1X = λkXAk+1AD,

ADAk+1X =
λk

λk+1
Ak+1XAD or λk+1ADXAk+1 = λkXAk+1AD,

ADAk+1X =
1

λ
Ak+1XAD or ADXAk+1 =

1

λ
XAk+1AD.

By taking Y = Ak+1X or Y = XAk+1, it is easy to see that Y ∈ B(H), and according to the hypothesis,
Y 6= 0. Hence, we obtain:

ADY =
1

λ
Y AD.

Then 1
λ ∈ σext(A

D). �

Proposition 17 (Cline’s formula). [9] Let A,B ∈ B(H). If AB is Drazin invertible, then BA is Drazin

invertible, and

(BA)D = B
[
(AB)D

]2
A.

Theorem 18. Let A,B ∈ B(H), if BA is Drazin invertible, λ ∈ σext((BA)D), and there exists an operator

X ∈ Eext((BA)
D;λ) with AXB 6= 0, then λ ∈ σext((AB)D).
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Proof. Let λ ∈ σext((BA)D) such that there exists an operator X ∈ Eext((BA)D;λ) satisfying the
equation:

(BA)DX = λX(BA)D,

B
[
(AB)D

]2
AX = λXB

[
(AB)D

]2
A,

AB
[
(AB)D

]2
AX = λAXB

[
(AB)D

]2
A,

(AB)DAB(AB)DAX = λAXB
[
(AB)D

]2
A,

(AB)DAXB = λAXB
[
(AB)D

]2
AB,

(AB)DAXB = λAXB(AB)DAB(AB)D,

(AB)DAXB = λAXB(AB)D.

By taking Y = AXB, it is easy to see that Y ∈ B(H), and according to the hypothesis, Y 6= 0. Hence,
we obtain:

(AB)DY = λY (AB)D.

Then λ ∈ σext((AB)D). �

Remark 19. (1) If AB is Drazin invertible, λ ∈ σext((AB)D), and there exists an operator X ∈

Eext((AB)D;λ) with BXA 6= 0, then λ ∈ σext((BA)D).

(2) Let A,B ∈ B(H). If AB is Drazin invertible, then for all λ ∈ σext((AB)D), and if there exists an

operator X ∈ Eext((AB)D;λ) such that BXA 6= 0, then λ ∈ σext((BA)D).

Similarly, for all λ ∈ σext((BA)D), and if there exists an operator X ∈ Eext((BA)
D;λ) such that

AXB 6= 0, then λ ∈ σext((AB)D).

Therefore, σext((BA)D) = σext((AB)D).

Lemma 20. Let A,B ∈ B(H), such that AB = BA. If AD and BD exist, then:

AADB = BAAD,

BBDA = ABBD,

ADB = BAD,

BDA = ABD,

(AB)D = BDAD

= ADBD.

Remark 21. Let A,B ∈ B(H), such that AB = BA. If AD and BD exist, then

σext((BA)
D) = σext((AB)D).
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Proposition 22. Let A ∈ B(H) \ {0} have a closed image. Suppose A possesses an inverse group, and define

δ = ‖A‖‖A#‖. Then:

(1) σext(A) ⊆ {z ∈ C | 1δ ≤ |z| ≤ δ} ∪ {0} = Sδ.

(2) If λ is a non-zero complex number and λ ∈ σext(A) with |λ| 6= 1, then there exists an integer N such

that any product of N elements from Eext(A;λ) is zero. In particular, every element of Eext(A;λ) is a

nilpotent operator with a rank of at most N .

(3) If λ is a non-zero complex number such that λ ∈ σext(A) and |λ| 6= 1, and there exists an operator

X ∈ Eext(A;λ) such that Xk 6= 0 where k < N and 2k ≥ N (where N is defined in (2) above and k

is a natural number), then there exists an extended eigenvalue such that N = 2.

Proof. (1) Since A possesses an inverse group, A#A is a projection onto R(A#). Then, for all
x ∈ R(A#), we have:

‖x‖ = ‖A#Ax‖ ≤ ‖A#‖‖Ax‖.

Then
1

‖A#‖
‖x‖ ≤ ‖Ax‖. (1)

Let λ be a non-zero complex number such that λ ∈ σext(A) and X ∈ Eext(A;λ). Then,
AX = λXA on the space H , it follows that AX = λXA on R(A#).

From (1), we obtain:

1

‖A#‖
‖Xx‖ ≤ ‖AXx‖ = |λ|‖XAx‖ ≤ |λ|‖X‖‖Ax‖.

Then,
1

‖A#‖
‖X‖ ≤ |λ|‖X‖‖A‖.

Finally,
1

δ
≤ |λ|, where δ = ‖A#‖‖A‖.

As for the second inequality, if λ ∈ σext(A), then 1
λ ∈ σext(A#). In a similar manner, we

obtain: ∣∣∣∣ 1λ
∣∣∣∣ ≥ 1

δ

or equivalently,

|λ| ≤ δ.

Thus, if λ is a non-zero complex number such that λ ∈ σext(A), then λ ∈ {z ∈ C | 1δ ≤ |z| ≤ δ}.
On the other hand, if 0 ∈ σext(A), then 0 ∈ Sδ.
Thus, the first assertion is proven.
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(2) Let λ ∈ σext(A) such that |λ| 6= 1. Then, we can find an integer N > 1 such that λN /∈ Sδ and
λN−1 ∈ Sδ. Let X1, X2, . . . , XN ∈ Eext(A;λ).

Since λ ∈ σext(A) and X1 ∈ Eext(A;λ), we have:

AX1 = λX1A.

Thus,
AX1X2 = λX1AX2.

And since X2 ∈ Eext(A;λ), it follows that:

AX1X2 = λ2X1X2A.

Similarly, we conclude that:

AX1X2 . . . XN = λNX1X2 . . . XNA.

Since λN /∈ Sδ, by the previous proposition, we have λN /∈ σext(T ). This necessarily implies:

X1X2 . . . XN = 0.

(3) Let λ be a non-zero complex number such that λ ∈ σext(A) and |λ| 6= 1, and let X ∈ Eext(A;λ)

such that Xk 6= 0.
We have:

AX = λXA,

AX2 = λXAX,

AX2 = λ2X2A.

By following the calculations in the same way, we find:

AXk = λkXkA.

Since S = Xk 6= 0, then λ0 = λk ∈ σext(A).
We have λ20 = λ2k /∈ Sδ, then λ20 /∈ σext(T ). Therefore, S2 = X2k = 0.

�

Corollary 23. (1) The last property holds for any bounded non-zero linear operator A that has a Drazin

inverse, provided that for every non-zero complex number λ such that λ ∈ σext(A), there exists a linear

operator X ∈ Eext(A;λ) such that A(k+1)X 6= 0 or XA(k+1) 6= 0.

(2) The last property holds for any bounded non-zero linear operator A that has an interior inverse B such

that AB = BA, provided that for every λ non-zero complex number such that λ ∈ σext(A), there exists

a linear operator X ∈ Eext(A;λ) such that XA2 6= 0 or A2X 6= 0.
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Proof. (1) By taking advantage of the fact thatBA is a bounded projection ontoR(B), and applying
Theorem (16), we can use reasoning similar to that in the previous proof to reach the desired
conclusion.

(2) We obtain the desired result by applying Remark (4) and Theorem (9), followed by computa-
tions akin to those in the previous proof.

�

3. Conclusion

We have thoroughly investigated the relationship between the extended spectrum of a bounded linear
operator and its group inverse and Drazin inverse. Through detailed analysis, we have established
significant connections that enhance our understanding of how the extended spectrum behaves under
these inverses. Our main result demonstrates an equality that links the extended spectrum of the
operator to the spectra of its group and Drazin inverses. This provides new insights into the structure
of operators and their inverses in Banach spaces. These findings enrich the theoretical framework of
operator theory and open up potential avenues for future research, particularly in spectral theory and
its applications in solving operator equations.
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