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AsstracT. This paper investigates the relationship between the extended spectrum of a bounded linear
operator and its group inverse. We also establish a connection between the extended spectrum of the
bounded linear operator and that of its Drazin inverse. As part of our analysis, we prove the following
equality:

Get(BA)P) = 0e((AB)"),

where (BA)®? and (AB)® represent the Drazin inverses of BA and AB, respectively.
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1. INTRODUCTION AND PRELIMINARIES

Recently, Alan Lambert [8] established a set of properties related to the extended spectrum for
invertible operators, as outlined in Property 2. Previous studies have also demonstrated this Property 2.

In this article, we propose to extend these properties (Properties 1 and 2) to a broader class of
bounded linear operators, specifically those that possess an inner inverse, a group inverse, or a Drazin
inverse.

Let H be a complex Hilbert space and let 5(#) be the algebra of all bounded linear operators on .
For any operator A € B(#), in the context of spectral theory, a complex number ) is referred to as an
extended eigenvalue of A if there exists a non-zero operator X € B(#) such that AX = AX A. In this
case, X is called the extended eigenvector corresponding to A. The set of all extended eigenvalues of A
forms the extended spectrum, denoted oext(A). The extended eigenspace associated with A € gext(A)
is represented by Eext(A, ) or simply Eex(A).

Notably, for any operator A € B(# ), the number 1 is always an extended eigenvalue, with the identity

operator I serving as the corresponding extended eigenvector.
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An operator T is called invertible if there exists an operator B € B(#) such that AB = BA =1,
where I is the identity operator. The inverse of A is denoted by A~

Proposition 1. Let A be an invertible operator. Then: If X\ € 0o (A), then % € Text(A™Y), where X is a nonzero

complex number.

Proposition 2. [5] Let A be an invertible operator. Then:

(1) There are positive numbers a and b, with a < b, such that every extended eigenvalue for A is contained
within the annulus R, with inner radius a and outer radius b.

(2) If X is an extended eigenvalue for A with |\| # 1, then there is a positive integer N such that every
product of N members of Ep(A, N) is zero. In particular, every operator in Ee (A, \) is nilpotent of
order no greater than N.

(3) If A has an extended eigenvalue of modulus other than 1, then it has an extended eigenvalue for which

the N in part (2) above may be taken as 2.

In this article, we will demonstrate that both previous properties can be proven for other classes
of bounded linear operators. This includes operators that have a group inverse and a Drazin inverse,

along with specific conditions in certain conditions.

2. MAIN ANALYSIS AND RESULTS

In this section, we will discuss the primary analysis and the results obtained from the study.

Definition 3. Let A € B(H). An operator B € B(H) is called an interior inverse of A if it satisfies the condition:

ABA = A.

Remark 4. If B is the interior inverse of A, the following properties hold:

(1) AB and BA are idempotent projections.
(2) R(AB) = R(A).

Definition 5. Let A € B(H). An operator B € B(H) is called an exterior inverse of A if it satisfies the condition:
BAB = B.

Remark 6. If B is the exterior inverse of A, the following properties hold:

(1) AB and BA are idempotent projections.
(2) R(BA) = R(B).

Definition 7. Let A € B(H). An operator B € B(H) is called a generalized inverse of A if it satisfies the

following conditions:
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ABA = A,
BAB = B.
Remark 8. (1) If A has a generalized inverse, it is said that A is g-invertible.

(2) If B is the generalized inverse of A, then AB and B A are two bounded projections onto R(A) and R(B),

respectively.

Theorem 9. Let A € B(H) and suppose B € B(H ) is an interior inverse of A satisfying AB = BA. If Xisa
non-zero complex number and \ € o,y (A) such that there exists an operator X € Epy(A; \) with X A% # 0 or
A%X # 0, then & € oex(B).

Proof. Let A be a non-zero complex number and A € oext(A). Then there exists an operator X €
FEext(A; \) satisfying:
AX = \X A,
ABAX = MAXABA,
BA%’X = A\XA’B,
1 1
BA’X = XAQXB or BXA?= XXA?B.

By taking Y = A2X or Y = X A?, it is easy to see that Y € B(#), and according to the hypothesis,
Y # 0. Hence, we obtain:

BY = -YB.

Then, } € oext(DB). O

Definition 10. Let A € B(H) with a closed image. The inverse group of A is the operator B € B(H), denoted
B = A%, which satisfies the following conditions:

ABA = A,
BAB = B,
AB = BA.

Remark 11. Let A € B(H) be an invertible operator. Then A is in the group of invertible operators, and
A# = AL

Theorem 12. Let A € B(H), and suppose A% € B(H) is the group inverse of A. If X is a non-zero complex
number and X € oo (A), then % € 0ot (A7) and

1
Eext(A; )\) C Eext(A#; X)
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Proof. Let A be a non-zero complex number, and A € oe(A). Then, there exists an operator X €

FEext(A; ) satisfying:

We have

Also,

Therefore:

Then

X A#

AX = XA

(A")2AX
AMA7)?2X A
MAF)2X A2 AF
(A")2AX AA*

A X AAF.

Lxaa#y
)
iAX(A#P
1
A2
A" X A?(A7)?

AFA2X (AT)?

A# X A2 A# A#

AF X AAF.

AFX = %XA#.

X c O'ext(A#)

and X € Eext(A#;

1

3

We deduce that for each non-zero complex number A € oext(A), and for each operator X € Eexi(A; N),

it follows that § € oext(A¥) and X € Eexi(A%; 3).

O

Corollary 13. Let A € B(H) be an invertible operator. If X is a non-zero complex number and \ € cext(A),

then % € oeu(A™") and

Eext(A§ /\) - Eext(Afl;

Proof. The proof is based on Remark (11).

1
3
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Definition 14. Let A € B(H). We say that B € B(H) is the Drazin inverse of A of index k € N* if the
following conditions are satisfied:

AB = BA,

BAB = B,

AMIB = AF,

The Drazin inverse of A is denoted by AP.

Remark 15. (1) Ifk = 1, then AP = A%,
(2) If A¥ exists, then AP = A%,

Theorem 16. Let A € B(H), and suppose AP € B(H) is the Drazin inverse of A. If X is a non-zero complex
number such that X € oe(A), and there exists an operator X € Eoy(A; N) with ARFLX £ 0 or X AR £ 0,

then } € o (AP).

Proof. Let A be a non-zero complex number and A € oey(A) such that there exists a non-zero operator

X € Eext(A; \) with X A¥1 o£ 0 or AF1X # 0 satisfying the equation:
AX = AXA,

AR X = AFTX A,
AR X = M x AF,

ADAk+1X — )\kXAk+1AD,

ADAk+1X _ )\2—:{_1 Ak-‘rlXAD or )\k-‘rlADXAk-‘rl _ )\kXAk+1AD,

ADAk+1X — %Ak+1XAD or ADXAIC+1 — %XAkJrlAD'

By taking Y = A¥*1X or Y = X AF*1 it is easy to see that Y € B(#), and according to the hypothesis,
Y # 0. Hence, we obtain:
APY = Ly ap.
A
Then § € gext(AP). O

Proposition 17 (Cline’s formula). [9] Let A, B € B(H). If AB is Drazin invertible, then BA is Drazin

invertible, and

(BA)P = B[(AB)P]* A,

Theorem 18. Let A, B € B(H), if BA is Drazin invertible, X € oot((BA)P), and there exists an operator
X € Eoi((BA)P; \) with AX B # 0, then \ € o04((AB)P).
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Proof. Let A € oext((BA)P) such that there exists an operator X € Ee((BA)P;\) satisfying the
equation:
(BAPX = MX(BA)P,
B[(AB)"]?AX = MXB[(AB)P]* 4,
AB[(AB)P] AX = MAXB[(AB)P]* 4,
(AB)PAB(AB)PAX = MAXB[(AB)P]? 4,
(AB)PAXB = MAXB[(AB)"]” AB,
(ABYPAXB = MAXB(AB)P? AB(AB)”,
(ABYPAXB = MAXB(AB)P.
By taking Y = AX B, it is easy to see that Y € B(#), and according to the hypothesis, Y # 0. Hence,
we obtain:
(AB)PY = \Y (AB)P.
Then A € gext((AB)P). O
Remark 19. (1) If AB is Drazin invertible, A € oext((AB)P), and there exists an operator X €
Eot((AB)P; \) with BXA # 0, then \ € o ((BA)P).
(2) Let A, B € B(H). If AB is Drazin invertible, then for all X\ € o.u((AB)?), and if there exists an
operator X € Eot((AB)P; \) such that BX A # 0, then \ € oot ((BA)P).
Similarly, for all X € ooyt ((BA)P), and if there exists an operator X € Epy((BA)P; \) such that

AXB # 0, then \ € o.4((AB)P).
Therefore, oext((BA)P) = 0o ((AB)P).

Lemma 20. Let A, B € B(H), such that AB = BA. If AP and BP exist, then:
AAPB = BAAP,
BBPA = ABBP,
APB = BAP,
BPA = ABP,
(AB)P = BPAP
= APBP.
Remark 21. Let A, B € B(H), such that AB = BA. If AP and BP exist, then

Uext((BA)D) = Uext((AB)D)‘
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Proposition 22. Let A € B(#H) \ {0} have a closed image. Suppose A possesses an inverse group, and define
§ = || A||||A#||. Then:

(1) oext(A) C{z€C| 3 <|2[ <6}U{0} = S;.

(2) If X is a non-zero complex number and \ € ooy (A) with |\| # 1, then there exists an integer N such
that any product of N elements from Eex(A; \) is zero. In particular, every element of Eext(A; N) is a
nilpotent operator with a rank of at most N.

(3) If X is a non-zero complex number such that X\ € oou(A) and || # 1, and there exists an operator
X € Ep(A; \) such that X* # 0 where k < N and 2k > N (where N is defined in (2) above and k

is a natural number), then there exists an extended eigenvalue such that N = 2.

Proof. (1) Since A possesses an inverse group, A* A is a projection onto R(A#). Then, for all

r € R(A%), we have:
lz]| = | A% Az|| < || A% ||| Az].

Then

1
m”ﬂfH < ||Az||. (1)

Let A be a non-zero complex number such that A\ € oex(A) and X € Ee(A;A). Then,
AX = AX A on the space H, it follows that AX = AX A on R(A%).

From (1), we obtain:

Xl < 14X ] = [N IXAz] < ] Az,
Then,
HA1#H||XH < AIX11A].-
Finally,

1
S <. where 5= 4% |4].

As for the second inequality, if A € oex(A), then % € aext(A#). In a similar manner, we

obtain:

S| =
| =

or equivalently,
IA] < 6.
Thus, if A is a non-zero complex number such that A € gexi(A), then A € {z € C| } < |2 < 6}.

On the other hand, if 0 € gext(A), then 0 € S;.

Thus, the first assertion is proven.
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(2) Let A € oext(A) such that |A| # 1. Then, we can find an integer N > 1 such that AN ¢ S5 and
MV=1e S5 Let X1, Xo, ..., XN € Eext(4; ).
Since A\ € gext(A) and X € Eext(A; ), we have:

AX] = AXA.

Thus,
AX1 Xy =2 X1AX,.

And since Xy € Eext(A; N, it follows that:
AX1 Xy = N X1 X0A.
Similarly, we conclude that:
AX1Xo. . Xy =AVX1Xs... XNA.
Since AV ¢ S, by the previous proposition, we have AN ¢ ooy (T'). This necessarily implies:
X1X9... XNy =0.

(3) Let A be a non-zero complex number such that A € oext(A) and || # 1, and let X € Eex(A; A)
such that X* £ 0.

We have:
AX = \XA,
AX? = AXAX,
AX? = \2X2A.

By following the calculations in the same way, we find:
AXF = \FXxkA.

Since S = X% # 0, then Ay = \¥ € gexi(A).
We have \2 = \2¥ ¢ S, then A2 & oext(T). Therefore, S? = X2k = (.
O

Corollary 23. (1) The last property holds for any bounded non-zero linear operator A that has a Drazin
inverse, provided that for every non-zero complex number X such that X € oex(A), there exists a linear
operator X € Ep(A; \) such that AN X £ 0 or X AR+ £ 0,

(2) The last property holds for any bounded non-zero linear operator A that has an interior inverse B such
that AB = BA, provided that for every A non-zero complex number such that A € o.x(A), there exists
a linear operator X € FEuy(A; \) such that X A% # 0 or A2X # 0.
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Proof. (1) By taking advantage of the fact that BA is a bounded projection onto R(3), and applying
Theorem (16), we can use reasoning similar to that in the previous proof to reach the desired
conclusion.

(2) We obtain the desired result by applying Remark (4) and Theorem (9), followed by computa-
tions akin to those in the previous proof.

O

3. CoNCLUSION

We have thoroughly investigated the relationship between the extended spectrum of a bounded linear
operator and its group inverse and Drazin inverse. Through detailed analysis, we have established
significant connections that enhance our understanding of how the extended spectrum behaves under
these inverses. Our main result demonstrates an equality that links the extended spectrum of the
operator to the spectra of its group and Drazin inverses. This provides new insights into the structure
of operators and their inverses in Banach spaces. These findings enrich the theoretical framework of
operator theory and open up potential avenues for future research, particularly in spectral theory and

its applications in solving operator equations.
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