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Abstract. The purpose of this paper is to study a new class of regular rings, namely weakly Fπ-regular and
weaklywFπ-regular rings. Their key properties and features, as well as the relationship between these rings
and other rings, such as CS-rings, FGP -rings, and GMP -rings are investigated. Moreover, a new class of
sets is introduced, namely weakly motivating and weakly w-motivating sets, after which their connections
with the weakly Fπ-regular and the weakly wFπ-regular rings are also studied. Weakly F*π-regular and
weakly wF*π-regular rings are discussed, alongside their relationships with weakly Fπ-regular and weakly
wFπ-regular rings. 2-primal rings are classified, and the conditions required to render the 2-primal weakly
Fπ-regular and weakly wFπ-regular rings are also examined.
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F*π-regular (wF*π-R); weakly wF*π-regular (wwF*π-R).

1. Introduction

Von Neumann introduced the concept of regularity in ring theory during the 1900s, and it plays
a fundamental role in understanding the structural properties of rings and modules. A ring < is
called von-Neumann regular if for every element a ∈ <, there exists x ∈ < such that a = axa. This
notion has been widely studied and generalized in various directions, particularly in the context of
non-commutative rings.

Among such generalizations, the concept of weakly regular rings appeared by Ramamurthi in
1973. The study of right (resp. left) weakly regular rings was motivated by the point of view of the
generalization of regular rings, which also provided examples for regular rings that are right (resp.
left) weakly regular rings. Ramamurthi generalized the property of the regular rings, namely I2 = I,
for every right (resp. left) ideal of <. The latter researcher also represented the concept of a right
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(resp. left) weakly regular ring < such that for all a ∈ < we have a ∈ (a<)2 (a ∈ (<a)2) [15]. Later, the
concept of weakly regular rings has been utilized and studied by several other authors, such as Camillo
and Xiao. In addition, Gupta defined the concept of weakly π-regular rings through generalizations
made about weakly regular rings and described weakly π-regular as a broad class of rings that includes
π-regular and weakly regular rings. According to Gupta, < is a right (left) weakly π-regular ring
provided that for all a ∈ < there is anm ∈ Z+ such that am ∈ (am<)2 (am ∈ (<am)2) respectively.

In 1997, Hong, Kim, Kwak, and Lee [12] investigated the relationships between the maximality of
prime ideals in 2-primal rings and the weak π-regularity from the right (or left). They extended the
π-regularity rings to weakly π-regularity rings. Their findings indicated that the π-regular is a weakly
π-regular ring, but the converse is not true.

Throughout this paper, we present new generalizations of regular rings; namely, right (resp. left)
weakly Fπ-regular and weakly wFπ-regular rings. The system of weakly Fπ-regular and weakly wFπ-
regular rings is indeed a wide class of rings that strictly includes weakly π-regular and Fπ-regular
rings. We study their properties by generalizing some results in [3, 6, 7, 9, 10, 14] and also provide
some examples. In addition, we establish the relationship between weakly Fπ-regular and weakly
wFπ-regular rings with some other rings.

2. Preliminaries

Throughout this paper, < denotes an identity-associated ring. A ring < is a (Von Neuman) regular
ring if for each a ∈ <, there exists b ∈ < such that a = aba [8]. Let S be a subset of a ring <, then the
annihilator of S is annl(S) = {r ∈ <|rs = 0, for all s ∈ S} .This is a left annihilator, (dually the right
annihilator annr(S) = {r ∈ <|sr = 0, for all s ∈ S}). Let U(<), Z(<), P(<), N (<), and C(<) denote
the set of all unit elements, the set of all zero divisors, the prime radical, the nilpotent elements, and
the center of <, respectively.

Definition 2.1. Let < be a ring then:

(a) < is a right (resp. left)Gw-R if for every a ∈ <, there is x ∈ <a< such that a = ax (resp. a = xa) [10].

(b) < is a right (resp. left)w-R if for all a ∈ <we have a = ab1ab2 (resp. a = b1ab2a) where b1, b2 ∈ < [4].

(c) < is a right (resp. left)wπ-R if for all a ∈ <, there is anm ∈ Z+ such that am = amd (resp. am = dam)

where d ∈ <am< [10].

(d) < is a right (resp. left) wπ′-R if for all a ∈ <, there is an m ∈ Z+ such that am = amb1a
mb2 (resp.

am = b1a
mb2a

m) where b1, b2 ∈ < [4].

(e) < is an Fπ-R if for every a ∈ <, there exist 0 6= c ∈ < and b ∈ < such that ac = acbac [3].

Definition 2.2. [13] An ideal I of a ring < is said to be regular if for each x ∈ I, there exists y ∈ I such that

x = xyx.
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Proposition 2.1. [13] Let < be a regular ring, and I be an ideal of <. Then, I is regular.

Theorem 2.1. [13] The statements below are equivalent:

(a) < is a right w-R regular.

(b) A right ideal I of <, is an idempotent.

(c) All right ideal of <, is the intersection of prime right ideal.

(d) For every a ∈ <, a ∈ (a<)2.

(e) For any two right ideals I and J where I ⊆ J , IJ = I.

Definition 2.3. [13] Let L be a right ideal of <. Then, L is called a prime (resp. semi-prime) if x<y ⊆ L

(resp. x<x ⊆ L) implies x ∈ L or y ∈ L (resp. x ∈ L) for all x,y ∈ <. Moreover, < contains no non-zero

nilpotent ideals if and only if < is a semiprime ring. If < is a reduced ring, then < is a semiprime.

Definition 2.4. [13] If < satisfies the ascending chain condition on both complement and annihilator right

ideals, then < is a right Goldie ring.

3. Weakly Fπ-Regular and Weakly wFπ-Regular Rings

In this section, we define wFπ-R and wwFπ-R rings and outline some of their properties.

Definition 3.1. A ring < is called right (resp. left) weakly Fπ-regular (wFπ-R) if for every element a ∈ <,

there exists 0 6= c ∈ < such that ac = acb1acb2 (resp. ac = b1acb2ac), where b1, b2 ∈ <.

Moreover, we define a right weakly motivating set for an element a ∈ < as Mw(a) = {0 6= c ∈ < :

ac = acb1acb2, for some b1, b2 ∈ <}, (dually, a left weakly motivating set as wM(a) = {0 6= c ∈ < : ac =

b1acb2ac, for some b1, b2 ∈ <} ).

Definition 3.2. A ring < is called a right (resp. left) weakly wFπ-regular (wwFπ-R), if for every element

a ∈ < and r ∈ <, there exists an element d ∈ <ac< such that ar = ard (resp. ar = dar).

Moreover, we define right (dually, left) weakly w-motivating sets for an element a ∈ < asMww(a) = {0 6=

c ∈ < : ac = acx, x ∈ <ac<} (dually, wwM(a) = {0 6= c ∈ < : ac = xac, x ∈ <ac<}).

Clearly, every right wπ-R is a right wFπ-R ring. In addition, every right wFπ-R and right wπ-R are
right wwFπ-R rings.

Example 3.1. A ring < =


u v

0 u

 |u, v ∈ D, where D is simple domain

 is a right wwFπ-R ring by [11,

Example 4.2]. Thus, the ring < shows that it is not necessarily a right wπ-R or right wwFπ-R is an Fπ-R

ring. Indeed; for A =

u 0

0 u

 such that 0 6= u ∈ D and is not invertible, there is no 0 6= C ∈ < such that

AC /∈ AC<AC.
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Subsequently, we have the assertion below:

Proposition 3.1. (a) Let < be a right wwFπ-R where r(ac) ⊂ l(ac) for some c ∈ Mww(a), then < is a

left wwFπ-R ring.

(b) If < is a left wwFπ-R such that l(ac) ⊂ r(ac) for some c ∈ wwM(a), then < is a right wwFπ-regular

ring.

Proof. (a) Let < be a right wwFπ-R, where a ∈ < and c ∈Mww(a) with r(ac) ⊂ l(ac). Then, there
exists 0 6= c ∈ < such that ac = act for some t ∈ RacR. Therefore, ac(1 − t) = 0 implies
1− t ∈ r(ac). Since r(ac) ⊂ l(ac) then 1− t ∈ l(ac) and (1− t)ac = 0, and hence ac− tac = 0.
Thus, ac = tac and then, < is a left wwFπ-R ring.

(b) Straightforward using a similar argument in (a).
�

Lemma 3.1. [13] Let < be a reduced ring. Then, r(a) = l(a) for all 0 6= a ∈ <.

Corollary 3.1. A reduced ring < is a right wwFπ-R if and only if < is a left wwFπ-R.

Proposition 3.2. Let < be a domain. Then:

(a) If < is an Fπ-R ring, then it is a division ring.

(b) If < is a right wwFπ-R ring, then it is a simple.

(c) If < is a right wFπ-R ring, then < is a division ring.

Proof. (a) Strightforword by [3, Corollary 3.7].
(b) Since < is a domain, then it does not have zero divisors. By the definition of wwFπ-R, we obtain

that for any nonzero element a in a proper ideal I ⊂ <, we have 1− b = 0 for some b ∈ <ac<

where c ∈Mww(a). Hence, 1 = b ∈ <ac< ⊂ I, and then I = <. Therefore, < has no proper
ideal; thus < is simple.

(c) Let < be a domain and wFπ-R ring. Then, for any 0 6= a ∈ <, there exists 0 6= c ∈ < such that
ac = acracs for some r, s ∈ <, then ac(1 − racs) = 0. Since < is domain, then it has no zero
divisor, so 1 = racs implies that a is invertible. Hence, < is a division ring.

�

Theorem 3.2. Let <i be rings with identities. Then, the direct product of <i is a right wFπ-R if at least one of

them is a right wFπ-R ring.

Proof. Let <1 and <2 be rings where <1 is a right wFπ-R ring. It is sufficient to show that < = <1 ×<2

is a right wFπ-regular ring. Let (a1, a2) ∈ < where a1 ∈ <1 and a2 ∈ <2. Since a1 ∈ <1 and <1 is
a right wFπ-regular, there exist 0 6= c1 ∈ <1 and b1, d1 ∈ <1 such that a1c1b1a1c1d1 = a1c1. Take
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(0, 0) 6= c = (c1, 0) ∈ < with c1 6= 0 and b = (b1, b2), d = (d1, d2) ∈ < where b2, d2 ∈ <2. Now,
(a1, a2)(c1, 0)(b1, b2)(a1, a2)(c1, 0)(d1, d2) = (a1c1b1a1c1d1, 0) = (a1c1, 0) = (a1, a2)(c1, 0). Therefore, <
is a right wFπ-R ring. �

Similar argument can be utilized to show the assertion below:

Theorem 3.3. Let <i be rings with identities. Then, the direct product of <i is a right wwFπ-R if at least one of

them is a right wwFπ-R ring.

The next example shows that not necessarily every right wwFπ-R is a right wπ-R ring.

Example 3.4. Let A = Z×<, where < =


u v

0 u

 |u, v ∈ D, where D is simple domain

. From Example

3.1,< is a right wwFπ-R. Then,A is a right wwFπ-R ring by Theorem 3.3. Indeed; (2, 0)m /∈ (2, 0)mA(2, 0)mA,

for any positive integerm implies that < is not wπ-R ring.

Theorem 3.5. Let </I be a right wwFπ-R ring where I is the right ideal Gw-R of <. Then, < is a wwFπ-R

ring.

Proof. Let </I = <̄ where <̄ is a right wwFπ-R ring. Then for every ā ∈ <̄, there exist 0 6= c̄ ∈ <̄

and x̄ ∈ <̄āc̄<̄ such that, ac + I = (ac + I)(x + I) = (acx + I). This implies that ac− acx ∈ I.
Since I is a right Gw-R ideal, then there exists t ∈ I(ac− acx)I ⊂ <ac(1 − x)< ⊂ <ac< such that
ac− acx = (ac− acx)t = act − acxt then ac = ac(x + t − xt). Since x + t − xt ∈ <ac<. Then,
ac = ac(x+ t− xt), and therefore < is a right wwFπ-R ring. �

Proposition 3.3. Let < be a right wwFπ-R ring. Then:

(a) If I is a proper ideal of <, then Mww(a) ⊂ I for any right regular element (i.e. not a non-zero left zero

divisor) a ∈ I.

(b) If < has no nonzero left zero divisor, then < is a simple.

Proof. (a) Let c ∈Mww(a), then ac = acx for some x ∈ (ac). This implies that a(c− cx) = 0, and if
a is a right regular element, then c = cx ∈ c(ac) ⊂ I impliesMww(a) ⊂ I.

(b) If < is a right wwFπ-R ring without nonzero left zero divisor and I is a proper ideal, then
0 6= a ∈ I, there exists 0 6= c ∈ < such that ac = acx and x ∈ (ac) implies 1 = x ∈ (ac) ⊂ I.
Hence, < is a simple.

�

Proposition 3.4. [3] Let < be a ring. Then the following are satisfied:

(a) If a ∈ U(<), then a is a regular.

(b) If a ∈ N (<) ∪ U(<), then a is a π-regular.
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Proposition 3.5. [3] Let < be a ring. Then the following are satisfied:

(a) If a ∈ Z(<), then a is an Fπ-regular.

(b) If a ∈ U(<), then U(<) ⊂M(a).

According to propositions 3.4 and 3.5, we have the proposition below.

Proposition 3.6. (a) < is a right wπ-R if and only if for all a /∈ N (<) ∪ U(<), there is a positive integer

m where am ∈Mww(a).

(b) < is a right wwFπ-R if and only if for all a /∈ Z(<) ∪ U(<),Mww(a) 6= ∅.

(c) < is a right wπ-R if and only if for all a /∈ U(<), then 1 ∈Mw(a).

Definition 3.3. Let X ⊂ <. A set X is called a weakly regular set if for all x ∈ X , there exists y ∈ <x< such

that x = xy.

Corollary 3.2. Let < be a right wwFπ-R and a /∈ Z(<), thenMww(a) is a weakly regular set.

Proof. Let < be a right wwFπ-R and a /∈ Z(<). Then, by Proposition (3.6 -2) Mww(a) 6= ∅. Suppose
x ∈Mww(a), then 0 6= x ∈ < and ax = axd for some d ∈ <ac<. Hence, a(x− xd) = 0. Since a /∈ Z(<),
then x− xd = 0 and x = xd. Therefore,Mww(a) is a right weakly regular set. �

Proposition 3.7. Let < be a ring such that for every a ∈ <, there is c ∈Mww(a) where r(ac) = r(a). Then the

following statements are equivalent:

(a) < is a right w-R ring.

(b) < is a right wπ-R ring.

(c) < is a right wwFπ-R ring.

Proof. It is clear that a =⇒ b =⇒ c.
For c =⇒ a, let < be a right wwFπ-regular ring where a ∈ < and c ∈Mww(a) with r(ac) = r(a). Then
ac = acx where x ∈ <ac<. Hence 1 − x ∈ r(a). Then a = ax and x ∈ <a<. Thus, < is a right w-R
ring. �

Since each prime reduced ring is a domain, the following proposition yields.

Proposition 3.8. Let < be a reduced ring. Then the following statements are equivalent;

(a) < is a prime wπ-R ring.

(b) < is a prime wwFπ-R ring.

(c) < is a simple.

Theorem 3.6. Let < be a semiprime right Goldie ring such that every essential right ideal of < is an ideal. Then,

the following are equivalent.
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(a) < is a right wπ-R ring.

(b) < is a right wwFπ-R ring, where Mww(a) contains an element that is not a nonzero left zero divisor

whenever a is a regular element.

(c) < is a semi-simple artinian.

Proof. (a)⇐⇒(c), [10, Theorem 3.4].
For (b) =⇒(c), let < be a semiprime right Goldie ring. Then every essential right ideal of < contains
a regular element. Let I be a proper essential right ideal of <. Then I contains a regular element a.
Since < is wwFπ-R, then I containsMww(a). Hence, Mww(a) contains an element that is not a nonzero
left-zero divisor. Therefore, I = < according to Proposition 3.3. Suppose J is a proper right ideal of <.
Then there exists a right ideal K ⊂ <where J +K = J ⊕K that is essential. Hence, J ⊕K = <. Thus,
< is semi-simple artinian.
For (c) =⇒ (b), since < is a semi-simple artinian right ring, then it is a von Neumann regular and
therefore, it is a rightwwFπ-R ring. Also, for each regular a,Mww(a) contains a non-zero left divisor. �

Definition 3.4. [3] For an element a ∈ < is called a right semi-Fπ-regular if there exist 0 6= c ∈ < and t ∈ <

such that ac = act and r(ac) = r(t). Moreover, < is a right semi-Fπ-regular if and only if all elements of < are

right semi-Fπ-regular elements.

Proposition 3.9. Let < be a ring satisfying that for all 0 6= a ∈ <, there exists 0 6= c ∈ <, such that

r(ac) ∩ <ac< = 0. Then, every right wwFπ-R ring is a right semi-Fπ-regular element.

Proof. Let 0 6= a ∈ <. Then there exists 0 6= c ∈ < such that r(ac)∩<ac< = 0. Since < is a right wwFπ-R
ring, then ac = acd where d ∈ <ac<. We need to show that r(d) = r(ac). If x ∈ r(d), then dx = 0.
Multiplying both sides by ac , we obtain that acdx = 0. Since ac = acd, then acx = 0, hence x ∈ r(ac)

and r(d) ⊆ r(ac). Next, let x ∈ r(ac), then acx = 0. Since ac = acd, then acdx = 0, hence d ∈ <ac< and
then dx ∈ <ac<. However, by multiplying both sides by x, we obtain (ac)x = (acd)x. Thus, acdx = 0

and dx ∈ r(ac). Hence, dx ∈ r(ac) ∩ <ac< = 0 and dx = 0 implies that x ∈ r(d). Then, r(ac) ⊆ r(d).
Therefore, r(ac) = r(d) and so < is a right semi-Fπ-regular ring. �

4. Relation between Weakly wFπ-Regular Ring and Other Rings

In this section, we examine the relation between a wwFπ-R ring and other rings such as CS-rings,
GMP -rings, FGP -rings, and quasi-duo rings.

Definition 4.1. [16] An < is a right (resp. left) CS-ring if every nonzero right (resp. left) ideal is essential in

a direct summand. Equivalently, every right (resp. left) closed ideal is a direct summand.

Clearly, every maximal right ideal is indeed a right-closed ideal.
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Theorem 4.1. Let < be a right CS-ring. Then < is a left wwFπ-R ring, if for all elements 0 6= a ∈ <, l(ac) is a

two-sided ideal with 0 6= c ∈ <.

Proof. Suppose < is a right CS-ring and for all 0 6= a ∈ <, there exists 0 6= c ∈ < such that l(ac)

is a two-sided ideal. Claim, <ac< + l(ac) = <, if not then there exists a maximal right idealM of
< such that <ac< + l(ac) ⊆ M. Since < is CS-ring andM is maximal right ideal of <, thenM is
a direct summand, such thatM + K = < andM ∩ K = 0, where K is a right ideal of <. Hence,
(<ac< + l(ac)) ∩ K ⊆ M ∩ K = 0. Then, (<ac< + l(ac)) ∩ K = 0. Therefore, <ac< ∩ K = 0 and
l(ac) ∩ K = 0 so kac = 0. Thus, K ⊆ l(ac) which is a contradiction. Hence, <ac<+ l(ac) = < and so
x+ d = 1 where x ∈ <ac< and d ∈ l(ac). Thus, ac = xac and < is a left wwFπ-R ring. �

Definition 4.2. Let < be a ring and I ⊆ < be an ideal. Then I is a right (resp. left) Fπ-pure ideal, if for all

a ∈ I, there exist some c ∈ I and d ∈ I where ac = acd (resp. ac = dac).

Definition 4.3. A right (resp. left) GMP -ring is a ring in which every maximal right (resp. left) ideal is a left

(resp. right) Fπ-Pure ideal.

Theorem 4.2. Suppose < is a right GMP -ring with a ∈ <. If x ∈ l(ac) for some 0 6= c ∈ <, then x ∈ r(ac).

Then < is a right wwFπ-R ring.

Proof. Let < be a right GMP -ring, and suppose with aim of contradiction, that <ac< + r(ac) 6= <.
Then, a maximal right idealM of < exists such that <ac<+ r(ac) ⊆M. Since < is a right GMP -ring,
thenM is left Fπ-pure ideal. Then, for all a ∈ M, there exist some 0 6= c, t ∈ M such that ac = tac.
Then ac− tac = 0 and 1− t ∈ r(ac) then 1− t ∈ l(ac). Therefore, 1− t ∈M, which is a contradiction.
Therefore, <ac< + r(ac) = <. Let x ∈ <ac< and d ∈ r(ac) such that x + d = 1. By multiplying both
sides by ac we obtain that xac = ac. Therefore, < is a right wwFπ-R ring. �

Definition 4.4. [16] An < is a right (resp. left) quasi-duo ring whenever every maximal right (resp. left)

ideal of < is a two-sided ideal.

Lemma 4.1. Let < be a quasi-duo ring and a left GMP-ring. Then < is a right wwFπ-R ring.

Proof. Let < be a quasi-duo ring and a left GMP-ring. Then there is a maximal right idealM⊂ < such
that <ac< + r(ac) ⊆ M. M is a right Fπ-pure ideal since < is a left GMP -ring. Then, for all a ∈ M

and 0 6= c ∈M, there exists t ∈M such that ac = act, then ac(1− t) = 0. Therefore, 1− t ∈ r(ac) ⊆M,
and so 1 ∈Mwhich is a contradiction. Therefore, <ac<+ r(ac) = <. Let x ∈ <ac< and d ∈ r(ac) such
that x+ d = 1. Then by multiplying both sides by ac, we obtain that ac = acx, and therefore < is a right
wwFπ-R ring. �
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Definition 4.5. [1] A right (resp. left) FGP -injective is a right (resp. left) <-module B where for any a ∈ <

there exists 0 6= c ∈ < such that 0 6= ac = ca, and any right (resp. left) <-homomorphism of ac< (resp. <ac)

into B can be extended to one of <r (resp. <l) into B.

Theorem 4.3. Let < be a ring with every simple right <-module is an FGP -injective module. Then < is a right

wwFπ-R ring.

Proof. Let < be a ring with every simple right <-module is an FGP -injective module. Claim for any
a ∈ < there exists 0 6= c ∈ < where 0 6= ac = ca such that <ac< + r(ac) = <. If not, then there
is a maximal right idealM of < such that <ac< + r(ac) ⊆ M. Define a map f : ac< → </M by
f(acx) = x +M for all x ∈ <. Note that f is well defined right homomorphism. Since </M is an
FGP -injective, then for ȳ ∈ </Mwe have, f(acx) = (y+M)(acx) = yacx+M. Since f(acx) = x+M,
then x +M = yacx +M. In particular, let x = 1 and so 1 +M = yac +M. Hence, 1 − yac ∈ M

implies 1 ∈Mwhich is a contradiction. Hence, <ac<+ r(ac) = <. Then, for x ∈ <ac< and d ∈ r(ac)

we have x+ d = 1. Hence, ac = acx and < is a right wwFπ-regular ring. �

Lemma 4.2. Let < be a ring. If for a ∈ <, there exists 0 6= c ∈ < such that l(ac) ⊆ r(ac), then <ac<+ r(ac)

is an essential right ideal of <.

Proof. Assume that (<ac<+ r(ac)) ∩ I = 0, where I is a non-zero right ideal of <. Then <ac< ∩ I = 0

and r(ac) ∩ I = 0. Since Iac ⊆ <ac< and Iac ⊆ I , then Iac ⊆ <ac<∩ I = 0 implies I ⊆ l(ac) ⊆ r(ac).
Therefore, I = 0, which is a contradiction. Hence, <ac<+ r(ac) is an essential right ideal of <. �

Corollary 4.1. [2] If < is a ring whose simple singular right <-modules are FGP -injective, then the center

C(<) of < is a regular ring.

Theorem 4.4. If < is a ring with every simple singular right module is an FGP -injective, and for any a ∈ <,

there exists 0 6= c ∈ < such that l(ac) ⊆ r(ac). Then < is a right wwFπ-R ring, and the C(<) is a regular ring.

Proof. Let < be a ring with every simple singular right module is an FGP -injective. To prove that for
any a ∈ <, there is 0 6= c ∈ < such that <ac< + r(ac) = <, suppose with the seek of contradiction
that this is not true. Then there exists a maximal right idealM of < such that <ac< + r(ac) ⊆ M.
Using Lemma 4.2, <ac< + r(ac) is an essential right ideal of <, and thenM must be essential in <.
Hence, </M is an FGP -injective. Let f : ac< → </M defined by f(acx) = x +M for all x ∈ <.
Note that f is a well-defined <-homomorphism. Since </M is an FGP -injective, then for ȳ ∈ </M
such that f(acx) = (y +M)(acx) = yacx+M. Since f(acx) = x+M, then x+M = yacx+M. Let
x = 1 and so 1 +M = yac +M, then 1 − yac ∈ M implies 1 ∈ M which is a contradiction. Hence,
<ac<+ r(ac) = <, and t+ d = 1 where t ∈ <ac< and d ∈ r(ac). Therefore, act = ac, and < is a right
wwFπ-R ring. Moreover, C(<) is a regular ring by Corollary 4.1. �



Asia Pac. J. Math. 2025 12:86 10 of 13

5. Weakly F*π-Regular and Weakly wF*π-Regular Rings

In this section, we define wwF*π-R and wF*π-R rings. In addition, we introduce the relationship
between wwFπ-R and wFπ-R rings with a 2-primary ring.

Definition 5.1. (a) A ring < is identified as a right (resp. left) wF*π-R ring if for an ideal I of < and

a /∈ I, there exist 0 6= c /∈ I and t, s ∈ < such that ac = actacs (resp. ac = tacsac).

(b) A ring < is identified as a right (resp. left) wwF*π-R ring if for an ideal I of < and a /∈ I, there exist

0 6= c /∈ I and x ∈ <ac< such that ac = acx (resp. ac = xac).

Example 5.1. Let < = Z6 is a wF*π-R ring. The ideals of Z6 are I1 = {0}, I2 = {0, 2, 4}, I3 = {0, 3}, and

I4 = {0, 2, 4}. Then, for every a ∈ Z6 and a /∈ Ij , where j ∈ {1, 2, 3, 4}, there exist c /∈ Ij and b1, b2 ∈ Z6

such that ac = acb1acb2.

Lemma 5.1. (a) Every right wF*π-R ring is a right wFπ-R ring.

(b) Every right wwF*π-R ring is a right wwFπ-R ring.

Proof. (a) Let < be a wF*π-R ring and a ∈ <. If 0 = a ∈ < done. Suppose 0 6= a ∈ <, and take
I = {0}. Then, there exist c /∈ I and b1, b2 ∈ <where ac = acb1acb2. Since, c /∈ I then 0 6= c ∈ <.
Hence, for every a ∈ <, there exist 0 6= c ∈ < and b1, b2 ∈ < such that ac = acb1acb2. Hence, <
is a wFπ-R ring.

(b) Straightforward using a similar argument in (a).
�

However, the converse of the above assertion is not true. For example, let< = Z16 and I = {0, 4, 8, 12}

be an ideal of <. In this case, < is wFπ-R but not wF*π-R (wwF*π-R). Since for a = 2 /∈ I, there is no
such an element c /∈ I and b1, b2 ∈ Z16 (no x ∈ 2cZ16) such that ac = acb1acb2 (ac = acx).

Theorem 5.2. If < is a right wF*π-R, and I is an ideal of a ring <, then </I is a right wF*π-R.

Proof. Let < be a right wF*π-R ring. We need to show that </I is a right wF*π-R. Suppose <̄ = </I,
and J̄ be an ideal of <̄ with ā /∈ J̄ . Since < is right wF*π-R, then a /∈ J when J is an ideal of <. Then,
there exist 0 6= c /∈ J and b1, b2 ∈ < such that ac = acb1acb2. Hence, āc̄ = āc̄b̄1āc̄b̄2. Since c /∈ J , then
c̄ /∈ J̄ and b̄1, b̄2 ∈ <̄. Therefore, < is a right wF*π-R ring. �

A similar argument can be used to prove the assertion below:

Theorem 5.3. Let I be an ideal of a ring <. If < is a right wwF*π-R, then </I is a right wwF*π-R.

Theorem 5.4.
∏
<i is a right wF*π-R ring if and only if <i is a right wF*π-R all i.
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Proof. Let ∏<i be a wF*π-R ring and a /∈ I where I is ideal in <i. Then, Ī = {(a1, a2, . . . , ai, . . .) : aj ∈

<i, for all j 6= i, ai ∈ I} is an ideal of ∏<i and ā = (0, . . . , a, 0, . . .) /∈ Ī. since ∏
<i is wF*π-R, then

there exist c̄ /∈ Ī with c̄ = (c1, c2, . . . , ci, . . .), and b̄, d̄ ∈
∏
<i where āc̄ = āc̄b̄āc̄d̄. As c̄ /∈ Ī, we have

ci /∈ I; otherwise, a contradiction. Thus, aci = acibiacidi ∈ <i, and hence, <i is wF*π-R.
Conversely, let <i be a right wF*π-R, for all I. Suppose a /∈ Ī where Ī is an ideal in∏

<i. Since a /∈ Ī,
there is at least ai /∈ Ii = {ii : (i1, i2, . . . , ii, . . .) ∈ Ī}. As <i is right wF*π-R, there is ci /∈ Ii and
bi, di ∈ <i where aici = aicibiaicidi. Hence, ac = acbacd where c = (0, . . . , ci, 0, . . .) /∈ Ī; otherwise,
ci ∈ Ii a contradiction. Therefore,

∏
<i is wF*π-R. �

A similar argument can be used to prove the assertion below:

Theorem 5.5.
∏
<i is a right wwF*π-R ring if and only if <i is a right wwF*π-R all i.

Definition 5.2. [4] A 2-primal ring is a ring < that satisfied P(<) = N (<). Equivalently, if </P(<) is a

reduced ring.

Lemma 5.2. [4] A ring < is 2-primal if and only if every minimal prime ideal is completely prime.

Theorem 5.6. [12] Let < be a reduced ring. Then the following statements are equivalent:

(a) < is a right w-R.

(b) < is a right wπ-R.

(c) Every prime ideal of < is a maximal.

(d) Every prime factor of < is a simple domain.

Lemma 5.3. Let < be a 2-primal ring, and </P(<) is a right wwFπ-R ring. Then every prime ideal of < is

maximal.

Proof. Let P ⊂ < be a prime ideal. Using Lemma 5.2, there is a minimal prime ideal X of < that is
completely prime, since < is a 2-primal. Let <̄ = </X, then <̄ is a wwFπ-R. Let 0 6= ā ∈ <̄. There exists
0 6= c̄ ∈ <̄ such that āc̄ = āc̄b̄, where b̄ ∈ <̄āc̄<̄. Then, āc̄(1− b̄) = 0 implies that 1 = b̄ ∈ <̄āc̄<̄. Hence,
<̄ is a simple ring and therefore,X is a maximal ideal and so is P. �

Corollary 5.1. [4] Suppose < is a 2-primal ring. Then the following statements are equivalent:

(a) </P(<) is a right w-R ring.

(b) </P(<) is right wπ-R ring.

(c) Every prime ideal of < is maximal.

According to Corollary 5.1, Lemma 5.3, and the fact that every right wπ-R is right wwFπ-R, the
following assertion yields.

Theorem 5.7. Let < be a 2-primal ring. Then the following statements are equivalent:
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(a) </P(<) is a right w-R ring.

(b) </P(<) is a right wπ-R ring.

(c) Every prime ideal of < is maximal.

(d) </P(<) is a right wwFπ-R ring.

Since every reduced ring is 2-primal, and every right Gw-R is a right wwFπ-R ring. Then, the
following theorem yields by applying Theorem 5.2, Lemma 5.3, and Theorem 5.6.

Theorem 5.8. Let < be a reduced ring. Then the following conditions are equivalent:

(a) < is a right w-R.

(b) < is a right wπ-R.

(c) Every prime ideal of < is a maximal.

(d) Every prime factor of < is a simple domain.

(e) < is right wwF*π-R.

Birkenmeier, Kim, and Park [5, Example 1.7], constructed a ring <, consisting of upper triangular
matrices over a Weyl algebraW. They showed that < is a 2-primal and its factor ring </P(<) ∼= W×W

is a right wπ-R; however, < itself failed to be a right wπ-R. This example demonstrates that even when
a ring is 2-primal and its prime factor ring is right wπ-R, the ring itself need not be right wπ-R. Hence,
they concluded that a 2-primal condition does not guarantee that a ring is wπ-regular, even if its prime
factor ring satisfies this property.
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