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Abstract. The aim of this paper is to investigate the boundedness of periodic Fourier integral operators in
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1. Introduction

A periodic Fourier integral operator (also called Fourier series operator) is defined by providing a
symbol and a phase function. Such operator can be expressed as follows

Aφ,af(x) =
∑
ξ∈Zn

e2πiφ(x,ξ)a(x, ξ)(FTnf)(ξ), ∀f ∈ C∞(Tn),

where (FTnf)(ξ) is the Fourier transform on the torus Tn, a(x, ξ) denotes the symbol and φ(x, ξ) is the
phase function. These operators were first introduced by M. Rushansky and V. Turunen [13]. They
naturally emerged in the solutions of hyperbolic Cauchy problems with periodic conditions, as can be
seen, for example in [ [13], pages 410-411].

The boundedness of Fourier integral operators in a functional space is contingent upon conditions
on the symbol a(x, ξ) and the phase φ(x, ξ). Several authors have established results on the extension of
Fourier integral operators in the Lp(Rn) spaces depending on the values of the real order of the symbol
(see [14] and [9]). Furthermore, D. Ferreira andW. Staubach [15] investigated the regularity of Fourier
integral operators within weighted Lebesgue spaces Lpw(Rn), where the weight function belongs to the
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Muckenhoupt space Ap, for 1 < p <∞. In [18], K. Alexei Yu and S. Ilya M. studied the boundedness
of pseudo differential operators associated to a symbol in certain class of Hörmander.

Also, the study of periodic Fourier integral operators gives rise to a fundamental issue pertaining
to a topological property of these operators, namely the question of their boundedness in functional
spaces. For example, the study of the Lp-boundedness of periodic Fourier integral operators with a
symbol a(x, ξ) ∈ Sm1,0(Tn × Zn) i.e.

|∂βx4α
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−|α|,

with a positively homogeneous phase function of degree 1 (for ξ 6= 0), belonging to C∞(Tn × Rn\{0})

whose Hessian matrix is non-degenerate in the spaces Lp(Tn), was studied by D. Cardona, R. Mes-
siouene and A. Senoussaoui [4]. Moreover, D. Cardona in [3] studied the particular case when the
phase function φ(x, ξ) = x · ξ and established sufficient conditions on the symbol a(x, ξ) to ensure
boundedness of periodic pseudo-differential operators in the spaces Lp(Tn). However, it is obvious
that Lebesgue spaces with a constant exponent are not sufficient for modelling complex physical
phenomena, in particular those exhibiting spatial variation in properties, such as heterogeneous ma-
terials or non-Newtonian fluids. This led to the generalization to the variable exponent Lebesgue
spaces Lp(·)(Rn). Some authors such as [2], [1] focused on the extension of differential operators and
pseudo-differential operators in Lp(·)(Rn) and Lp(·)w (Rn).

In this paper, we focus on the study of periodic Fourier integral operators in the Lebesgue spaces
with variable exponent on the n-dimensional torus Lp(·)(Tn).We first establish the boundedness of
periodic Fourier integral operators in Lp0w (Tn),when 1 < p0 <∞ and deduce the boundedness of these
operators in Lp(·)(Tn), using the technique developed by V. Rabinovich and S. Samko [11]. We also
establish boundedness results for periodic Fourier integral operators in Lp(·)w (Tn). The rest of the paper
is organized as follows. The Section 2 is devoted to preliminaries on variable exponent and weight
function in the torus. In section 3, we provide basic tools on periodic Fourier integral operators

2. Preliminaries

The two first sections present the basic definitions and useful results in the sequel. For more
informations, see references [7], [2], [6], [13].

2.1. On the torus.

(1) The Torus is the quotient space

Tn = Rn/Zn = (R/Z)n,

obtained by the equivalence relation x ∼ y ⇐⇒ x − y ∈ Zn, where Zn denotes the additive
group of integral coordinate.
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(2) We can identify Tn with the cube [0, 1)n ⊂ Rn, where the measure on the torus coincides with
the restriction of the Euclidean measure on the cube.

(3) A function f : Rn → C is 1-periodic if f(x + l) = f(x) ∀x ∈ Rn and l ∈ Zn. This definition
shows that there is a correspondence between functions defined on Rn and those defined on
Tn.

To define Fourier integral operators, as well as operator series, we need the notion of Fourier transform.

Definition 2.1. The Fourier transform is defined by

FTn : C∞(Tn)→ S(Zn), f 7−→ f̂ ,

where (FTnf)(ξ) = f̂(ξ) =

∫
Tn
e−2πix·ξf(x)dx.

Note that FTn is a bijection and its inverse F−1Tn : S(Tn)→ C∞(Zn) is defined by:

f(x) =
∑
ξ∈Zn

e2πix·ξ f̂(ξ).

2.2. On periodic Fourier integral operators. Given that the notion of partial derivative is no longer
valid when ξ ∈ Zn, we use the concept of forward and backward difference operators, also known as
discrete derivatives.

Definition 2.2. Let (δj)1≤j≤n be the canonical basis of Rn. For a function a : Zn → C the forward and
backward partial difference operators of a are defined respectively by

4ξja(ξ) = a(ξ + δj)− a(ξ), 4̄ξja(ξ) = a(ξ)− a(ξ + δj). (1)

For α = (α1, · · · , αn) ∈ Nn0 ,

4α
ξ = 4α1

ξ1
· · ·4αn

ξn
; 4̄α

ξ = 4̄α1
ξ1
· · · 4̄αn

ξn
. (2)

Lemma 2.3 ( [13] Lemma 3.3.10). Assume that ϕ,ψ : Zn → C. Then for all α ∈ Nn,∑
ξ∈Zn

ϕ(ξ)∆α
ξ ψ(ξ) = (−1)|α|

∑
ξ∈Zn

(
∆̄α
ξ ϕ(ξ)

)
ψ(ξ) (3)

provided that both series are absolutely convergent.

Definition 2.4. Let m ∈ R, 0 ≤ δ, ρ ≤ 1. The Hörmander symbol class Smρ,δ(Tn × Zn) consists of
functions a(x, ξ) ∈ C∞(Tn × Zn) which satisfy the estimation: for α, β ∈ Nn, there exists a constant
Cα,β > 0 such that ∣∣∣∆α

ξ ∂
β
xa(x, ξ)

∣∣∣ ≤ Cα,β〈ξ〉m−ρ|α|+δ|β|, ∀x ∈ Tn, ∀ξ ∈ Zn. (4)
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The periodic Fourier integral operator (or Fourier series operator) associated to the symbol a(x, ξ) and
phase function φ(x, ξ) denoted by Aφ,a is defined by

Aφ,af(x) =
∑
ξ∈Zn

e2πiφ(x,ξ)a(x, ξ)(FTnf)(ξ), ∀f ∈ C∞(Tn), (5)

where φ : Tn × Zn → R is positively homogeneous of degree 1 in ξ 6= 0 and the function x 7→ e2πiφ(x,ξ)

is 1-periodic for all ξ ∈ Zn.

In the sequel, the operator Aφ,a will be denoted A.
In [13], the authors mentioned the result below which shows that properties of toroidal symbols
automatically imply certain properties for differences. The proof follows their Proposition 3.3.4: let
a(x, ξ) ∈ Ck(Tn × Zn), k ∈ N. For every α ∈ Nn, and β ∈ Nn, |β| ≤ k we have the identity

∆α
ξ ∂

β
xa(x, ξ) =

∑
|γ|≤|α|

(−1)|α−γ|

α
γ

 ∂βxa(x, ξ + γ), ∀(x, ξ) ∈ Tn × Zn. (6)

2.3. Some basic tools on variable exponent and weight functions.

Definition 2.5. Let P(Tn) be the set of all measurable and 1-periodic functions p(·) : Tn → (0,∞]

and let p− = ess infx∈Tn p(x) and p+ = ess supx∈Tn p(x). The function p(·) ∈ P(Tn) is said locally
log-Hölder continuous, abbreviated p ∈ C log

loc (Tn), if there exists a constant clog(p) > 0 such that

|p(x)− p(y)| ≤
clog(p)

− log |x− y|
, x, y ∈ Tn, |x− y| ≤ 1

2
.

Definition 2.6. Let p(·) ∈ P(Tn). The variable exponent Lebesgue space Lp(·)(Tn) is the set of all
measurable, 1-periodic functions f on Tn such that %p(·)

(
f
λ

)
<∞ for some λ > 0, equipped with the

Luxemburg norm
‖f‖Lp(·)(Tn) = inf

{
λ > 0 : %p(·)

(
f

λ

)
≤ 1

}
,

where %p(·)
(
f

λ

)
=

∫
Tn

∣∣∣∣f(x)

λ

∣∣∣∣p(x) dx.
Lemma 2.7. (Theorem 4.3.12, [6]) If p(·) ∈ P(Tn) with p+ <∞, then C∞0 (Tn) is dense in Lp(·)(Tn).

The following results are extremely useful. They are known in the literature for the Euclidean space
Rn. Let’s denote byM the maximal operator andM# the sharp operator:

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dx,

M#(f)(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)− fB(x)| dy,

where fB(x) = sup
r>0

1

B(x, r)

∫
B(x0,r)

|f(y)|dy.
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Theorem 2.8. Let p(·) ∈ P(Tn). Suppose 1 < p− ≤ p+ <∞. Then the following properties are equivalent:

(1) The maximal operatorM is bounded in Lp(·)(Tn);

(2) The maximal operatorM is bounded in Lp′(·)(Tn), with 1
p(·) + 1

p′(·) = 1;

(3) There exists p0 > 1 such that the maximal operator is bounded in L(p(·)/p0)(Tn).

Since Tn is identified with the cube [0; 1)n ⊂ Rn, the above theorem is similar to the Theorem 3.35
of [5] where Ω or Rn is replaced by Tn.

Definition 2.9. An operator T is of weak type (1, 1) if there is a constant C > 0 such that for every
λ > 0 we have

meas {x ∈ Tn : |Tu(x)| > λ} ≤ C
‖u‖L1(Tn)

λ
.

Theorem 2.10 ( [1] Theorem 2.1). Let T be a linear operator associated to a kernelK that satisfies the following

conditions

sup
|α|=1

sup
x,y∈Tn

‖y‖n+1 |∂αxK(x, y)| <∞, (7)

sup
|β|=1

sup
x,y∈Tn

‖x‖n+1
∣∣∣∂βyK(x, y)

∣∣∣ <∞ (8)

and T is of weak type (1, 1). Then for 0 < s < 1, there exists a constant Cs > 0 such that

M#
s (Tf) (x) ≤ CsMf(x), ∀f ∈ C∞0 (Tn). (9)

The weight functions in Lp spaces are useful in the proof of general and precise regularity results.

Definition 2.11. Let w ∈ L1
loc(Tn) a non-negative function. Then w belongs to the Muckenhoupt

weights space Ap0 for 1 < p0 <∞ if

[w]p0 := sup
Q

(
1

|Q|

∫
Q
w(x)dx

)(
1

|Q|

∫
Q
w(x)

− 1
p0−1dx

)p0−1
<∞, (10)

where Q is a cube in Tn.
By definition w ∈ A1 if there exists a constant C > 0 such thatMw(x) ≤ Cw(x) for all x ∈ Tn.

Example 2.1 ( [15] Example 1). The function |x|α is an Ap weighted, for 1 < p < ∞, if and only if
−n < α < n(p− 1).

Lemma 2.12 ( [8] Property 2). Suppose that w is in Ap for some p ∈ [1, ∞] and 0 < δ < 1. Then w
belongs to Aq where q = δp+ 1− δ. Moreover, [wδ]p ≤ [w]δp.

Next, we state the extrapolation theorem of Rubio de Francia [5] applied to the torus.
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Theorem 2.13. Suppose that for p0 > 1 and F is a family of pairs non-negative measurable functions such that

for all w ∈ A1 ∫
Tn
F (x)p0w(x)dx ≤ cp0

∫
Tn
G(x)p0w(x)dx, (F,G) ∈ F . (11)

If p(·) ∈ P(Tn), p0 ≤ p− ≤ p+ <∞ and the maximal operatorM is bounded on L
(
p(·)
p0

)′
(Tn), then there exists

a constant C > 0 such that

‖F‖Lp(·)(Tn) ≤ C ‖G‖Lp(·)(Tn) , (F,G) ∈ F . (12)

Proof. Since the torus is identified to the cube [0; 1)n ⊂ Rn, we replace Rn by Tn in the Theorem
4.24 [5]. �

Definition 2.14. Let w ∈ L1
loc(Tn) be a weight.

(1) If 1 < p <∞, Lpw(Tn) is the space of all functions f : Tn −→ C with finite quasi-norm

‖f‖Lpw(Tn) =

∫
Tn
|f(x)|pw(x)dx.

(2) If p(·) ∈ P(Tn) such that 1 < p− ≤ p(x) ≤ p+ < ∞, Lp(·)w (Tn) is the space of all functions
f : Tn −→ C with finite quasi-norm

‖f‖
L
p(·)
w (Tn) = ‖wf‖Lp(·)(Tn) .

Proposition 2.15. Let p(·) ∈ P(Tn) such that 1 < p− ≤ p(x) ≤ p+ <∞ and 0 < s < p−. If w ∈ L1
loc(Tn)

is a weight, then

‖f‖
L
p(·)
w (Tn) = ‖fs‖

1
s

L
p(·)
s

ws (Tn)
. (13)

The following theorem is proved for constant p in the non-weighted case in [ [17], p. 148] and for
variable p(·) in the weighted case in [10], Lemma 4.1.

Theorem 2.16. Let T be an operator with kernelK such that

Tf(x) =

∫
Tn
K(x, x− y)f(y)dy.

Let p(·) ∈ C log
loc (Tn) such that 1 < p− < p+ < ∞ and p(x) = p∞ for |x| ≥ R where R > 0. Suppose also a

weight function w ∈ Ap(·) of the form

w(x) = (1 + |x|)β
n∏
k=1

|x− xk|βk , xk ∈ Tn.

Then if
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− n

p(xk)
< βk <

n

p′(xk)
and − n

p∞
< β +

∑n
k=1 βk <

n

p′∞
, k = 1, · · · , n, there exists a constant

C > 0 such that

‖Tf‖
L
p(·)
w (Tn) ≤ C

∥∥∥M#(|Tf |)
∥∥∥
L
p(·)
w (Tn)

, ∀f ∈ C∞0 (Tn). (14)

3. Mains Results

We begin by proving the regularity of periodic Fourier integral operator in the weighted Lebesgue
space Lp0w (Tn), where the weight function is locally integrable and positive. To this purpose let’s set up
the following lemma.

Lemma 3.1. For all multi-indices α ∈ Nn and a(x, ξ) ∈ C∞(Tn × Zn) we have∑
ξ∈Zn

e2πi(x−y)·ξa(x, ξ) = (−1)|α|(e2πi(x−y) − 1)−α
∑
ξ∈Zn

(
4̄α
ξ e

2πi(x−y)·ξ
)
a(x, ξ).

Proof. By using the identity (1) we obtain:

∆̄α1
ξ1
e2πi(x−y)·ξ = e2πi(x−y)·ξ − e2πi(x−y)·(ξ+δ1)

= e2πi(x−y)·ξ − e2πi(x−y)·ξ · e2πi(x−y)·δ1

= −e2πi(x−y)·ξ
(
e2πi(x−y)·δ1 − 1

)
.

−∆̄α1
ξ1
e2πi(x−y)·ξ = e2πi(x−y)·ξ

(
e2πi(x−y)·δ1 − 1

)
= e2πi(x−y)·ξ

(
e2πi(x−y) − 1

)
.

Now the identity (2) with α = (α1 · · ·αn) and ξ = (ξ1 · · · ξn) gives

(−1)|α|∆̄α
ξ e

2πi(x−y)·ξ =
(
e2πi(x−y) − 1

)α
· e2πi(x−y)·ξ.

Thus

e2πi(x−y)·ξ = (−1)|α|
(
e2πi(x−y) − 1

)−α
∆̄α
ξ e

2πi(x−y)·ξ.

This yields the result:∑
ξ∈Zn

e2πi(x−y)·ξa(x, ξ) = (−1)|α|
(
e2πi(x−y) − 1

)−α ∑
ξ∈Zn

(
∆̄α
ξ e

2πi(x−y)·ξ
)
a(x, ξ).

�

Theorem 3.2. Let 1 < p0 < ∞ and w ∈ Ap0 . Let A : C∞(Tn) → C∞(Tn) be the periodic Fourier integral

operator defined by

Af(x) =
∑
ξ∈Zn

e2πiφ(x,ξ)a(x, ξ)(FTnf)(ξ), ∀f ∈ C∞(Tn),
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where φ(x, ξ) : Tn × Zn → R is a phase function such that x 7→ e2πiφ(x,ξ) is 1-perodic for all ξ ∈ Zn and

a(x, ξ) : Tn × Zn → C is a symbol satisfying the Hörmander condition

|∂βx4α
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−ρ|α|+δ|β|,

withm ≤ (ρ− 1)| 1p0 −
1
2 | − ε and α, β ∈ Nn; ε > δ. Then the periodic Fourier integral operator A is bounded

on Lp0w (Tn).

Proof. The symbol a(x, ξ) ∈ Smρ,δ(Tn × Zn) is continuous and thus admits a Fourier series expansion
given by

a(x, ξ) =
∑
η∈Zn

e2πix·ηâ(η, ξ) for all η ∈ Zn.

Let us assume that f ∈ C∞0 (Tn). The decomposition of the phase function φ(x, ξ) = x · ξ +ψ(ξ), where
ψ(ξ) is a real values function belonging to C∞(Rn\ {0}) and is positively homogeneous of degree 1 in
ξ 6= 0 gives

Af(x) =
∑
ξ∈Zn

e2πiφ(x,ξ)a(x, ξ)(FTnf)(ξ)

=
∑
ξ∈Zn

e2πi(x·ξ+ψ(ξ))a(x, ξ)(FTnf)(ξ)

=
∑
ξ∈Zn

∑
η∈Zn

e2πi(x·ξ+ψ(ξ))e2πix·ηâ(η, ξ)(FTnf)(ξ)

=
∑
η∈Zn

e2πix·η

∑
ξ∈Zn

e2πix·ξâ(η, ξ)(FTnf)(ξ)e2πiψ(ξ)

 .

One can see the expression ∑
ξ∈Zn

e2πix·ξâ(η, ξ)(FTnf)(ξ)e2πiψ(ξ)

as the symbol of the product of the two operators â(η,Dx) and e2πiψ(Dx). Namely(
â(η,Dx)e2πiψ(Dx)

)
f(x) =

∑
ξ∈Zn

e2πix·ξâ(η, ξ)e2πiψ(ξ)(FTnf)(ξ).

It follows that
Af(x) =

∑
η∈Zn

e2πix·ηâ(η,Dx)f(x)e2πiψ(Dx),

where
â(η,Dx)f(x) =

∑
ξ∈Zn

e2πix·ξâ(η, ξ)(FTnf)(ξ)

is the Fourier multiplier.
We now estimate Af with respect to â(η,Dx)f .
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‖Af‖Lp0w (Tn) ≤


∫
Tn

∑
η∈Zn

∣∣∣e2πix·ξâ(η,Dx)f(x)e2πiψ(Dx)
∣∣∣p0 w(x)dx


1
p0

≤
∑
η∈Zn

{∫
Tn
|â(η,Dx)f(x)|p0 w(x)dx

} 1
p0

≤
∑
η∈Zn

‖â(η,Dx)f(x)‖Lp0w (Tn) . (15)

The next step is to estimate the norm ‖â(η,Dx)f‖Lp0w (Tn).

‖â(η,Dx)f‖Lp0w (Tn) =

{∫
Tn
|â(η,Dx)f(x)|p0 w(x)dx

} 1
p0

≤


∫
Tn

∣∣∣∣∣∣
∑
ξ∈Zn

e2πix·ξâ(η, ξ)f̂(ξ)

∣∣∣∣∣∣
p0

w(x)dx


1
p0

≤


∫
Tn

∣∣∣∣∣∣
∑
ξ∈Zn

∫
Tn
e2πi(x−y)·ξâ(η, ξ)f(y)dy

∣∣∣∣∣∣
p0

w(x)dx


1
p0

=


∫
Tn

∣∣∣∣∣∣
∫
Tn

∑
ξ∈Zn

e2πi(x−y)·ξâ(η, ξ)f(y)dy

∣∣∣∣∣∣
p0

w(x)dx


1
p0

.

We then apply Lemma 3.1 to deduce:

‖â(η,Dx)f‖Lp0w (Tn)

≤


∫
Tn

∣∣∣∣∣∣
∫
Tn

∑
ξ∈Zn

[
(−1)|α|(e2πi(y−x) − 1)−α4̄α

ξ e
2πi(x−y)·ξa(η, ξ)

]
f(y)dy

∣∣∣∣∣∣
p0

w(x)dx


1
p0

.

By Lemma 2.3, and the second-order multidimensional Taylor expansion around (0, 0) to the function
e2πi(x−y):

e2πi(x−y) = 1 +∇e0 · 2πi(x− y) + o(‖x− y‖2)

= 1 + 2πi(x− y) + o(‖x− y‖2),

where∇e0 = (1,−1) is the gradient of the function e2πi(x−y) at the point (0, 0), we obtain

‖â(η,Dx)f‖Lp0w (Tn)

≤


∫
Tn

∣∣∣∣∣∣
∫
Tn

∑
ξ∈Zn

[
(2πi)−|α| (x− y)−α e2πi(x−y)·ξ4α

ξ â(η, ξ)
]
f(y)dy

∣∣∣∣∣∣
p0

w(x)dx


1
p0

≤


∫
Tn

∣∣∣∣∣∣
∑
ξ∈Zn

∫
Tn

∣∣∣(2πi)−|α| (x− y)−α f(y)
∣∣∣ dy|4α

ξ â(η, ξ)|

∣∣∣∣∣∣
p0

w(x)dx


1
p0
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≤ (2π)−|α|


∫
Tn

∣∣∣∣∣∣
∑
ξ∈Zn

∣∣4α
ξ â(η, ξ)

∣∣ ∫
Tn
| (x− y)−α f(y)|dy

∣∣∣∣∣∣
p0

w(x)dx


1
p0

≤ (2π)−|α|


∫
Tn

∣∣∣∣∣∣
∑
ξ∈Zn

∣∣4α
ξ â(η, ξ)

∣∣ (| (x− ·)−α | ? |f(·)|
)

(x)

∣∣∣∣∣∣
p0

w(x)dx


1
p0

≤ (2π)−|α|

∑
ξ∈Zn

∣∣4α
ξ â(η, ξ)

∣∣p0 1
p0 {∫

Tn

∣∣| (x− ·)−α | ? |f(·)|(x)
∣∣p0 w(x)dx

} 1
p0

.

Note that the convolution norm on the weighted spaces gives{∫
Tn

∣∣∣∣(x− ·)−α∣∣ ? |f(·)|(x)
∣∣p0 w(x)dx

} 1
p0

≤
∥∥∥|·|−|α|∥∥∥

L1
w(Tn)

‖f‖Lp0w (Tn)

≤ Cα ‖f‖Lp0w (Tn) .

Let’s use the estimate ∣∣4α
ξ â(η, ξ)

∣∣ ≤ Cr,α〈η〉−r〈ξ〉m−ρ|α|+rδ,∀r ∈ N0 (16)

established in [13], Lemma 4.2.1. We obtain

‖â(η,Dx)f‖Lp0w (Tn) ≤ (2π)−|α|Cα

∑
ξ∈Zn

Cr,α〈η〉−rp0〈ξ〉(m−ρ|α|+rδ)p0
 1

p0

‖f‖Lp0w (Tn)

≤ (2π)−|α|Cr,α〈η〉−r
∑
ξ∈Zn
〈ξ〉(m−ρ|α|+rδ)p0

 1
p0

‖f‖Lp0w (Tn) .

The series converge for 1 < r ≤ [ εδ ] + 1. So, there exists a constant Cp0,r,α > 0 such that

‖â(η,Dx)f‖Lp0w (Tn) ≤ (2π)−|α|Cr,α〈η〉−rCp0,r,α ‖f‖Lp0w (Tn)

≤ C ′p0,r,α〈η〉
−r ‖f‖Lp0w (Tn) .

We are now ready to formulate the boundedness of the operator A. If we go back to the estimate (15)
we can write

‖Af‖Lp0w (Tn) ≤
∑
η∈Zn

‖â(η,Dx)f(x)‖Lp0w (Tn)

≤
∑
η∈Zn

C ′p0,r,α〈η〉
−r ‖f‖Lp0w (Tn)

≤

C ′p0,r,α ∑
η∈Zn
〈η〉−r

 ‖f‖Lp0w (Tn) .

Since r > 1, the sum∑
η∈Zn〈η〉−r is finite and there exists a constant C ′′p0,r,α > 0 such that

‖Af‖Lp0w (Tn) ≤ C
′′
p0,r,α ‖f‖Lp0w (Tn) .
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Now, we present a sufficient condition for the boundedness of periodic Fourier integral operators in
generalized Lebesgue spaces Lp(·)(Tn), using Rubio de Francia extrapolation theorem on the torus.

Theorem 3.3. Let φ(x, ξ) ∈ C∞(Tn × Zn) be a phase function such that x 7→ e2πiφ(x,ξ) is 1-periodic for all

ξ ∈ Zn and let a(x, ξ) ∈ C∞(Tn × Zn) be a symbol which satisfies

|4α
ξ ∂

β
xa(x, ξ)| ≤ Cα,β〈ξ〉m−ρ|α| ∀α, β ∈ Nn.

For all p(·) ∈ P(Tn) such that 1 < p− ≤ p(·) ≤ p+ <∞, there exists a constant C > 0 such that the periodic

Fourier integral operator A associated to the symbol a(x, ξ) satisfies

‖Af‖Lp(·)(Tn) ≤ C ‖f‖Lp(·)(Tn) .

Proof. Let f ∈ C∞0 (Tn). Then f ∈ Lp(·)(Tn) since C∞0 (Tn) is dense in Lp(·)(Tn) (Lemma 2.7) .
Moreover, if 1 ≤ p < q <∞, there is a continuous embedding of Muckenhoupt classes Ap ↪→ Aq (see
Lemma 2.12). Let w be a weight function in A1. Since p0 > 1, then w ∈ Ap0 . By Theorem 3.2, the
operator A is bounded in Lp0w (Tn). Moreover, the maximal operator is bounded on L(p(·)/p0)′(Tn) and
(|Af |, |f |) is a pair of positive functions. By Theorem 2.13, the periodic Fourier integral operator A is
bounded in Lp(·)(Tn), and there exists a constant C > 0 such that

‖Af‖Lp(·)(Tn) ≤ C ‖f‖Lp(·)(Tn) .

�

Hereafter is the result of boundedness for periodic Fourier integral operators in weighted Lebesgue
spaces with variable exponent.

Theorem 3.4. Let a(x, ξ) : Tn × Zn → C be a symbol which satisfies the condition

|∂βx∆α
ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−ρ|α|+δ|β|,

where 0 ≤ δ < ρ ≤ 1, the parameterm < −(n+ 1) for all α, β ∈ Nn0 . Let φ : Tn×Zn → R be a phase function

such that the function x 7→ e2πiφ(x,ξ) is 1-periodic and satisfies the condition: there exist a constant C > 0 such

that

|∂αxφ(x, ξ)| ≤ C.

Further, suppose p(·) ∈ C log
loc (Tn) such that 1 < p− ≤ p+ <∞ and p(·) = p∞ for |x| ≥ R where R > 0. Let

w ∈ Ap(·) be a Muckenhoupt weight function of the form w(x) = (1 + |x|)β
n∏
k=1

|x− xk|βk such that for all

xk ∈ Tn,

− n

p(xk)
< βk <

n

p′(xk)
, and − n

p∞
< β +

m∑
k=1

βk <
n

p′∞
, k = 1, . . . , n. (17)
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Then the periodic Fourier integral operator A associated to the symbol a is bounded in Lp(·)w (Tn), and there exists

a constant C ′ > 0 such that

‖Af‖
L
p(·)
w (Tn) ≤ C

′ ‖f‖
L
p(·)
w (Tn) .

Proof. To simplify, we use the expression f . gwhichmeans that f ≤ cg for some independent constant
c > 0.
Let f ∈ C∞0 (Tn) and 0 < t < 1. We have

‖Af‖
L
p(·)
w (Tn) =

∥∥|Af |t∥∥ 1
t

L
p(·)
t

wt
(Tn)

.

In what follows, we will decompose the proof in two steps.
First step: In this step, we establish the estimate

‖Af‖
L
p(·)
w (Tn) .

∥∥∥M#|Af |t
∥∥∥ 1
t

L
p(·)
t

wt
(Tn)

.

Let p(·) ∈ C log
loc (Tn). For all 0 < t < 1, we have p(·)

t ∈ C
log
loc (Tn). Multiplying inequality (17) by t gives

− n
p(xk)
t

< tβk <
n

p′(xk)
t

and − n
p∞
t

< tβ +

n∑
k=1

tβk <
n
p′∞
t

, k = 1, ..., n.

Furthermore, for all 0 < t < 1, we have tp− + 1− t < p−. Thus by Lemma 2.12, the weight function wt

belongs to Ap− . Since the space Ap− ⊂ Ap(·), then wt ∈ Ap(·) . Now, using Theorem 2.16 and the density
of C∞0 (Tn) in Lp(·)w (Tn) (see Lemma 2.7), for all f ∈ C∞0 (Tn),

‖Af‖
L
p(·)
w (Tn) .

∥∥∥M#
(
|Af |t

)∥∥∥ 1
t

L
p(·)
t

wt
(Tn)

.

Second step: For the second step we show that∥∥∥M#
(
|Af |t

)∥∥∥ 1
t

L
p(·)
t

wt
(Tn)
. ‖f‖

L
p(·)
w (Tn) .

Let’s establish the conditions of the Theorem 2.10, whereK(x, y) is the kernel associated to the periodic
Fourier integral operator A :

sup
|α′|=1

sup
x,y∈Tn

‖y‖n+1
∣∣∣∂α′x K(x, y)

∣∣∣ <∞,
sup
|β′|=1

sup
x,y∈Tn

‖x‖n+1
∣∣∣∂β′y K(x, y)

∣∣∣ <∞.
By using the Leibniz formula as well as the estimates on the symbol a and the phase φ, we obtain

∂α
′

x K(x, y) =∂α
′

x

∑
ξ∈Zn

e2πi(φ(x,ξ)−y·ξ)a(x, ξ)


=
∑
ξ∈Zn

∑
|γ|≤|α′|

Cα,γ(2πi)|γ|∂γxφ(x, ξ)∂α
′−γ

x a(x, ξ)e2πi(φ(x,ξ)−y·ξ).



Asia Pac. J. Math. 2025 12:9 13 of 14

Consequently ∣∣∣∂α′x K(x, y)
∣∣∣ ≤∑

ξ∈Zn

∑
|γ|≤|α′|

∣∣∣(2πi)|γ|∂γxφ(x, ξ)∂α
′−γ

x a(x, ξ)e2πi(φ(x,ξ)−y·ξ)
∣∣∣

≤
∑
ξ∈Zn

∑
|γ|≤|α′|

Cα′,γ |∂γxφ(x, ξ)|
∣∣∣∂α′−γx a(x, ξ)

∣∣∣
≤
∑
ξ∈Zn

∑
|γ|≤|α′|

C ′α′,γC〈ξ〉m+δ|α′−γ| <∞.

Since m + δ|α′ − γ| < −n, this ensures convergence with respect to ξ. Moreover, by multiplying∣∣∣∂α′x K(x, y)
∣∣∣ by |y|n+1 and considering the identification of Tn with the cube [0, 1)n, such that for all

y ∈ Tn we have |y| ≤ 1, we can conclude that sup
|α′|=1

sup
x,y∈Tn

‖x‖n+1
∣∣∣∂α′y K(x, y)

∣∣∣ <∞.
We now give an estimate of |∂β′y K(x, y)|.∣∣∣∂β′y K(x, y)

∣∣∣ ≤∑
ξ∈Zn

|(2πi)|β|||ξ||β||a(x, ξ)|

≤
∑
ξ∈Zn

C ′〈ξ〉m+|β′|.

Using the precedent idea for x ∈ Tn we obtain sup
|β′|=1

sup
x,y∈Tn

‖x‖n+1
∣∣∣∂β′x K(x, y)

∣∣∣ <∞.
Note also that if the symbol of integral operators is orderm < −(n+ 1) then this operator is a locally
weak (1, 1) [Seeger [16]]. Since the kernel satisfy (7) and A is a locally weak (1, 1), the Theorem 2.10
yields ∥∥∥M#

(
|Af |t

)∥∥∥ 1
t

L
p(·)
t

wt
(Tn)
.
∥∥M (

|f |t
)∥∥ 1

t

L
p(·)
t

wt
(Tn)

= ‖M (f)‖
L
p(·)
w (Tn) .

Moreover, the maximal operatorM is bounded in Lp(·)w (Tn) (Theorem 2.8). Thus, by the density of
C∞0 (Tn) in Lp(·)(Tn) (Lemma 2.7), we have∥∥∥M#

(
|Af |t

)∥∥∥ 1
t

L
p(·)
t

wt
(Tn)
. ‖M (f)‖

L
p(x)
w (Tn)

. ‖f‖
L
p(·)
w (Tn) .

It follows that

‖Af‖
L
p(·)
w (Tn) . ‖f‖Lp(·)w (Tn) .

�
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