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AsstrACT. This study addresses the analysis of a mixed-type singular differential problem exhibiting
an n-order singularity at the origin. The problem is governed by Dirichlet boundary conditions and
includes an integral constraint with variable limits. We begin by formulating the appropriate functional
framework to rigorously investigate the problem. A two-sided a priori estimate is derived based on energy
inequality techniques. To establish the existence of a solution, we demonstrate the density of the image of
the associated operator, employing regularization operators as a key analytical tool.
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1. INTRODUCTION

Nonlocal boundary value problems have attracted significant attention in mathematical analysis
due to their extensive applications in physics, engineering, and applied sciences. Unlike classical
boundary value problems, which impose conditions at specific points, nonlocal problems involve
boundary conditions dependent on integral constraints or solution values over a region. This nonlocality
introduces additional mathematical challenges, particularly in establishing existence and uniqueness
results.

In recent years, numerous physical phenomena have been modeled using nonlocal mathematical
formulations with integral boundary conditions. These conditions arise in scenarios where direct
measurements of data at specific points are impractical, but average values over a domain can be ob-
tained. For instance, in some applications, describing the solution u = 3 (e.g., pressure or temperature)
at individual points is unfeasible, whereas only its average value along a boundary or a subregion

is accessible. Such models appear in various engineering fields, including heat conduction, plasma
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physics, thermoelasticity, electrochemistry, chemical diffusion, and groundwater flow. The significance
of nonlocal problems has been highlighted in works such as Samarski [1].

The first study addressing second-order partial differential equations with nonlocal integral condi-
tions was conducted by Cannon [10]. Since then, extensive research has been devoted to boundary
value problems involving mixed Dirichlet, Neumann, and integral conditions. Such problems have been
studied in the context of parabolic equations Denche and Marhoune, [13], Marhoune [7], Marhoune
and Ameur [8], Abdelkader Djerad et al [2, 3] hyperbolic equations, and mixed-type equations. Addi-
tionally, elliptic equations with nonlocal operator conditions have been explored by Mikhailov and
Gushin [5] and Skubachevski and Steblov [6].

In this study, we investigate the existence and uniqueness of solutions to a nonlocal boundary value
problem governed by a differential equation with prescribed integral constraints. Analyzing such
problems requires specialized techniques, including a priori estimates, functional analysis methods,
and regularization techniques, to address potential singularities and ensure well-posedness.

Our approach begins by formulating the problem within an appropriate functional framework. We
derive necessary conditions and establish a priori bounds to control solution behavior. Existence and
uniqueness are then proved using density arguments and properties of the associated operator. By
leveraging energy inequalities and regularization methods, we demonstrate that the problem admits a
unique solution under suitable conditions.

The results presented in this work contribute to the theoretical development of nonlocal boundary
value problems and highlight their applications across scientific and engineering disciplines. Fur-
thermore, the techniques developed herein may be extended to broader classes of nonlocal problems,

enriching the study of differential equations with integral constraints.

2. PosiTioN OoF PROBLEM

In the rectangle 2 = (0,T") x (0, k), we consider the equation:

0z 10 <n6x

We associate the initial condition with equation (2.1)
2(0,u) = p(u), u e (0,k) (22)

and the Dirichlet boundary condition:
z(0,k) =0 (2.3)

and the integral condition:

k
/ 2(tE)dE =0, 0<ki <k te(0,T) (2.4)
k1

where the function ¢ satisfies the following compatibility conditions:
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k
(k) =0, /k o(u) du = 0. (2.5)

To study the problem posed, we need the following functional spaces: Let E be the Banach space of

functions = € Ly(Q2) verifying conditions (2.3) and (2.4) and equipped with the norm:

oz |? O(u) | & oz ou
2 _ il . n_-" _
”x”E_/Qe(“) ot d“dH/Q w | 9a (” 0u) ot

Furthermore, let F' be the Hilbert space of vector functions F' = (f, ¢), obtained as the completion of

2
du. (2.6)

k
du + sup / o(u)
0

0<t<T

the space Lo(Q2) x WZ(0, k) with respect to the norm:

Oy

iy du. (2.7)

k
2 — u u 2 u u
HFHE—/Qe( )£t w)d dt+/0 b(u)

where 6(u) is defined as:

kiu™, if0<u <k,
utt itk <u < k.

To the problem (2.1)-(2.4), we associate the operator £ = (L, [) defined from E to F.
Definition 2.1. We call a solution of problem (2.1)-(2.4) any solution of the operational equation:

Lz =F. (2.9)
Definition 2.2. The Cauchy Inequality (c-inequality) For any (a,b) € R?, the Cauchy inequality states:

Re(a,b) <

€ 1
< §|a|2 + %\612. (2.10)

3. Priori EsTiMATION

Theorem 3.1. For each function x € E, we have the following a priori estimate:

Lz < Cllz]e- (3.1)
where C'is a constant independent of x.
Proof. From equation (2.1), we have:
ox> 1|0 [ ,ox\|?
L 2 < - [ n-- . .
el _2[6t T 6u<u 8u) ] (3-2)
Multiplying both sides by 6(u), we obtain:
0(w)|Lal? < 20(u) | |22 IO AT (33)
=W ot w |gu \" ou ‘ '
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Integrating over (), we get:
ox|* 6(u)| o o\ |2
2 < o B R ied )
/QH(U)|Lx] dudt < /929(u) [ 5 + ol e (u 3u> dudt (34)
On the other hand, we have:
k 2 k k 2
Olx (t,u) / 0z(0,u) / Ox
O(u) |—=——=| du= 0 du < s —| du. 3.5
| ot | F = [Co) | au < s [ o) |2 (35)
By adding (3.4) and (3.5), we obtain:
k ol |? oz |?
/9(u)|f(t,u)|2dudt+/ O(u) || du < 2/9( V== | dudt
Q 0 ot ot
O(u) | 0 330
— — d dt
+ /Q ur |9u \" Bu
k 2
+ sup / o(u) oz du. (3.6)
0<t<T Jo ou
From this, we conclude that:
[ L] < Cll|| - (37)
Thus, the theorem is proven. O
Theorem 3.2. For any function x € E, we have the estimate:
2]z < CllLx||F. (3.8)
Proof. We define:
0% (t,u)
Let:
k
Ju:/ x(t, &)d¢E. (3.10)
And define Mz as:
klu”w, 0<u<ky,
Mz = (3.11)

n+1 8:(:(t,u)
u ot

Multiplying equation (2.1) by Mz and integrating over Q7 = (0,7) x

respect to u, and then taking the real part, we obtain:

Re// (Lu) Mx dudt = //( )deudt—// <u”8u<

uJ (&’CW) L k<u<k

(0,k), where 0 < 7 < T, with

u)) Mzdudt. (3.12)

By integrating by parts each term on the right-hand side of (3.12) and using conditions (2.1)-(2.4), we

obtain:
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T rk o 2 T rk o 2
Re/ / ( )deudt = //klun dudt+/ / untt o
0

8x>

du dt. 3.13
o /k (%) (5 (3.13)
Thus, we can rewrite this as:

Re//< >Mmdudt Re// dudt+/ /kl < ) (‘;f)dudt (3.14)

By integrating the second term on the right-hand side over 7, we get:

T k
Re/ / aﬁJ@d dt = / / u g
k1 0 k1

From this, we obtain:
‘i [ [
k1

Re//( )Ma:dudt Re//
We have
—Re/ /ku1n80u< am)M:vdudt //klklau< ?)?{;d it
T ko L ox o
/0 /k1u<6uunau> ¢ dudt - / . au )‘]E du. dt. (3.17)

Integrating each term on the right-hand side by parts, we obtain:

k1 8:6 Oz kL Ox 0%x
/ / klau u"— —dudt / / kiu" < )(8 8t> dudt. (3.18)

e 0 nox n+1a$ O Ox Ox
_/O /klu<3u au>dudt //k1 auauatdudt—i—/ /kluauatdudt. (3.19)

du dt

875

2
du dt. (3.15)

8$

ox

dudt.  (3.16)

and
0z Oz
J—d dt = u"— — dudt. 3.20
By adding (3.18), (3.19), and (3.20), we obtam.
10 ( 0 Bx P
—Re/ / e < )M:Ududt Re/ / 0(u 6u8u8t du dt. (3.21)

By adding (3.17) and (3.21) again, we obtain:

T k
Re//Lx]deudt = //
n
+/ / u g
2 0 k1

Tk ox 0%z
— . 22
+/0 /0 9<u)8u8u8t du dt (3.22)

By integrating the last term and replacing its expression in (3.21), we obtain:

2
du dt

%2

du dt
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ox

2 T rk

du = //9u
n T k
+/ / un—l
2J)o Ju

k (T, u
+;/0 H(U)M

ou
By replacing the expression of Mz in the term Re [ fok Lx Mx dudt, we get:

T k 7 T k1 al’
Re/ / LxMzdudt = / / kiu"— Lz(t,u) dudt
o Jo o Jo ot
T k
0
+/ / u"+1—$Lx(t,u) du dt
0o Ji Ot

T k
+/ / u" Lz J@ du dt.
0o Jr ot

0x(0,u)
ou

2
du dt

T rk L 1 k
Re/ / L:L‘Ml‘dudt—l—/ 0(u)
0 Jo 2 Jo

ox|?
J—| dudt
at|

2
du.

(3.23)

(3.24)

Using the ¢ inequality in each term, taking the values of ¢ respectively (¢ = 2,2,and ¢ = 1/n), and

adding the three inequalities, we find:

T rk T rk
_ 2 1
Re//La:deudt < nr //9(u)\Lx|2dudt
0 Jo 2n Jo Jk

2

1 (7 [k ox
- 0 —| dudt
+4/0 /,g1 ()| 5¢|
T rk 2
n ni |0z
- — | dudt.
+2/0 /,ﬂu at|

Using the relation:

au \" ou ot
and applying the e-inequality, we obtain:

0 < nc%) :u”@—uan(t,u),

d oz \ |I? ot o o |0x]?
n < n n )
5 (u 8u>) <2 (u |Lz|* +u Y
Thus, we have:
O(u) | O oz \|* _ 0(u),. o  O(u)|dz|?
n <
4u?™ | Ju (u 8u> -2 Ll + 2 |0t

By integrating over the domain, it follows that:

17 [* nl 0 [ ,0x

2 1 T k
dudt < = / / 0(u)| Lz |*dudt
2Jo Jo

+ ;/OT/Oke(u) O

2
dudt.
at|

By combining equations (3.24) and (3.25), we obtain:

(3.25)

(3.26)
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T rk 2 2 T rk
2 1
1 [ ew or o< Tl | [ etwirafaua:
4 Jo Jo 2n 0o Ji

Ox(7,u)
ou

1 k
dudt + ~ / 0(u)
2Jo

1 [k alz |
- - . 27
+ 2/0 o) | 52 du (3.27)
Adding equation (3.26) to the above inequality, we get:
T rk 2 k 2
3/ / O(u) | = dudt+;/0 e(u)aw(azu) du
ox
/ / <u 8u> dudt
3n+1 ) 1 [k alz|?
< — 9 (w)|Lz|*dudt + = [ 6(u) |5—| du. (3.28)
k1 2 0 8U

As the right-hand side is independent of 7, taking the supremum with respect to 7 yields:
[zl < CllLz]p.

Thus, the theorem is proven. O

4. SOLVABILITY OF PROBLEM
From estimates (3.1) and (3.8), we see that the operator
L:E—F

is continuous and that its image is closed in F'. Since the inverse operator L~ exists and is continuous
from R(L) to E, it follows that L is a homeomorphism from F to R(L). To establish the existence of

the solution, it therefore suffices to show that:
R(L)=F.
The proof relies on the following lemma:

Lemma 4.1. Let
Dy(L) ={x € D(L) | Lz = 0}.

If
/ 0(u) Lrwdudt =0 (4.1)
Q

forall x € Dy(L) and for some w such that u"w € Lo(S2), then we must have w = 0.

Proof. Posing in (4.1),let h = ( W where h, u" Gxétt,u) ,u” %(t " € Ly(R), and h satisfies the boundary
conditions (2.3) and (2.4). Then,

/9 —wdudt / —0(u )aau (unax({gj;u)> w du dt. (4.2)
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Again, posing in (4.2) with x = Jfh = fo T,u) dT, we have:
/0( )hw d dt—/G( )8 ”gj*h 0 du dt (4.3)
Quwu_Q Fa \ W gt ) wdudt. .
Integrating by parts the right-hand side and setting J;w = fo u) dr, we obtain 2, srdiw = —w(t,u).
Thus,
1 O ( ,0 .\ _ B 1 9 ( ,0h\ -
/QunH(u)au (u %Jt h) wdudt = /Q unﬁ(u) 5 (u 8u> Jyw du dt. (4.4)
Subsequently, by writing
1 0 &E 1 o ,0, ., 2n 0 , , n, ,
Then equation (4.4) becomes, we have the equation:
1 o ( ,0 _ B 1 o ( ,0, .,
/QU"G(U)&L (u %(Jt h)> wdudt = /Qu%a(u)ﬁu (u %(u h)) dudt
2n o, .,
n n
+ /Q W@(u)(u h)dudt. (4.6)

The left side of equation (4.4) shows that the application

" 1 o ( ,0h
u h—>/9un9(u)au< 5 )thdudt

is a continuous linear function. From the right-hand side of equation (4.6), we conclude that the

function w satisfies the following properties:

0w S O D 00w D {un (aaujtwﬂ e Ly(Q).

t
u2n+2 ’ u2n+1 ou u2n ou

From equation (4.4), we obtain:

0 n Oh
/9( )8u < 8u> Jow du dt = / /k:l 5 (klu )thdudt

oh
n+1
—i—/o /kl 7 <u 8u) Jyw du dt.
We have:

/9 8( h) Jiw du dt = / / <k1u >thdudt
8 k1 8U
oh Jyw
v n+1 . t
—1—/0 /k1 6u< 8u> Jyw [th /u —C d(] dudt.

th7 O<ng1,

We define:

y(tv u) =

Jaw = [V 224,k <u <k

(4.7)

(4.8)
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Then, we have:

[ vtcric= [t uc - ["ac [/deu] = [0

We can write 6(u)y(t, u) in the following form:

kiu™Jyw, 0<u<k,
O(w)y(t,u) =

untl (th —yntl ff %dg‘) , k1 <u<k.

So,
kyu™y(t, u), 0<u<k,
My = 0(u)y(t,u) =
untl (y(t u)Jyw — u™ f v(t, C)dC) ki <u<k.
And,
k
/ y(t,u)du =0,
k1
since
u(y(t,u) — Jyw) = u/ thét od(, for k; <u < k.

For u = k;, we have Jyw(t, k1) = y(t, k1). We define h = J}y = fo 7,u)dr, and using (4.8), we obtain:

0 0
n yx _ o o n_—~ *
/QH(u)u Jiywdudt = /Q —0(u )8u (u 50 (J; y)> Jyw du dt

But since 0(u)w = —%(My), then (4.9) becomes:

, 0 B 10 (,0, .,
/QJtyat(My)dudt—/Qn <u 8u(Jty)) My dudt

u™ Ou

By doing calculations similar to those in 3.2 , we obtain:

10 (,d o2
_/Qunau< - Jty> My dudt = /0 30\t Y) g5 (Jiy) dy dt.

10 d o, ., .0
—/ —— <u"dthy> Mydudt:/SZH(u)%(Jty)ai/Ldudt.

Q u™ ou

By integrating the first term of (4.10), we obtain:

Then,

o) N
/Jtyé? (My) dudt = —Re/yMydudt.
Q

But

T rk
/y(My)dudt:/9(u)\y|2dudt+/ / yu" Jyy du dt.
Q Q 0 Jky

ok n [Tk
/ / yu" Jyy dudt = — / / u" Ty dudt.
0 k1 2 0 k1

Furthermore,

(4.9)

(4.10)

(4.11)
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Then,
. 0 2 O O 2
Jiy—(My)dudt = — O(u)ly|” dudt + = u" |y |* dudt| . (4.12)
o ~Ot 0 2Jo Ik

By integrating the last term of (4.10), we obtain:

(T, :
/9 ™ (Jy) / /kl Jtya u) dudt
So (4.10) becomes:
/ 0(u)|y|? dudt + = / / ) dudt = / / Jt*y (T, u) dudt.
kl k‘l
That is to say,
n T rk
/ (u)|y|? du dt + / / u" Tyl dudt < 0.

Q 2Jo Ji

Then we obtain y = 0, from which w = 0. This completes the proof. O

Theorem 4.2. The range R(L) of L coincides with F.
Proof. Since F is a Hilbert space, we have R(L) = F'if and only if
— olx folo}
/Qﬂ(u)Laff du dt + /0 0(u) < 50 ) <8u> u=0, (4.13)
which implies that F' = (f, ¢) = 0. By taking € Dy(L) and [z = 0, we obtain

/ O(u)Laf dudt = 0.
Q

From Lemma 4.1, we have f = 0, from which equation (4.13), becomes:

oo (%) (S)e-o

Since the image of the trace operator [ is dense in the Hilbert space equipped with the norm

</0k 0(u) 2du> 1/2,

it follows that ¢ = 0. Thus, we conclude that F' = 0. g

ou

5. ConcLusioN

In this work, we analyze the existence and uniqueness of solutions to the proposed problem by deriving
two a priori estimates:

[1Lz]|r < Cllzlle
lzlle < Cl| L]

From the first estimate, we conclude that the operator L : E — F is continuous. The second estimate
implies that L has a continuous inverse, ensuring that the range R(L) is a closed subset of F'. In other

words, L defines a linear homeomorphism from E onto its closed range R(L), which establishes the
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uniqueness of the solution. To complete the proof, it remains to show that R(L) is dense in F, thereby
confirming the existence of a solution.

The a priori estimation method is a powerful tool for analyzing a wide range of applied problems in
physics. It is built on strong theoretical foundations and has been developed within an elegant abstract
framework, making it highly effective in studying the well-posedness of differential equations and

boundary value problems.
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