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AssTrACT. The aim of this paper is to study commutative baric algebra (A, w) with an idempotent and

satisfying the identity z22° = 2w(z)?z® — w(z)32%. We give its Peirce decomposition and the product
ying y g p P

among Peirce subsets according to the given idempotent. We also give a necessary and sufficient conditions
for this algebra to be a normal algebra in one hand, and other hand to be an exclusive algebra. We provide
the necessary and sufficient condition for exclusive algebra to be a second-order Bernstein algebra and
we prove that the normal algebra is a second-order Bernstein algebra. Finally, we show that if (ker w)? is
one-dimensional, then the given algebra is second-order Bernstein algebra.
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1. INTRODUCTION

A commutative algebra A over a field K is called n th-order Bernstein algebra if there exists a

nontrivial algebras homomorphism w : A — K such that
22— y(2)? 2 = 0 forall z € A,

where z[ is defined inductively by 2!} = 2, z[1+* = z[Mz[¥ for k € N. For n = 1, we say that Ais a
Bernstein algebra and for n = 2, we say that it is a second-order Bernstein algebra. Bernstein algebras
have their origins in genetics [4]. In 1975, Holgate was the first to translate Bernstein problem into the
language of non associative algebra [7]. The principal power of an element x of an algebra is defined

by 2! = z and 2" = 2’z for a nonzero integer i. In the Bernstein algebra, the following identity holds
27’27 = w(x)'2? +w(z)/z’ foralli,j > 2and z € A.

The Studying of this identity is difficult in the general cases. However, specifics cases have been

investigated in depth, in the recent years (see for instance [2], [3], [8] and [14]). Tenkodogo et al.
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study in [10], the structure of commutative algebra satisfying the identity
2223 = (1 — a)w(z)223 + aw(z)3z? for a € [0, 1].

Our objective is to study a commutative algebra with an idempotent and satisfying this previous

identity for « = —1, i.e a commutative algebra satisfying the identity
2?e? = 2w(2)%2® — w(x)?z? forall z € A, (1)

over a commutative field K of characteristic different from 2, 3. In section 2, we give a Peirce decom-
position of this algebra and the relations among Peirce subsets. We also study the link between this
algebra and well know class of non associative algebra such as Bernstein algebras and Jordan algebras.
In section 3, we investigate normal and exclusive algebra verifying the identity (1). The last section is

devoted to study a baric algebra (A,w) satisfying the identity (1) such that (ker w)? is one-dimensional.

2. STRUCTURE OF ALGEBRA SATISFYING THE IDENTITY (1)

The class of commutative algebra satisfying the identity (1) with an idempotent is not empty as the

example below shows:

Example 2.1. Let A be 4-dimensional algebra over the field K and with the base (e, u, z1, z2) which multiplication

2 = az, uzi = fzo. The others products are vanish and

table is given by €? = e, eu = %u, ez1 = 72, U
a,B € K. Let x = be + you + y121 + Y222, we have 2> = b%e + byou + (avg + 2by1 + 270718)22 ;

23 = b3e + b2 you + (bard + b*y1 + bByov1 )22 and 2223 = bde + biygu + bPy2aze = 2w(r)?a® — w(x)322.

In the remainder of this paper, (A, w) denotes a baric algebra over a field K and equipped with an

idempotent e.
2.1. Structure theorem.

Proposition 2.1. The baric algebra (A, w) satisfies the identity (1) if and only if for all x € ker(w) the following

relations hold:

(1) 2e(e(ex)) = e(ex);

(ii) e(ex? + 2(ex)x) + 2(ex)(ex + 2¢e(ex)) = ex? + 4(ex)x — 2% ;
(iii) exd + 22 (ex + 2e(ex)) + 2(ex)(ex? + 2(ex)x) = 223 ;

(iv) 22(ex? + 2x(ex)) +2(ex)z® =0;

(v) 2223 = 0.

Proof. Suppose that (A, w) satisfies the identity (1) and let y = ae + = € A such that o € K and
x € ker(w). We have
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v = a’e+ 2aex + 2?
y* = oleta?[2e(ex) + ex] + alex® + 2(ex)x] + 2*
vy? = ade+ a’2e(e(ex)) + 3e(ex)] + a’[e(ex? + 2(ex)x) + 2(ex)(2e(ex) + ex) + ex?] +

o?lex® + 2(ex)(ex? + 2(ex)x) + 22 (ex + 2e(ex))] + o223 (ex) 4+ 2% (ex? + 2z (ex)] + 2223

By identifying the coefficients of o’ for 0 < i < 4, we obtain the relations (i) to (v). Conversly, suppose
that the assertions (i) to (v) are satisfied and let y = ae + = € A such that a € K and z € ker(w). By
direct calculation, we obtain 0 = y2y3 — 2w(y)?y> + w(y)3y?. It follows that the algebra (A, w) satisfies
the identity (1). O

A partial linearization of the relation (i¢) of the Proposition 2.1 gives us, for all z,y € ker(w),
ele(zy) + (ex)y + (ey)z] + (ey)lex + 2e(ex)] + (ex)[ey + 2e(ey)] = e(zy) + 2(ey)x + 2(ex)y — zy. (2)

Set V. = ker(L.) where L. denotes the right multiplication operator by the idempotent e.

Theorem 2.1. Suppose that the baric algebra (A, w) satisfies the identity (1). Then A = Ke & U, ® Ze, where
Ue = {z € ker(w) | ex = 32} and Z. = {x € ker(w) | e(ex) = 0}. Furthermore, we have U? C Z. and
72 =0.

Proof. We have 2e(e(ex)) = e(ex) for all x € ker(w). Using the same reasoning as [5, Proof of Proposi-
tion 2], we get A = Ke® U, ® Z,, where U, = {z € ker(w) | ez = 32} and Z. = {z € ker(w) | e(ex) =
0}.

e Letz,y € U,. Identity (2) gives us e(e(zy)) = 0. It follows that U2 C Z,.

o Let z,y € V.. According to the identity (2), we have e(e(zy)) — e(zy) + zy = 0, ie.
(Le? = Le +dyer(w)) (y) = 0. Since pge(X? — X2, X? — X + 1) = 1, we deduce that zy = 0 and
V2 =0.

o Letz € Vo and y € Z.. We have ey € V. and using the relation V2 = 0 and the identity (2), we get
e(e(xy)) — e(xy) + zy = 0. It follows that zy = 0 and V. Z, = 0.

e Letz,y € Z, ; we have ex, ey € V.. From the relations V.2 = V,Z, = 0 and the identity (2), it follows
that e(e(xy)) — e(zy) + zy = 0. So, Z2 = 0.

g

A partial linearization of the relations (7ii) to (v) of the Proposition 2.1 give us respectively , for all

x,y € ker(w),
elyz? + 2x(zy)] + 2(xy)[ex + 2e(ex)] + z%[ey + 2e(ey)]+

2(ey)[ex® + 2(ex)x] + 4(ex)[e(zy) + (ey)z + (ex)y] = 2ya® + 4z(zy) (3)
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(zy)[ea® + 2 (ex)] + a®[e(zy) + (ey)z + (ex)y] + 2°(ey) + (ex)(ya? + 22(zy) = 0 (4)
223 (zy) + 22[yx® + 22(xy)] = 0. . (5)
Lemma2.1. Let A = Ke®U.® Z, be a Peirce decomposition of the baric algebra (A, w) verifying the identity (1).

Foralluw € U, and z € Z,, we have
(1) 2e(u(uz)) + 2ule(uz) + (e2)u] = u(uz) ;

(17) e(z(zu)) + 2(zu)(ez) + 2(ez)[e(zu) + (e2)u] = 2z(zu) ;
(iii) 3(uz)u? + 2(uz)(eu?) + 2u?le(uz) + (e2)u] + 2u3(ez) + 2u(u(uz)) =0;
(iv) (e2)(z(zu) =0;

(v) w’(uz) + u?(u(uz)) = 0.

Proof. In the identities (3) to (5), setx = u; y = z on the one hand and « = z ; y = u on the other. [

Lemma2.2. Let A = Ke®U.$ Z, be a Peirce decomposition of the baric algebra (A, w) verifying the identity (1).
Foralluw € U, and z € Z,, we have
(i) e(uz) +u(ez) € Ue

(i1) eu® +u(eu?) =0,

(idd) ut = 0;

(iv) (u2)? +u(z(uz)) + 2(uz)le(uz) + u(ez)] + 2(ez)[u(uz) + z(uz)] =0;
(v) vud =0;

(vi) u?(z(uz)) + 2(uz)[u(uz) + z(uz)] = 0.

Proof. Set x = u+ zin the Proposition (2.1) withu € U, and z € Z.. Taking into account the Lemma 2.1,
we get the result. O

2.2. Link with power-associative and Bernstein algebras.

Definition 2.1. An algebra A is called:
(i) Jordan if it is commutative and (z%y)z — 2?(xy) = 0, for all z,y € A.

(ii) Power-associative if x'z? = x**7 for all x € A and for all integer i, j > 1.

Theorem 2.2. [1] Let K be a field of characteristic # 2,3, 5. An algebra A is Power-associative if and only if

z2x? =2t forall z € A.
The Lemma below is useful to characterize a non nil power-associative algebra and a Bernstein
algebra satisfying identity (1).

Lemma2.3. Let A = Ke® U, & Z, be a Peirce decomposition of the baric algebra (A, w) verifying the identity (1)
such that Vo, = Z. and U.Z. C U,. For all u,u1,us € Ue and z, zy € Z., we have

(i) z(uz) =0;
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(i)

(#ii) u(u(u ))=0;

(iv) (uz)?=0;

(v) z1(uz) + z(uz1) =0;
)
)

U

(vi) (uz)(u12) = (uz)(uz1) = 0;

(vid) ugu? + 2uy (uyuz) = 0.

Proof. The assumptions () to (iv) follows from Lemma 2.1 and Lemma 2.2. While that of (v) to (vii)

come from partial linearization of the equalities 2(uz) = 0; (uz)? = 0 and u® = 0 respectively. O

Proposition 2.2. Let A = Ke @ U, & Z, be a Peirce decomposition of the baric algebra (A, w) verifying the
identity (1). The following statements are equivalents:
(i) Aisa Bernstein algebra.
(17) Ze = ker(Le), UeZ. C Ue and u(uz) =0 forallu € Ue and z € Z,.
(vit
(v
(v

i)

) Ais a Jordan algebra.

) A is power-associative.

) 23 —w(z)z? =0 forall x € A.

Proof. Suppose that the baric algebra (A, w) satisfies the identity (1).
(1) = (it) The relations hold in all Bernstein algebra.

(i) = (i) For z € A, we prove by direct calculation that 2222 = w(x)%z2. So, A is a Bernstein

algebra.
(ii) = (iti) Letz = ae+us + 21, y = fe+us + 20 € Awith o, € K, uy,us € U, 21,20 € Z.. We
have:
ry = affe+ §(auQ + fur) + ugug + uize + ugzy
22 = odle+au; + u% + 2u121
2 3 [ 3 5 L 5 1 2
zé(zy) = a’Pe+ Zoz Uy + Zoz Buq + 50[ (ugug + w129 + ugz1) + 50‘5(“1 + 2uy21)
1
+a [2uzu% + uy (UlUQ):| +ud(ugz1) + 2(ur21) (uusg)
2 2 1, 1 2
y = ofe+ 50[ Uug + §a5u1 + a(ugug + uiz2) + Burzr + ugui + 2uz(uiz1) + 222(u121)
2 3 1 4 3 9 I 1 2
(x°y)r = o’Pe+ Za Uug + Za Buq + 504 (urug + uize + ugz1) + 5045(“1 + 2uy21)

1
+a [ ugu? + uy (u1u2)} + g (ugu?) 4 2uq (ug(ur21) + 2uy (22(u121))

+21 (’U/QU%) + 22’1 (ZQ (ulzl)).
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Using equalities 21 (uz) + 2(uz1) = 0 and uy (u2) + u(u12) = 0 of the Lemma 2.3 we get u; (ugu?) =
—ugu:f =0, ui(22(u121)) = —(u121)(u122) = 0, z1(22(w121)) = —22(21(u121)) = 0. In the assumption

(vii) of the Lemma 2.3 replace us by us21, we then obtain 0 = u?(u2z1) + 2ug (u1(u221) = 21 (ugu?) +

2uy (ug(uy21)). We also have u?(ugz1) + 2(u1z1)(urug) = —zi(ugu?) — 212us(uiug)] = —zi[ugu? +
2uy (uyuz)] = 0. According to these equalities, we deduce that x?(xy) = (2?y)x and A is a Jordan
algebra.

(i4i) = (4v) This is clear because a commutative Jordan algebra is Power-associative.

(iv) = (v) Letz = e+ u + 2z € A; we show that 0 = 2222 — 2% = 2u(uz), i.e. u(uz) = 0 for all
u € U and z € Z.. We deduce that (u+2)% = (u® +2uz)(u+z) = 0forallu € U, and z € Z.. It follows
that 23 — w(z)z? = 0 for all z € A [9, Théoréme 2.3].

(v) = (i) See [13, Theorem 9.12] or [12, Theorem]. O

3. EXCLUSIVE AND NORMAL ALGEBRAS SATISFYING IDENTITY (1)

Definition 3.1. Let A = Ke & U, & Z, be a Peirce decomposition of the baric algebra (A,w) verifying the
identity (1). We said that A is an exclusive algebra if U2 = 0 for some idempotent e where A = Ke ® U, ® Z,.

We will show that this notion does not depend on the given idempotent.

Proposition 3.1. Let A = Ke ® U. @ Z, be a Peirce decomposition of the baric algebra with an idempotent e
such that U2 = Z?2 = 0. Then, the algebra A satisfies the identity (1) if and only if, the following statement hold
forallu € U, z € Z:

(1) u(uz) € Ue;

(71) e(uz) +u(ez) € Ue;
(i71) e(z(uz)) + 2(uz)(ez) + 2(ez)[e(uz) + u(ez)] = 2z(uz) ;

(iv) (ez)(z(uz)) =0;

(v) (uz)? + u(z(uz)) + 2(uz)e(uz) + u(ez)] + 2(ez)(u(uz)) = 0;
(vi) (uz)u(uz) + z(uz)] =0

Proof. Suppose that the algebra A satisfies the identity (1). The relations (i) to (vi) follow from the
Lemma 2.1 and Lemma 2.2. Reciprocally, suppose that the relations (i) to (vi) are satisfied. Let

r=ae+u+z€ Awitha € K, u e U,, z € Z.. We have:

22 = o’e+ afu+ 2ez) + 2uz
3 = aPe+a®(u+ez) + al2e(uz) + 2u(ez) + uz] + 2[u(uz) + z(uz)]
2223 = e+ atu+ 4alle(uz) + u(ez)] + 402 [z(uz) + u(uz)]

= 2uw(z)%r® —w(x)?z?
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Proposition 3.2. Let A = Ke & U, @ Z, be a Peirce decomposition of the baric algebra (A, w) verifying
the identity (1) such that U? = 0. Then, the algebra (A, w) is a second-order Bernstein algebra if and only if
(uz)(ez) € Ue and (uz)* € U, forall u € U, and z € Z..

Proof. The result follows from the Proposition 3.1 and from [6, Theorem 1]. O

Theorem 3.1. Let A = Ke ® U, @ Z, be a Peirce decomposition of the baric algebra (A,w) verifying the
identity (1) such that U? = 0. Then, the set T of idempotent element of A is given by

IT={e+u | uecU}.

Proof. An element e+ u with u € U, is an idempotent. Conversely, lete’ = e+u+z withu € U, z € Z,
an idempotent of A. We have e + u + z = € = e + u + 2ez + 2uz, i.e. z = 2(ez + uz). By multiplying
this last equality by e and u respectively, we get ez = 2e(uz) and uz = 2u(ez) + 2u(uz). According to
the Proposition 3.1, it follows that z = 2[e(uz) + u(ez)] + 2u(uz) € U N Z. = 0 and we deduce that
e =e+u. O

Proposition 3.3. Let A = Ke @ U, @ Z, be a Peirce decomposition of the baric algebra (A, w) verifying the
identity (1) such that U? = 0. Then U, = U for every idempotent element ¢’ of A. Consequently, dim U is an

invariant of A.

Proof. According to the Theorem 3.1, there is some v’ € U, such thate’ = e+« € U,. Letu € U,, we
have ¢'u = (e + v/)u = %u and we deduce that U, C U,.. Conversely, let 2 = u + z € U, withu € U,
and z € Z.. Wehave L (u+2) =z = (e + /) (u + z) = Lu+ ez +u'z,ie. z = 2(ez + u'z). Using the
same reasoning as in the proof of Theorem 3.1, we get z = 0. So x = u € U, and U C Uk. It follows

that U, = U, and dim U, is an invariant of the algebra A. O

Proposition 3.4. Let A = Ke @ U, @ Z, be a Peirce decomposition of the baric algebra (A,w) verifying the
identity (1) such that U2 = 0. If ¢’ = e + u/, u' € U, is another idempotent of A, then Z = {z — 4[e(u'z) +

u(ez)] —4u/(u'z) | 2z € Z.}. Moreover, dim Z, is an invariant of A.

Proof. For z € Z,, wehave (e +u/)((e +u)(z — 4[e(u'z) + u/(ez)] — 4u/(uv'2))) = (e + u')(ez — 2[e(u'z) +
u(ez)] —2u (W'z) +u'z) = —[e(u/'z) + u/(e2)] — v/ (v'2) + e(uw'z) + v/ (ez) + v/ (u'2) = 0.So {z — 4[e(v'2) +
u(ez)] — 4/ (u'z) | z € Z.} C Zo. Conversely, let x = u+ z € Z. such thatu € Ue and z € Z,.
We have 0 = ¢/(¢z) = fu + e(u'z) + u/(ez) + v'(v'2), ie. u = —4[u'(ez) + e(u'2)] — 4u/(v'z) and
r = z—4[u (ez)+e(u'z)]—4u (v z). Tt follows that Z., C {z—4[e(u'z)+u/(ez)]—4u'(v'z) | 2z € Z.}. Since,
le(uw'z)+u/(ez)]+1/ (u'2) € Ue, the linear operator ¢ : Z, — Zor, z — z—4[u/(ez) +e(u'z)] —4u' (v'2)

is an isomorphism. We deduce that dim Z, is an invariant of A. O

Remark 3.1. dim U,V is another invariant of the baric algebra (A, w) satisfying the identity (1) and admitting
an idempotent element e such that U? = 0. Indeed, (ker w)? = U, V..
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Definition 3.2. Let A = Ke @ U, ® Z, be a Peirce decomposition of the baric algebra (A,w) verifying the
identity (1). We said that the algebra A is normal if it admits an idempotent e such that (ker w)? C Z,.

This notion does not depend on the given idempotent too, as we will see.

Proposition 3.5. Let (A,w) be a baric algebra with an idempotent element e such that A = Ke @ U, & Z,
where U, = {z € kerw | ex = iz}, Z. = {z € kerw | e(ex) = 0}, Z2 = 0 and (kerw)? C Z.. Then
(A, w) satisfies the identity (1) if and only if for every u € U, and z € Z., the following identities hold:

(i) e(uz) + u(ez) =0;
(1) u(uz) =
(1) eu +u(eu2) 0;
(iv) ut =

Proof. Suppose that the algebra A satisfies the identity (1). The relations (i) to (iv) follow from
the Lemma 2.1 and Lemma 2.2. Conversely, suppose that the relations (i) to (iv) are satisfied. Let

r=aet+u+z€ Awitha e K, ue U, z € Z.. We have:

22 = o’e+ afu+ 2ez) +u? + 2uz
2 = et a®(u+ez) +alen? +u? +uz)+ud
2223 = e+ atu+ ad(2eu? + u?) + 20°%0°

= 2uw(z)%2® —w(z)32?

O

Proposition 3.6. Let (A,w) ba a normal algebra satisfying the identity (1) and with a nonzero idempotent.

Then, the algebra A is a second-order Bernstein algebra.
Proof. The result follows from the Proposition 3.5 and from [6, Theorem 5]. O

Theorem 3.2. Let (A,w) ba a normal algebra satisfying the identity (1) and with a nonzero idempotent. Then,
the set T of idempotent element of A is given by

T={e+u+u®+2u+2u? | uecl)
Moreover, for another idempotent ¢’ = e + u + u® + 2u3 + 2eu?, we have
Ug = {u/ + 2(ut + 2e(un)) + 2(u?u' 4 2u(ua)) | o' € Uy and Zy = Z..

Proof. The theorem follows from The Proposition 3.6 and from [6, Theorem 5, Theorem 6 and Proposi-
tion 5]
g
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4. SYMMETRIC BILINEAR FORMS

Assume that the baric algebra (A, w) satisfies the identity (1) and let V be the kernel of w such that
dim(N?) = 1. The multiplication in N is given by

xy = a(z,y)n forall z,y € N,

where n is a fixed nonzero element of N and «(z, y) is a symmetric bilinear form.
Proposition 4.1. We have n? = 0 and x?2® = 0 forall x € N.

Proof. We have 0 = n?n3 = a(n,n)'n, ie. a(n,n) = 0and n?> = 0. Let z € N, we have (22)? =

(a(z,7)n)? = a(z,r)*n? = 0 and we get the proposition. O

Remark 4.1. NBl = N2N2 = Kn2? = 0.

Definition 4.1. Let (€,w) be a baric algebra with an idempotent e such that £ = Ke & U, & Z, where
U={z€kerw | ex =3} and Z. = {z € kerw | e(ex) = 0}. If N? C U,, we say that the algebra € is of
type (I). Otherwise it is of type (I1).

Proposition 4.2. The following assertions are equivalent.
(i) The algebra A is of type (I) and satisfies the identity (1).
(13) The algebra A is a baric algebra with weight function w and with an idempotent e such that
(a) A=Ke® U, & Z, where eu = Lu, forall u € U, e(ez) =0 forall z € Z, ;
(b) N2 =Kn C U, and U2 = Z? = 0 where N = kerw ;
(c) 6(ez)(uz) +4(ez)(u(ez)) = 3z(uz) forallu € Upand z € Z, ;
(d) (ez)(z(uz)) =0forallu € U, and z € Z..

Proof. We suppose that, the algebra A satisfies the identity (1) and it is of type (I). So, it admits
an idempotent element e such that its Peirce decomposition is given by A = Ke @& U, ® Z, where
U = {z € kerw | exr = %x} ; Ze = {x € kerw | e(ex) = 0} ; U2 C Z. and Z? = 0. Since,
A is of type (I), we have N> = Kn C U,. We also have U2 C Z. N U, = 0, ie. U? = 0. From
above and according to the Proposition 3.1, it follows that 6(ez)(uz) + 4(ez)(u(ez)) = 3z(uz) and
(ez)(2(uz)) = 0forallu € U, and z € Z.. Conversely, suppose that the assertion (ii) is satisfying. It
follows that the algebra A is of type (). Let + = ae + u + z € A where u € U, and z € Z.. We have
2?2 = e+ a(u+2ez) +2uz, 23 = ade+a?(u+ez) + 2afu(ez) +uz] + 2z(uz) and 2223 = o’e + atu +
203 (uz + 2u(ez)) + a?(z(uz) + 6(ez)(uz) + 4(ez)(u(ez))) = a’e + atu + 203 (uz + 2u(ez)) + 4a2z(uz).

We deduce that 2?2 = 2w(z)22® — w(z)322. O

Corollary 4.1. Let (A, w) be a baric algebra of type (1) and satisfying the identity (1). Then, A is a second-order

Bernstein algebra.
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Proof. The corollary follows from the Proposition 4.2 and from [11, Theorem 2.3] O

Now, (A, w) denoted an algebra satisfying the identity (1) with an idempotent e such that N? = Kn
and n ¢ U,. Since Ue2 C Z., we have either Ue2 =0orn € Z. Forn € Z., the Proposition 3.6 tells us

that the algebra A is a second-order Bernstein algebra.

Theorem 4.1. Let (A,w) be a baric algebra with an idempotent e and A = Ke & U, & Z, where U, =
{rkerw | ex =iz}, Z. = {zkerw | e(ex) =0}; N = kerw; N? = Kn for some nonzero n € N\U, and
U2 = 0. Then, the algebra A satisfies the identity (1) if and only if, the following statement are satisfied for every
u€Uecand z € Z, :

(1) Ze = Ue(eZe) =0;

(11) UeZe = Ue + ker(Le) where L is a right multiplication operator by e ;

(iii) u(uz) =

() e(z(uz)) + 2(uz)(ez) +2(ez)(e(uz)) = 2z(uz) ;
(v) (e2)(=(u >>
(vi) u(z(
(vii) (uz)(e(u >>

u(z(uz)) =

Proof. Suppose that the algebra A satisfies the identity (1). It follows that Z? = 0 and since U2 = 0,
the identities of the Proposition 3.1 are verified. We have U, > e(uz) + u(ez) = a(u, z)en + a(u, ez)n.
From [11, Lemma 4.2], it follows that u(ez) = 0 and e(uz) € U.. We deduce that U.(eZ.) = 0 and
UeZ. C Uo+ker(Le). So we get statement (7) and (i7). The relation U, 5 u(uz) = a(u, z)a(u, n)n leads to
0= a(u, z) or 0 = a(u,n), i.e. u(uz) = 0 and we obtain the assertion (iii). Taking account the relations
u(ez) = u(uz) = (uz)? = 0 and the identities of the Proposition 3.1, we obtain the statements (iv), (v)
and the relation u(z(uz)) + 2(uz)(e(uz)) = 0. We also have u(z(uz))) = a(u, z)a(z,n)a(u,n)n =
a(z,n)a(u, z)a(u, n)n] = a(z,n)u(uz) = 0 and we get the assertion (vi). By the equality 0 = u(z(uz))+
2(uz)(e(uz)) = 2(uz)(e(uz)), we have the statement (vii) since the characteristic of K is different from
2. Conversely, suppose that the statements (7) to (vii) are satisfied and let z = ae + v + z with u € U,

and z € Z.. We have 22 = a’c + a(u + 2ez) + 2uz ; 23 = e + o (u + e2) + a(uz + 2e(uz)) + 2z(uz)

and 2223 = o’e + atu + 4ade(uz) + 4o’z (uz) = 2w(z)?2® — w(z)322 O

Corollary 4.2. Let (A, w) be an algebra satisfying the identity (1) and of type (I11). Then either
(i) UsZo = 0 0r N? C Z,, in which cases A is a second-order Bernstein algebra.

(ii) A2=Ke® U, ® Zy, where Zy = (ez + N?)N Ze, eZy = 0,U% = Z? = 0and U.Z; C U, @ ker(Le).

Proof. Suppose first that U.Z. = 0 or N 2 C Z,, it follows that A is a normal algebra. We deduce that
A is a second-order Bernstein algebra. Now, suppose that U.Z. # 0 and N 2 ;(_ Z,. Then N2 = Kn C
Ue @ ker(Le) according to (i7) of the Proposition (4.1). Set n = n; + ng with ny € U, and ny € ker(L).
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We have
A2=KedU.®eZ.+N*=Ked U, ® (eZ.+Kn,)=Ke®U. D 7).

SoeZ) =U2=2?=0and U.Z, = U.(eZ. + Kn,) = Uen, C U, @ ker(Le). O

Proposition 4.3. Let (A,w) be an algebra satisfying the identity (1) and of type (I1) such that U.Z. # 0 and

N2 & Z,. Then, A is a second-order Bernstein algebra.

Proof. We have U2 = Z2 = 0, so there are uy € U, and 2 € Z, such that ugzg = n # 0. Set n = ny + no
where n; € U, and ny € Z.. According to the relation (i) of the Theorem 4.1, we have (uz)(ez) =
a(u, z)n(ez) = (n1 + n2)(ez) = ni(ez) = 0forallu € U, and z € Z.. We also have (uz)? = 0 for all
u € Ue and z € Z,. According to the Proposition 3.2, we deduce that A is a second-order Bernstein

algebra. O
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