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STRUCTURE OF ALGEBRAS SATISFYING IDENTITY x2x3 = 2ω(x)2x3 − ω(x)3x2
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Abstract. The aim of this paper is to study commutative baric algebra (A,ω) with an idempotent and
satisfying the identity x2x3 = 2ω(x)2x3 − ω(x)3x2. We give its Peirce decomposition and the product
among Peirce subsets according to the given idempotent. We also give a necessary and sufficient conditions
for this algebra to be a normal algebra in one hand, and other hand to be an exclusive algebra. We provide
the necessary and sufficient condition for exclusive algebra to be a second-order Bernstein algebra and
we prove that the normal algebra is a second-order Bernstein algebra. Finally, we show that if (kerω)2 is
one-dimensional, then the given algebra is second-order Bernstein algebra.
2020 Mathematics Subject Classification. 17A30; 17A60.
Key words and phrases. non-associative algebra satisfying a polynomial identity; normal algebra; exclusive
algebra.

1. Introduction

A commutative algebra A over a field K is called n th-order Bernstein algebra if there exists a
nontrivial algebras homomorphism ω : A −→ K such that

x[2+n] − ω(x)2nx[1+n] = 0 for all x ∈ A,

where x[n] is defined inductively by x[1] = x, x[1+k] = x[k]x[k] for k ∈ N. For n = 1, we say that A is a
Bernstein algebra and for n = 2,we say that it is a second-order Bernstein algebra. Bernstein algebras
have their origins in genetics [4]. In 1975, Holgate was the first to translate Bernstein problem into the
language of non associative algebra [7]. The principal power of an element x of an algebra is defined
by x1 = x and xi+i = xix for a nonzero integer i. In the Bernstein algebra, the following identity holds

2xixj = ω(x)ixj + ω(x)jxi for all i, j ≥ 2 and x ∈ A.

The Studying of this identity is difficult in the general cases. However, specifics cases have been
investigated in depth, in the recent years (see for instance [2], [3], [8] and [14]). Tenkodogo et al.
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study in [10], the structure of commutative algebra satisfying the identity

x2x3 = (1− α)ω(x)2x3 + αω(x)3x2 for α ∈ [0, 1].

Our objective is to study a commutative algebra with an idempotent and satisfying this previous
identity for α = −1, i.e a commutative algebra satisfying the identity

x2x3 = 2ω(x)2x3 − ω(x)3x2 for all x ∈ A, (1)

over a commutative fieldK of characteristic different from 2, 3. In section 2, we give a Peirce decom-
position of this algebra and the relations among Peirce subsets. We also study the link between this
algebra and well know class of non associative algebra such as Bernstein algebras and Jordan algebras.
In section 3, we investigate normal and exclusive algebra verifying the identity (1). The last section is
devoted to study a baric algebra (A,ω) satisfying the identity (1) such that (kerω)2 is one-dimensional.

2. Structure of algebra satisfying the identity (1)

The class of commutative algebra satisfying the identity (1) with an idempotent is not empty as the
example below shows:

Example 2.1. LetA be 4-dimensional algebra over the fieldK and with the base (e, u, z1, z2)which multiplication

table is given by e2 = e, eu = 1
2u, ez1 = z2, u

2 = αz2, uz1 = βz2. The others products are vanish and

α, β ∈ K. Let x = be + γ0u + γ1z1 + γ2z2, we have x2 = b2e + bγ0u + (αγ20 + 2bγ1 + 2γ0γ1β)z2 ;

x3 = b3e+ b2γ0u+ (bαγ20 + b2γ1 + bβγ0γ1)z2 and x2x3 = b5e+ b4γ0u+ b3γ20αz2 = 2ω(x)2x3 − ω(x)3x2.

In the remainder of this paper, (A,ω) denotes a baric algebra over a fieldK and equipped with an
idempotent e.

2.1. Structure theorem.

Proposition 2.1. The baric algebra (A,ω) satisfies the identity (1) if and only if for all x ∈ ker(ω) the following

relations hold:

(i) 2e(e(ex)) = e(ex) ;

(ii) e(ex2 + 2(ex)x) + 2(ex)(ex+ 2e(ex)) = ex2 + 4(ex)x− x2 ;

(iii) ex3 + x2(ex+ 2e(ex)) + 2(ex)(ex2 + 2(ex)x) = 2x3 ;

(iv) x2(ex2 + 2x(ex)) + 2(ex)x3 = 0 ;

(v) x2x3 = 0.

Proof. Suppose that (A,ω) satisfies the identity (1) and let y = αe + x ∈ A such that α ∈ K and
x ∈ ker(ω).We have
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y2 = α2e+ 2αex+ x2

y3 = α3e+ α2[2e(ex) + ex] + α[ex2 + 2(ex)x] + x3

y2y3 = α5e+ α4[2e(e(ex)) + 3e(ex)] + α3[e(ex2 + 2(ex)x) + 2(ex)(2e(ex) + ex) + ex2] +

α2[ex3 + 2(ex)(ex2 + 2(ex)x) + x2(ex+ 2e(ex))] + α[2x3(ex) + x2(ex2 + 2x(ex)] + x2x3

By identifying the coefficients of αi for 0 ≤ i ≤ 4, we obtain the relations (i) to (v). Conversly, suppose
that the assertions (i) to (v) are satisfied and let y = αe+ x ∈ A such that α ∈ K and x ∈ ker(ω). By
direct calculation, we obtain 0 = y2y3 − 2ω(y)2y3 + ω(y)3y2. It follows that the algebra (A,ω) satisfies
the identity (1). �

A partial linearization of the relation (ii) of the Proposition 2.1 gives us, for all x, y ∈ ker(ω),

e[e(xy) + (ex)y + (ey)x] + (ey)[ex+ 2e(ex)] + (ex)[ey + 2e(ey)] = e(xy) + 2(ey)x+ 2(ex)y − xy. (2)

Set Ve = ker(Le) where Le denotes the right multiplication operator by the idempotent e.

Theorem 2.1. Suppose that the baric algebra (A,ω) satisfies the identity (1). Then A = Ke⊕ Ue ⊕ Ze, where

Ue = {x ∈ ker(ω) | ex = 1
2x} and Ze = {x ∈ ker(ω) | e(ex) = 0}. Furthermore, we have U2

e ⊆ Ze and

Z2
e = 0.

Proof. We have 2e(e(ex)) = e(ex) for all x ∈ ker(ω). Using the same reasoning as [5, Proof of Proposi-
tion 2], we getA = Ke⊕Ue⊕Ze,where Ue = {x ∈ ker(ω) | ex = 1

2x} and Ze = {x ∈ ker(ω) | e(ex) =

0}.

• Let x, y ∈ Ue. Identity (2) gives us e(e(xy)) = 0. It follows that U2
e ⊆ Ze.

• Let x, y ∈ Ve. According to the identity (2), we have e(e(xy)) − e(xy) + xy = 0, i.e.
(Le

2−Le+Idker(ω))(xy) = 0. Since pgc(X3 − X2, X2 − X + 1) = 1, we deduce that xy = 0 and
V 2
e = 0.

• Let x ∈ Ve and y ∈ Ze.We have ey ∈ Ve and using the relation V 2
e = 0 and the identity (2), we get

e(e(xy))− e(xy) + xy = 0. It follows that xy = 0 and VeZe = 0.

• Let x, y ∈ Ze ; we have ex, ey ∈ Ve. From the relations V 2
e = VeZe = 0 and the identity (2), it follows

that e(e(xy))− e(xy) + xy = 0. So, Z2
e = 0.

�

A partial linearization of the relations (iii) to (v) of the Proposition 2.1 give us respectively , for all
x, y ∈ ker(ω),

e[yx2 + 2x(xy)] + 2(xy)[ex+ 2e(ex)] + x2[ey + 2e(ey)]+

2(ey)[ex2 + 2(ex)x] + 4(ex)[e(xy) + (ey)x+ (ex)y] = 2yx2 + 4x(xy) (3)
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(xy)[ex2 + 2x(ex)] + x2[e(xy) + (ey)x+ (ex)y] + x3(ey) + (ex)(yx2 + 2x(xy) = 0 (4)

2x3(xy) + x2[yx2 + 2x(xy)] = 0. . (5)

Lemma 2.1. LetA = Ke⊕Ue⊕Ze be a Peirce decomposition of the baric algebra (A,ω) verifying the identity (1).
For all u ∈ Ue and z ∈ Ze, we have

(i) 2e(u(uz)) + 2u[e(uz) + (ez)u] = u(uz) ;

(ii) e(z(zu)) + 2(zu)(ez) + 2(ez)[e(zu) + (ez)u] = 2z(zu) ;

(iii) 3(uz)u2 + 2(uz)(eu2) + 2u2[e(uz) + (ez)u] + 2u3(ez) + 2u(u(uz)) = 0 ;

(iv) (ez)(z(zu) = 0 ;

(v) u3(uz) + u2(u(uz)) = 0.

Proof. In the identities (3) to (5), set x = u ; y = z on the one hand and x = z ; y = u on the other. �

Lemma 2.2. LetA = Ke⊕Ue⊕Ze be a Peirce decomposition of the baric algebra (A,ω) verifying the identity (1).
For all u ∈ Ue and z ∈ Ze, we have

(i) e(uz) + u(ez) ∈ Ue

(ii) eu3 + u(eu2) = 0 ;

(iii) u4 = 0 ;

(iv) (uz)2 + u(z(uz)) + 2(uz)[e(uz) + u(ez)] + 2(ez)[u(uz) + z(uz)] = 0 ;

(v) u2u3 = 0 ;

(vi) u2(z(uz)) + 2(uz)[u(uz) + z(uz)] = 0.

Proof. Set x = u+z in the Proposition (2.1) with u ∈ Ue and z ∈ Ze. Taking into account the Lemma 2.1,
we get the result. �

2.2. Link with power-associative and Bernstein algebras.

Definition 2.1. An algebra A is called:

(i) Jordan if it is commutative and (x2y)x− x2(xy) = 0, for all x, y ∈ A.

(ii) Power-associative if xixj = xi+j for all x ∈ A and for all integer i, j ≥ 1.

Theorem 2.2. [1] LetK be a field of characteristic 6= 2, 3, 5. An algebra A is Power-associative if and only if

x2x2 = x4, for all x ∈ A.

The Lemma below is useful to characterize a non nil power-associative algebra and a Bernstein
algebra satisfying identity (1).

Lemma 2.3. LetA = Ke⊕Ue⊕Ze be a Peirce decomposition of the baric algebra (A,ω) verifying the identity (1)
such that Ve = Ze and UeZe ⊂ Ue. For all u, u1, u2 ∈ Ue and z, z1 ∈ Ze, we have

(i) z(uz) = 0 ;
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(ii) u3 = 0 ;

(iii) u(u(uz)) = 0 ;

(iv) (uz)2 = 0 ;

(v) z1(uz) + z(uz1) = 0 ;

(vi) (uz)(u1z) = (uz)(uz1) = 0 ;

(vii) u2u
2
1 + 2u1(u1u2) = 0.

Proof. The assumptions (i) to (iv) follows from Lemma 2.1 and Lemma 2.2. While that of (v) to (vii)

come from partial linearization of the equalities z(uz) = 0 ; (uz)2 = 0 and u3 = 0 respectively. �

Proposition 2.2. Let A = Ke ⊕ Ue ⊕ Ze be a Peirce decomposition of the baric algebra (A,ω) verifying the

identity (1). The following statements are equivalents:

(i) A is a Bernstein algebra.

(ii) Ze = ker(Le), UeZe ⊆ Ue and u(uz) = 0 for all u ∈ Ue and z ∈ Ze.

(iii) A is a Jordan algebra.

(iv) A is power-associative.

(v) x3 − ω(x)x2 = 0 for all x ∈ A.

Proof. Suppose that the baric algebra (A,ω) satisfies the identity (1).
(i) =⇒ (ii) The relations hold in all Bernstein algebra.
(ii) =⇒ (i) For x ∈ A, we prove by direct calculation that x2x2 = ω(x)2x2. So, A is a Bernstein

algebra.
(ii) =⇒ (iii) Let x = αe+ u1 + z1, y = βe+ u2 + z2 ∈ Awith α, β ∈ K, u1, u2 ∈ Ue, z1, z2 ∈ Ze.We

have:

xy = αβe+
1

2
(αu2 + βu1) + u1u2 + u1z2 + u2z1

x2 = α2e+ αu1 + u21 + 2u1z1

x2(xy) = α3βe+
1

4
α3u2 +

3

4
α2βu1 +

1

2
α2(u1u2 + u1z2 + u2z1) +

1

2
αβ(u21 + 2u1z1)

+α

[
1

2
u2u

2
1 + u1(u1u2)

]
+ u21(u2z1) + 2(u1z1)(u1u2)

x2y = α2βe+
1

2
α2u2 +

1

2
αβu1 + α(u1u2 + u1z2) + βu1z1 + u2u

2
1 + 2u2(u1z1) + 2z2(u1z1)

(x2y)x = α3βe+
1

4
α3u2 +

3

4
α2βu1 +

1

2
α2(u1u2 + u1z2 + u2z1) +

1

2
αβ(u21 + 2u1z1)

+α

[
1

2
u2u

2
1 + u1(u1u2)

]
+ u1(u2u

2
1) + 2u1(u2(u1z1) + 2u1(z2(u1z1))

+z1(u2u
2
1) + 2z1(z2(u1z1)).
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Using equalities z1(uz) + z(uz1) = 0 and u1(uz) + u(u1z) = 0 of the Lemma 2.3 we get u1(u2u21) =
−u2u31 = 0, u1(z2(u1z1)) = −(u1z1)(u1z2) = 0, z1(z2(u1z1)) = −z2(z1(u1z1)) = 0. In the assumption
(vii) of the Lemma 2.3 replace u2 by u2z1, we then obtain 0 = u21(u2z1) + 2u1(u1(u2z1) = z1(u2u

2
1) +

2u1(u2(u1z1)). We also have u21(u2z1) + 2(u1z1)(u1u2) = −z1(u2u21) − z1[2u1(u1u2)] = −z1[u2u21 +

2u1(u1u2)] = 0. According to these equalities, we deduce that x2(xy) = (x2y)x and A is a Jordan
algebra.

(iii) =⇒ (iv) This is clear because a commutative Jordan algebra is Power-associative.
(iv) =⇒ (v) Let x = e + u + z ∈ A ; we show that 0 = x2x2 − x4 = 2u(uz), i.e. u(uz) = 0 for all

u ∈ Ue and z ∈ Ze.We deduce that (u+ z)3 = (u2+2uz)(u+ z) = 0 for all u ∈ Ue and z ∈ Ze. It follows
that x3 − ω(x)x2 = 0 for all x ∈ A [9, Théorème 2.3].

(v) =⇒ (i) See [13, Theorem 9.12] or [12, Theorem]. �

3. Exclusive and normal algebras satisfying identity (1)

Definition 3.1. Let A = Ke ⊕ Ue ⊕ Ze be a Peirce decomposition of the baric algebra (A,ω) verifying the

identity (1). We said that A is an exclusive algebra if U2
e = 0 for some idempotent e where A = Ke⊕ Ue ⊕ Ze.

We will show that this notion does not depend on the given idempotent.

Proposition 3.1. Let A = Ke⊕ Ue ⊕ Ze be a Peirce decomposition of the baric algebra with an idempotent e

such that U2
e = Z2

e = 0. Then, the algebra A satisfies the identity (1) if and only if, the following statement hold

for all u ∈ Ue, z ∈ Ze:

(i) u(uz) ∈ Ue ;

(ii) e(uz) + u(ez) ∈ Ue ;

(iii) e(z(uz)) + 2(uz)(ez) + 2(ez)[e(uz) + u(ez)] = 2z(uz) ;

(iv) (ez)(z(uz)) = 0 ;

(v) (uz)2 + u(z(uz)) + 2(uz)[e(uz) + u(ez)] + 2(ez)(u(uz)) = 0 ;

(vi) (uz)[u(uz) + z(uz)] = 0.

Proof. Suppose that the algebra A satisfies the identity (1). The relations (i) to (vi) follow from the
Lemma 2.1 and Lemma 2.2. Reciprocally, suppose that the relations (i) to (vi) are satisfied. Let
x = αe+ u+ z ∈ Awith α ∈ K, u ∈ Ue, z ∈ Ze.We have:

x2 = α2e+ α(u+ 2ez) + 2uz

x3 = α3e+ α2(u+ ez) + α[2e(uz) + 2u(ez) + uz] + 2[u(uz) + z(uz)]

x2x3 = α5e+ α4u+ 4α3[e(uz) + u(ez)] + 4α2[z(uz) + u(uz)]

= 2ω(x)2x3 − ω(x)3x2.

�
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Proposition 3.2. Let A = Ke ⊕ Ue ⊕ Ze be a Peirce decomposition of the baric algebra (A,ω) verifying

the identity (1) such that U2
e = 0. Then, the algebra (A,ω) is a second-order Bernstein algebra if and only if

(uz)(ez) ∈ Ue and (uz)2 ∈ Ue for all u ∈ Ue and z ∈ Ze.

Proof. The result follows from the Proposition 3.1 and from [6, Theorem 1]. �

Theorem 3.1. Let A = Ke ⊕ Ue ⊕ Ze be a Peirce decomposition of the baric algebra (A,ω) verifying the

identity (1) such that U2
e = 0. Then, the set I of idempotent element of A is given by

I = {e+ u | u ∈ Ue}.

Proof. An element e+uwith u ∈ Ue is an idempotent. Conversely, let e′ = e+u+z with u ∈ Ue, z ∈ Ze

an idempotent of A.We have e+ u+ z = e′2 = e+ u+ 2ez + 2uz, i.e. z = 2(ez + uz). By multiplying
this last equality by e and u respectively, we get ez = 2e(uz) and uz = 2u(ez) + 2u(uz). According to
the Proposition 3.1, it follows that z = 2[e(uz) + u(ez)] + 2u(uz) ∈ Ue ∩ Ze = 0 and we deduce that
e′ = e+ u. �

Proposition 3.3. Let A = Ke ⊕ Ue ⊕ Ze be a Peirce decomposition of the baric algebra (A,ω) verifying the

identity (1) such that U2
e = 0. Then Ue = Ue′ for every idempotent element e′ of A. Consequently, dimUe is an

invariant of A.

Proof. According to the Theorem 3.1, there is some u′ ∈ Ue such that e′ = e+ u′ ∈ Ue. Let u ∈ Ue,we
have e′u = (e+ u′)u = 1

2u and we deduce that Ue ⊂ Ue′ . Conversely, let x = u+ z ∈ Ue′ with u ∈ Ue

and z ∈ Ze.We have 1
2(u+ z) = e′x = (e+ u′)(u+ z) = 1

2u+ ez + u′z, i.e. z = 2(ez + u′z). Using the
same reasoning as in the proof of Theorem 3.1, we get z = 0. So x = u ∈ Ue and Ue′ ⊂ Ue. It follows
that Ue = Ue′ and dimUe is an invariant of the algebra A. �

Proposition 3.4. Let A = Ke ⊕ Ue ⊕ Ze be a Peirce decomposition of the baric algebra (A,ω) verifying the

identity (1) such that U2
e = 0. If e′ = e+ u′, u′ ∈ Ue is another idempotent of A, then Ze′ = {z − 4[e(u′z) +

u′(ez)]− 4u′(u′z) | z ∈ Ze}.Moreover, dimZe is an invariant of A.

Proof. For z ∈ Ze,we have (e+ u′)((e+ u′)(z− 4[e(u′z) + u′(ez)]− 4u′(u′z))) = (e+ u′)(ez− 2[e(u′z) +

u′(ez)]− 2u′(u′z)+u′z) = −[e(u′z)+u′(ez)]−u′(u′z)+ e(u′z)+u′(ez)+u′(u′z) = 0. So {z− 4[e(u′z)+

u′(ez)] − 4u′(u′z) | z ∈ Ze} ⊂ Ze′ . Conversely, let x = u + z ∈ Ze′ such that u ∈ Ue and z ∈ Ze.

We have 0 = e′(e′x) = 1
4u + e(u′z) + u′(ez) + u′(u′z), i.e. u = −4[u′(ez) + e(u′z)] − 4u′(u′z) and

x = z−4[u′(ez)+e(u′z)]−4u′(u′z). It follows thatZe′ ⊂ {z−4[e(u′z)+u′(ez)]−4u′(u′z) | z ∈ Ze}. Since,
[e(u′z)+u′(ez)]+u′(u′z) ∈ Ue, the linear operator ϕ : Ze −→ Ze′ , z 7−→ z−4[u′(ez)+e(u′z)]−4u′(u′z)

is an isomorphism. We deduce that dimZe is an invariant of A. �

Remark 3.1. dimUeVe is another invariant of the baric algebra (A,ω) satisfying the identity (1) and admitting

an idempotent element e such that U2
e = 0. Indeed, (kerω)2 = UeVe.
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Definition 3.2. Let A = Ke ⊕ Ue ⊕ Ze be a Peirce decomposition of the baric algebra (A,ω) verifying the

identity (1). We said that the algebra A is normal if it admits an idempotent e such that (kerω)2 ⊂ Ze.

This notion does not depend on the given idempotent too, as we will see.

Proposition 3.5. Let (A,ω) be a baric algebra with an idempotent element e such that A = Ke ⊕ Ue ⊕ Ze

where Ue = {x ∈ kerω | ex = 1
2x}, Ze = {x ∈ kerω | e(ex) = 0}, Z2

e = 0 and (kerω)2 ⊂ Ze. Then

(A,ω) satisfies the identity (1) if and only if for every u ∈ Ue and z ∈ Ze, the following identities hold:

(i) e(uz) + u(ez) = 0 ;

(ii) u(uz) = 0 ;

(iii) eu3 + u(eu2) = 0 ;

(iv) u4 = 0.

Proof. Suppose that the algebra A satisfies the identity (1). The relations (i) to (iv) follow from
the Lemma 2.1 and Lemma 2.2. Conversely, suppose that the relations (i) to (iv) are satisfied. Let
x = αe+ u+ z ∈ Awith α ∈ K, u ∈ Ue, z ∈ Ze.We have:

x2 = α2e+ α(u+ 2ez) + u2 + 2uz

x3 = α3e+ α2(u+ ez) + α(eu2 + u2 + uz) + u3

x2x3 = α5e+ α4u+ α3(2eu2 + u2) + 2α2u3

= 2ω(x)2x3 − ω(x)3x2.

�

Proposition 3.6. Let (A,ω) ba a normal algebra satisfying the identity (1) and with a nonzero idempotent.

Then, the algebra A is a second-order Bernstein algebra.

Proof. The result follows from the Proposition 3.5 and from [6, Theorem 5]. �

Theorem 3.2. Let (A,ω) ba a normal algebra satisfying the identity (1) and with a nonzero idempotent. Then,

the set I of idempotent element of A is given by

I = {e+ u+ u2 + 2u3 + 2eu2 | u ∈ Ue}.

Moreover, for another idempotent e′ = e+ u+ u2 + 2u3 + 2eu2, we have

Ue′ = {u′ + 2(uu′ + 2e(uu′)) + 2(u2u′ + 2u(uu′)) | u′ ∈ Ue} and Ze′ = Ze.

Proof. The theorem follows from The Proposition 3.6 and from [6, Theorem 5, Theorem 6 and Proposi-
tion 5]

�



Asia Pac. J. Math. 2025 12:92 9 of 12

4. Symmetric bilinear forms

Assume that the baric algebra (A,ω) satisfies the identity (1) and let N be the kernel of ω such that
dim(N2) = 1. The multiplication in N is given by

xy = α(x, y)n for all x, y ∈ N,

where n is a fixed nonzero element of N and α(x, y) is a symmetric bilinear form.

Proposition 4.1. We have n2 = 0 and x2x2 = 0 for all x ∈ N.

Proof. We have 0 = n2n3 = α(n, n)4n, i.e. α(n, n) = 0 and n2 = 0. Let x ∈ N, we have (x2)2 =

(α(x, x)n)2 = α(x, x)2n2 = 0 and we get the proposition. �

Remark 4.1. N [3] = N2N2 = Kn2 = 0.

Definition 4.1. Let (E , ω) be a baric algebra with an idempotent e such that E = Ke ⊕ Ue ⊕ Ze where

Ue = {x ∈ kerω | ex = 1
2} and Ze = {x ∈ kerω | e(ex) = 0}. If N2 ⊆ Ue, we say that the algebra E is of

type (I). Otherwise it is of type (II).

Proposition 4.2. The following assertions are equivalent.

(i) The algebra A is of type (I) and satisfies the identity (1).
(ii) The algebra A is a baric algebra with weight function ω and with an idempotent e such that

(a) A = Ke⊕ Ue ⊕ Ze where eu = 1
2u, for all u ∈ Ue, e(ez) = 0 for all z ∈ Ze ;

(b) N2 = Kn ⊂ Ue and U2
e = Z2

e = 0 where N = kerω ;

(c) 6(ez)(uz) + 4(ez)(u(ez)) = 3z(uz) for all u ∈ Ue and z ∈ Ze ;

(d) (ez)(z(uz)) = 0 for all u ∈ Ue and z ∈ Ze.

Proof. We suppose that, the algebra A satisfies the identity (1) and it is of type (I). So, it admits
an idempotent element e such that its Peirce decomposition is given by A = Ke ⊕ Ue ⊕ Ze where
Ue = {x ∈ kerω | ex = 1

2x} ; Ze = {x ∈ kerω | e(ex) = 0} ; U2
e ⊂ Ze and Z2

e = 0. Since,
A is of type (I), we have N2 = Kn ⊂ Ue. We also have U2

e ⊂ Ze ∩ Ue = 0, i.e. U2
e = 0. From

above and according to the Proposition 3.1, it follows that 6(ez)(uz) + 4(ez)(u(ez)) = 3z(uz) and
(ez)(z(uz)) = 0 for all u ∈ Ue and z ∈ Ze. Conversely, suppose that the assertion (ii) is satisfying. It
follows that the algebra A is of type (I). Let x = αe + u + z ∈ A where u ∈ Ue and z ∈ Ze.We have
x2 = α2e+α(u+2ez)+ 2uz, x3 = α3e+α2(u+ ez)+ 2α[u(ez)+ uz] + 2z(uz) and x2x3 = α5e+α4u+

2α3(uz + 2u(ez)) + α2(z(uz) + 6(ez)(uz) + 4(ez)(u(ez))) = α5e+ α4u+ 2α3(uz + 2u(ez)) + 4α2z(uz).

We deduce that x2x3 = 2ω(x)2x3 − ω(x)3x2. �

Corollary 4.1. Let (A,ω) be a baric algebra of type (I) and satisfying the identity (1). Then,A is a second-order

Bernstein algebra.
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Proof. The corollary follows from the Proposition 4.2 and from [11, Theorem 2.3] �

Now, (A,ω) denoted an algebra satisfying the identity (1) with an idempotent e such that N2 = Kn

and n /∈ Ue. Since U2
e ⊂ Ze, we have either U2

e = 0 or n ∈ Ze. For n ∈ Ze, the Proposition 3.6 tells us
that the algebra A is a second-order Bernstein algebra.

Theorem 4.1. Let (A,ω) be a baric algebra with an idempotent e and A = Ke ⊕ Ue ⊕ Ze where Ue =

{x kerω | ex = 1
2x}, Ze = {x kerω | e(ex) = 0} ; N = kerω ; N2 = Kn for some nonzero n ∈ N\Ue and

U2
e = 0. Then, the algebra A satisfies the identity (1) if and only if, the following statement are satisfied for every

u ∈ Ue and z ∈ Ze :

(i) Z2
e = Ue(eZe) = 0 ;

(ii) UeZe = Ue + ker(Le) where Le is a right multiplication operator by e ;

(iii) u(uz) = 0 ;

(iv) e(z(uz)) + 2(uz)(ez) + 2(ez)(e(uz)) = 2z(uz) ;

(v) (ez)(z(uz)) = 0 ;

(vi) u(z(uz)) = 0 ;

(vii) (uz)(e(uz)) = 0.

Proof. Suppose that the algebra A satisfies the identity (1). It follows that Z2
e = 0 and since U2

e = 0,

the identities of the Proposition 3.1 are verified. We have Ue 3 e(uz) + u(ez) = α(u, z)en+ α(u, ez)n.

From [11, Lemma 4.2], it follows that u(ez) = 0 and e(uz) ∈ Ue. We deduce that Ue(eZe) = 0 and
UeZe ⊂ Ue+ker(Le). Sowe get statement (i) and (ii). The relationUe 3 u(uz) = α(u, z)α(u, n)n leads to
0 = α(u, z) or 0 = α(u, n), i.e. u(uz) = 0 and we obtain the assertion (iii). Taking account the relations
u(ez) = u(uz) = (uz)2 = 0 and the identities of the Proposition 3.1, we obtain the statements (iv), (v)
and the relation u(z(uz)) + 2(uz)(e(uz)) = 0. We also have u(z(uz))) = α(u, z)α(z, n)α(u, n)n =

α(z, n)[α(u, z)α(u, n)n] = α(z, n)u(uz) = 0 andwe get the assertion (vi). By the equality 0 = u(z(uz))+

2(uz)(e(uz)) = 2(uz)(e(uz)), we have the statement (vii) since the characteristic ofK is different from
2. Conversely, suppose that the statements (i) to (vii) are satisfied and let x = αe+ u+ z with u ∈ Ue

and z ∈ Ze.We have x2 = α2e+ α(u+ 2ez) + 2uz ; x3 = α3e+ α2(u+ ez) + α(uz + 2e(uz)) + 2z(uz)

and x2x3 = α5e+ α4u+ 4α3e(uz) + 4α2z(uz) = 2ω(x)2x3 − ω(x)3x2. �

Corollary 4.2. Let (A,ω) be an algebra satisfying the identity (1) and of type (II). Then either

(i) UeZe = 0 or N2 ⊂ Ze, in which cases A is a second-order Bernstein algebra.

(ii) A2 = Ke⊕ Ue ⊕ Z1, where Z1 = (ez +N2) ∩ Ze, eZ1 = 0, U2
e = Z2

1 = 0 and UeZ1 ⊂ Ue ⊕ ker(Le).

Proof. Suppose first that UeZe = 0 or N2 ⊆ Ze, it follows that A is a normal algebra. We deduce that
A is a second-order Bernstein algebra. Now, suppose that UeZe 6= 0 and N2 * Ze. Then N2 = Kn ⊆

Ue ⊕ ker(Le) according to (ii) of the Proposition (4.1). Set n = n1 + n2 with n1 ∈ Ue and n2 ∈ ker(Le).
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We have
A2 = Ke⊕ Ue ⊕ eZe +N2 = Ke⊕ Ue ⊕ (eZe +Knz) = Ke⊕ Ue ⊕ Z1.

So eZ1 = U2
e = Z2

1 = 0 and UeZ1 = Ue(eZe +Knz) = Uenz ⊆ Ue ⊕ ker(Le). �

Proposition 4.3. Let (A,ω) be an algebra satisfying the identity (1) and of type (II) such that UeZe 6= 0 and

N2 * Ze. Then, A is a second-order Bernstein algebra.

Proof. We have U2
e = Z2

e = 0, so there are u0 ∈ Ue and z0 ∈ Ze such that u0z0 = n 6= 0. Set n = n1 + n2

where n1 ∈ Ue and n2 ∈ Ze. According to the relation (i) of the Theorem 4.1, we have (uz)(ez) =

α(u, z)n(ez) = (n1 + n2)(ez) = n1(ez) = 0 for all u ∈ Ue and z ∈ Ze.We also have (uz)2 = 0 for all
u ∈ Ue and z ∈ Ze. According to the Proposition 3.2, we deduce that A is a second-order Bernstein
algebra. �
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