Asia Pac. ] Math. 2025 12:94 ASIA PACIFIC ACADEMIC

EXTENDING THE MEDIAN PROBLEM TO SIGNED PERMUTATIONS VIA GENERALIZED
KENDALL-T DISTANCE

A. TAMILSELVI, M. KHALID AKTHAR*

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600005, Tamil Nadu, India

*Corresponding author: khalidakthar135@gmail.com

Received Aug. 18, 2025

AsstrRACT. The “median of permutation” problem involves determining a permutation that is the “closest”
to a given set of permutations under the Kendall-7 distance metric and is a central challenge in rank
aggregation. In this article, we extend this framework to the hyperoctahedral group of type B, of signed
permutations by introducing a generalized Kendall-7 distance metric capturing both positional and sign
disagreements. This enables the formulation of median problems in contexts where directionality is
inherent, such as gene regulatory networks (GRN). We show that any subset of B, closed under total
negation has B, as its median set, and that unsigned subsets closed under reversal yield the symmetric
group &,,. To support efficient distance computation, we construct a weighted distance graph G,, whose
edges represent elementary operations. Our findings provide new theoretical insights into signed rank
aggregation and offer a foundation for combinatorial optimization beyond the classical setting of &,.
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1. INTRODUCTION

The Kendall-7 distance, which quantifies the number of pairwise disagreements in the relative
ordering of two permutations, has long been a topic of interest in combinatorial optimization and
ranking theory. The problem of finding medians of a set of permutations under the Kendall-7 distance
[15,20], which counts the number of pairwise order disagreements between permutations, is a central
challenge in rank aggregation and consensus-building across various disciplines. This problem, often
referred to as the Kemeny Score Problem [14], has significant applications in social choice theory,
decision-making, and data aggregation. Initially formulated in Kemeny’s seminal work on ranking
problems, the task involves determining a consensus order of n candidates based on rankings provided

by m voters in a way that minimises the overall Kendall-7 distance.
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The Kemeny Score Problem is NP-complete when the number of input rankings m is an even number
at least 4 [4,12] and remains NP-hard for m > 7 when m is odd [2]. However, the complexity of the
problem for smaller odd values such as m = 3 or m = 5 remains an open question.

From the late twentieth century to recent years, various approaches have been developed to cope with
this computational challenge, including approximation algorithms, fixed parameter tractable (FPT)
strategies [/, 10], and even a polynomial-time approximation scheme (PTAS) [16]. Comparative evalu-
ations of these methods are available in [1,19]. Complementing algorithmic efforts, several theoretical
techniques have been proposed to reduce the search space, thereby simplifying median-finding. For
example, [6] introduced constraints based on pairwise orderings and adjacency in candidate medians.
Later, [3] introduced the idea of non-dirty candidates, elements consistently ranked above or below
others in a significant fraction of input permutations, which allow for decomposition of the problem
into smaller, independent subproblems. However, such candidates are rarely encountered in randomly
generated instances. Further refinements in data reduction with less restrictive were proposed in [17],
using the combinatorial properties of “almost adjacent” elements in median sets.

Moreover, modern efforts have explored novel paradigms such as quantum optimization for solving
the Kemeny ranking aggregation problem. For instance, Combarro et al. [8] formulated the problem
using multiple Quadratic Unconstrained Binary Optimization (QUBO)-based encodings and evaluated
their effectiveness using quantum approximate optimization algorithms and quantum annealing. These
explorations, while still constrained by current hardware limitations, underscore the importance of
efficient formulations in preparing for scalable quantum solutions in the near future. Additionally, Rico
et al. [18] proposed exact algorithms based on necessary conditions for a ranking to be optimal under
the Kemeny method, significantly reducing computation time for instances with up to 14 alternatives.
These advancements reinforce the centrality of the Kemeny problem in computational social choice
and its evolving relevance in high-performance and hybrid computing contexts.

An intriguing angle on this problem is offered by the notion of automedian sets, which are subsets of
permutations that remain invariant under the median operation. Such sets inherently satisfy a centrality
property under the Kendall-7 distance and thus provide promising candidates for efficient median
computation in polynomial time. Recent studies have examined how automedian sets behave under
operations such as the direct sum and shuffle product, enabling constructive strategies for building
such sets in larger permutation groups [11]. Two notable constructions identified in [ 13] include sets
formed by a permutation and its cyclic shifts and sets with a shared Sj;-kernel, potentially with some
fixed or common elements. These examples reveal that symmetry and regular structure often underpin
the automedian property. Furthermore, new variants based on direct sum operations have emerged,

along with parallel algorithms aimed at efficient median detection in separable permutation sets.
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This problem has gained significant attention in computational biology, particularly in the study of
genome rearrangement and gene expression patterns. In recent work, Cunha et al. [9] have conducted
a comprehensive parameterized complexity analysis of the median and closest permutation problems
under various genome rearrangement metrics. They have explored the computational complexity and
structural aspects of permutation medians under various distance functions—such as swap, breakpoint,
transposition, and block-interchange distances. They demonstrate that even when restricted to only
three input permutations, most variants of the problem remain NP-hard. While their analysis focuses
on unsigned permutations, it underscores the inherent intractability of consensus problems over
permutation spaces and motivates the need to study the analogous median problem in the signed
setting.

However, in many real-world contexts, rankings are inherently signed—each element not only has a
relative position but also an associated sign indicating activation or repression, presence or absence, or
positive or negative sentiment. This naturally leads to considering rankings as signed permutations. In
the context of Gene Regulatory Networks (GRNs), understanding the relative activity and influence of
genes under varying experimental or biological conditions is of central importance. These conditions
often yield signed rankings of genes, where each gene is not only ranked by importance but also
annotated with a direction—upregulation (activation) or downregulation (repression). Aggregating
such signed rankings across multiple datasets or conditions enables the identification of consensus
regulatory behavior, providing insight into core regulatory mechanisms.

In this work, we propose a novel approach for this aggregation task: we extend the classical Kemeny
framework to the hyperoctahedral group of type B,, the signed permutation group, which generalizes
the symmetric group &,,, thereby enabling the computational study of median sets of signed rankings
that faithfully reflect both gene ordering and regulatory direction. The additional structure introduced
by signed permutations necessitates a refinement of classical notions such as the Kendall-7 distance and
order disagreements. By defining Type I and Type II disagreements and incorporating sign differences,
we establish a new generalized Kendall-7 distance (see Definition 5) suitable for B,,. By leveraging
the combinatorial structure of the hyperoctahedral group B3,,, our framework offers a principled and
mathematically grounded method to summarize signed gene rankings across experiments. This work
not only contributes a new angle to rank aggregation in computational biology but also broadens the
applicability of median-based methods beyond the classical symmetric group &,,.

The computational complexity of the median problem under the generalized Kendall-7 distance in
By, also presents a fundamental theoretical challenge. While the problem is computationally tractable
for small input sizes, it appears to be NP-hard in general as the number of input signed permutations

increases. This aligns with known results for the classical Kendall-7 distance in S,, and suggests that a
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similar complexity-theoretic barrier may exist in the signed case. However, a formal classification of
the problem’s computational complexity remains an open direction for future research.

Our primary contributions are the following. We formulate a Generalized Kendall-7 distance metric
on the hyperoctahedral group of type B,, and extend the median concept to this group. We prove that
the median set of a subset A C 3, equals the entire group, i.e., M(A) = B, if it is closed with regard
to the total negation operation ‘—’. Similarly, if a subset consists solely of unsigned permutations and is
closed under reversal, then its median set coincides with the symmetric group: M(A) = &,,. We also
introduce the notion of a distance graph G, (V, E,w) over B,,, where edges correspond to elementary
operations such as adjacent transpositions and sign flips. This graph framework enables efficient
computation of pairwise distances and medians, particularly for smaller instances.

The paper is organized as follows. Section 2 lays out the theoretical framework, including definitions
of order disagreements, sign differences, and the generalized Kendall-7 distance in 5,,. Section 3
introduces and characterizes universal-median sets, which are subsets of B,, whose median set equals
the entire group. Section 4 presents the construction of the distance graph g,, and its application to
median computation. Section 5 focuses on &,-median sets, where the median set aligns with the

symmetric group.
2. GENERALIZED KENDALL-T DISTANCE ON B,

Throughout this article, n is a positive integer. A permutation 7 is a bijection of [n] = {1,2,...,n}
onto itself. The set of all permutations of [n] under composition operation forms a group, called the
symmetric group G,,. The order of &, is n!. By convention, we stick to the order of Sy as 1. We follow

the one-line notation to write a permutation.

Definition 1 (Hyperoctahedral group of type B,,). [5] The hyperoctahedral group of type B,, is the group of
signed permutations on n elements, representing the symmetry group of the n-dimensional hypercube. Formally,
it consists of all bijection

o:{£1,£2,...,tn} = {£1,£2,...,£n}

such that o(—i) = —o (i) for all i.

Note that for any positive integer n, we have |B,,| = 2"n! and |By| = 1. For a signed permutation o,
we use the following window-like notation: o = o102 - - - 7y,

In order to generalize the Kendall-7 distance for signed permutations in the hyperoctahedral group
of type B,,, we first introduce the notion of order disagreements between two signed permutations.
These disagreements are classified into two types based on the relative ordering and signs of their
entries in the respective inverses of the permutations. We begin by defining the order disagreement of

Type L.
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Definition 2 (Order disagreement of Type I). The order disagreement of Type I between pairs of elements of
two signed permutations in By, is defined as follows:

Form=mmy---m,, 0 =0102--0, € By,
Or(m,0) = {(i,5) |i < jand |(jm "] < |n; | and |o7!] > [0} )
or (|m7 | > |a; Y and o7 !| < |aj—1|)} }

Similarly, we define another type of order disagreement which considers not only the relative

positions but also the relative signs of the elements in the inverses of the permutations.

Definition 3 (Order disagreement of Type II). The order disagreement of Type II between pairs of elements

of two signed permutations in B,, is defined as follows: For 1 = myma -+ - 7, 0 = 0102+ - 0y, € By,
Os(m,0) = { (i) i < jand |(jr7| < | and 07| < | ")
or (w71 > I M and || > o7 )|
and {(ﬂ'i_l < 7Tj_1 and o; ! > O'j_l)
or (m; > 7rj_1 and o' < O'j_l)} } .
Remark 1. Each pair (i, j) contributes to at most one type of order disagreement (Type 1 or Type 2). That is, if

a pair contributes to one type, it does not contribute to the other. It is also possible that a pair does not contribute

to either type.

Apart from order disagreements, another crucial aspect when comparing signed permutations is the

difference in signs at corresponding positions. This is formalized in the following definition.

Definition 4 (Sign difference). The sign difference between the elements of signed permutations in By, is

defined as, for m = mimy - M, 0 = 01020y € By,
sgn(m,0) = {i € N| sgn(r; ) sgn(o; ') < 0}
where sgn(c«v) denotes the sign of o € Z \ {0}, which is +1 for positive elements and —1 for negative elements.

Using these notions of order disagreements and sign differences, we now define the generalized

Kendall-7 distance for signed permutations in 3,,.

Definition 5 (Generalized Kendall-7 distance on B,,). For w, o € B, the generalized Kendall-T distance,

denoted as dycr, is defined as the sum of the cardinalities (counting multiplicities) of the sets of order disagreements

of Type I, order disagreements of Type 11, and the difference in sign between 7 and o. i.e.,

dir(m,0) = 2|01(m, 0)| +4{O2(m, 0)| + | sgn(m, o)
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To illustrate the above definitions, we present a simple example demonstrating the computation of

the generalized Kendall-7 distance.

Example 1. Consider m =1—32,0 = —12 3 € B,,. To compute the generalized Kendall-T distance between
and o, consider = =13 — 2 and 0= = —1 2 3 to be the inverses of m and o, respectively. Clearly, the pair
(2, 3) contributes to the order disagreement of Type I and the pair (1, 3) contributes to the order disagreement of
Type 11. In addition, the pair (1, 2) does not contribute to any of the order disagreement types. It is easy to check
sgn(m,o) = {1, 3}. Thus we have

dir(m,o0) =2(1) +4(1) +2 =8

We now establish that the generalized Kendall-7 distance satisfies the axioms of a metric on the

hyperoctahedral group of type 3,,.

Theorem 1. The generalized Kendall-T distance, d forms a metric on By, i.e., the function
dKT : Bn X Bn — R
satisfying the following axioms for all signed permutations m, o, o € By:
(i): dgr(m,0) > 0 for ™ # o (Non-negativity)
(ii): dxr(m,0) =0ifand only if m = o
(iii): dgr(m,0) = dgr(o, m) (Symmetry)

(iv): dgr(m,0) < dgr(m, @) + dgr(a, o). (Triangle inequality)

Proof. (i) (Non-negativity). We need to show that dx7(m,0) > 0 forall 7,0 € B,,.
Since Oq(m,0), Oz(m, o), and sgn(w, o) are sets that count the pairs of elements of some sort as

defined above, and the cardinality of these sets are always non-negative, we have
|O1(m,0)| >0, |Oz(m,0)] >0, |sgn(m, o) >0.
Thus the generalized Kendall-7 distance is
dgr(m,0) = 2|01(m,0)| + 4|O2(7, 0)| + |sgn(w, o) > 0.

Therefore, dgr(m,0) > 0 for all 7,0 € B,,.
(ii) We need to show that dxr(7,0) = 0 if and only if 7 = o.
If 7 = o, then the elements of ™ and o are identical at every position. Therefore, there are no order

disagreement of Type I or Type II, and there are no sign differences:
O1(m,0) = Oz(m,0) = sgn(m,0) = .

Thus
dgr(m,0) = 2|01(m,0)| + 4|O2(7, 0)| + | sgn(w, 0)| = 0.
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Hence, if 7 = o, then dy7(7,0) = 0.
Conversely, suppose dir(m,0) = 0. Then
dgr(m,0) = 2|01(m, 0)[ + 4{O2(7, )| + | sgn(m, o) = 0.
= |O1(m, 0)| = |Oa(m,0)| = |sgn(m, 0)| = 0.

since O1(m,0), Oz(m,0), and sgn(w, o) are non-negative. This implies that there are no Type I or Type
IT order disagreements and there are no sign differences. Therefore, the relative order of the elements
of m and o must be identical, and the signs of the elements must match. The only way this can happen
is if 7 = 0. Thus, dgr (7, o) = 0 implies that 7 = o.

Therefore, dir(m,0) = 0 if and only if 7 = 0.

(iii) (Symmetry). We need to show that dxr(m,0) = dgr(o,7) for all 7,0 € By,.

By the definition of O; (7, ¢), O2(7, o), and sgn(7, ), these sets depend only on the relative ordering

and signs of the elements of 7 and o, not on the order in which they are compared. Specifically:

O1(m,0) = O1(o,7), Ogz(m,0) = O2(o,7), sgn(m, o) =sgn(o,n).

Thus, %(TF, o) = 2|01(m,0)| + 4|O2(7, 0)| + | sgn(r, o)|
=2|01(0, 7)| + 4|02 (0, 7)| + | sgn(o, 7)| = dxr (0, 7).

Therefore, di7 is symmetric.

(iv) (Triangle Inequality). We need to prove that for all 7,0, p € B,

dr(m,0) < dxr(m,p) + drcrp, o). (1)

We aim to show that for all 7,0, p € By:

|01(7, 0)| < |O1(m, p)| + [O1(p, 0)],

|O2(7, 0)| < |Oa(m, p)| + [O2(p, 0)],

[sgn(m,0)| < [sgn(m, p)| + [sgn(p, o)
so that

2101 (m,0)| + 4]0a(r, 0)| + | sgn(m, 0)| < 201 (m.p)| + 410s(r, )|
+|sgn(m, p)| + 2|01(p, 0)| + 4|O2(p, 0)| + | sgn(p, o)|,
which will prove the inequality (1).
Claim 1: |O; (7, 0)| < |O1(m, p)| + |O1(p,0)| V7, 0,p € By.

Consider any pair ¢ < j of positions in the set [n]. Consider the signed permutations in B,,:

7-‘-:7717'(-2...7'[-”’ 0-20-10-2"'0-%7 p:p1p2pn
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and their inverses:

Tl = an, o =B1BrBay P =YY Y

If (i,7) does not count as a disagreement for O; (7, o), then either (|o;| < |o;| and |5;| < |B;]) or
(lail > fej| and [B] > |5;])-

Suppose |a;| < || and |B;] < |B;]- The possibilities in p~!

are: || <|vyjl or [yl > |yl I [l <,
then the pair (7, j) does not belong to O1 (7, o), O1(m, p) and O1(p, o). If |y;| > |7;|, then (i, j) contributes
to each of |04 (7, p)| and |O1(p, o)|, but contributes 0 to |01 (m, 0)].

Similarly, if we suppose |a;| > |a;| and |5;] > |B;], then (|vi| > |v;]) or (|vi| < |v;])- If || > |74, then
(1, 7) contributes nothing to all three terms, and if |y;| < |v;|, we have (4, j) contributing 0 to |O1 (7, 0)|
and (i, j) belongs to both O1(m, p) and O1(p, o).

If (4,7) counts as a disagreement for O;(m, o), then either (|o;| < || and |3;] > [B;]) or (Jeu| >
;| and [B;] < [8;]).

Suppose |a;| < |oj| and |B;] > |Bj]. Thenin p~L, |vi| < |v;] or || > |4l If |i| < |74], then the pair
(1,7) belongs to O1(m,0), and O1(p, o) but does not belong to O1(m, p). If |y;| > ~;|, then (4, j) is in
O1(m, o), and O1(m, p) but not in O1(p, 7).

Similarly, if we consider |o;| > |oy| and [8;| < |5;], then |y;| > |v;] or || < |v;]. In either case,
there is an order disagreement of Type I between 7 and p, contributing to O;(m, p), or between p and o,
contributing to O (p, o).

Thus, considering all the cases and summing over all pairs (i, j), we conclude that:
|01(m, )| < [O1(m, p)| +|O1(p, 7)].

Claim 2: |Oz(7,0)| < |O2(m, p)| +|02(p,0)| V7w, 0,p € B,.

This inequality is similar to Claim 1, but now it applies to Type II disagreements, which involve both
relative order inversions and sign changes. The proof follows an analogous reasoning to that of Claim
1.

Claim 3: |sgu(m,o0)| < |sgu(m, p)| + |sgu(p,o)| Vm,0,p € By.

On the contrary, suppose Vr,0,p € B,

[sgn(m, )| > [sgn(m, p)| + [sgn(p, 0)] (2)

It is easy to see that |sgn(7, 0)| is at most n. Let us break down and check for all possibilities of the
value of | sgn(m, 0)|.

If | sgn(m, 0)| = n, thensgn(m;) # sgn(o;) for all 4, therefore, each position i contributes 1 to | sgn(w, o).
Consider p = pip2 - - - pn. Here, for each i, p; can be positive or negative. That is, for each i, either

sgn(pi) = sgn(m;) or sgn(p;) = sgn(oi).
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Furthermore, if sgn(p;) = sgn(m;), then sgn(p;) # sgn(o;), which means that the element at position
i contributes 1 to |sgn(p,o)| and 0 to |sgn(7, p)| and if sgn(p;) = sgn(o;), then sgn(p;) # sgn(m;),
contributing 1 to | sgn(m, p)| and 0 to | sgn(p, o)|. In either case, we will have the contribution of 1 (from
position i) to the Right Hand Side (RHS) of (2).

This scenario implies that

|sgn(m, o) = [sgn(m, p)| + [sgn(p, o),

which is a contradiction to our assumption in (2).

If | sgn(m, 0)| < n, then there exists at least one position i at which sgn(m;) = sgn(o;), contributing
0 on the Left Hand Side (LHS) of (2). Now, p; can be such that sgn(p;) = sgn(m;) = sgn(o;) or
sgn(p;) # sgn(m;) = sgn(o;), contributing 0 and 1 to both the terms of the RHS of (2) by the former and
latter case, respectively. We continue with all such ¢’s with this property.

Thus, in the former case, we will get the contribution 0 on both LHS and RHS of (2) at i’s, ensuring
LHS = RHS again, a contradiction to (2). In the latter case, at position ¢'s, it contributes 0 to the LHS of
(2) and contributes 1 + 1 = 2 to the RHS of (2), showing clearly that

|sgn(m, o) < |sgn(m, p)| + [sgn(p, o),
which is a contradiction. So we must have
|sgn(m, o)| < |sgn(m, p)| + [sgn(p,0)| Vm,0,p € By.
Summing these inequalities, we get:
dir(m,0) = 2|01(,0)| + 4]02(r, 0)| + | sgn(m, 0)]
< 2|01(m, p)| + 4|O2(, p)| + | sgn(m, p)|
+2[01(p, 0)| +4|02(p, 0)| + [ sgn(p, o)

Thus, the triangle inequality holds:

dgr(m,0) < dgr(m, p) + dgr(p,0).

0

Let m be the number of elements in B,,. Consider (7!, 7%, ..., 7™) denote an ordered sequence of

signed permutations in B,,. We define a m x m table, called the distance table of 53,,, where the entry in
the (i, j)-cell of the distance table represents the generalized Kendall-7 distance dr (7, 77) between
the signed permutations 7 and 77, for 1 < 4,5 < m.

For a signed permutation 7 € B,,, the column sum of 7 is defined as:

S der(m,o),

O'EBTL
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which represents the sum of distances from 7 to all elements in B,,. Similarly, the row sum of 7 is

defined as:

S dier(o,m),

g EBn
which represents the sum of the distances from all elements in 3,, to 7.

For a subset A C B,,, we define the column sum of A as:

> > dxr(mo),

reAcEB),

and similarly, the row sum of A is:

Z Z dgr(o,7).

rTeATEB,
These sums can also be obtained directly from the distance table by summing the relevant rows and

columns.

Since dyr is symmetric, it follows that the distance table is also symmetric; specifically, the entry in
the (4, j)-cell equals the entry in the (j, ¢)-cell. Consequently, for any signed permutation = € B,, and
subset A C B,,, the row sum and column sum of 7 (respectively, of A) are identical. Additionally, the
entries along the main diagonal of the distance table are zero, as the distance from a signed permutation
to itself is zero.

In the following, we provide the distance table for By. See Table 1 below. Let the elements of 3,
beorderedas 7! = 12,72 = =12, 7° =1 -2, 7' = -1 —=2,7°=21,7°= 21,77 =2 —1,and

=2 —1.

TasLE 1. The distance table for By

7'('1 7T2 7'('3 7T4 7'1'5 71'6 7'('7 7'['8
©™|l0o 1 5 6 2 3 3 4
/1 0 6 5 3 4 2 3
™5 6 0 1 3 2 4 3
6 5 1 0 4 3 3 2
™2 3 3 4 0 1 5 6
03 4 2 3 1 0 6 5
7|3 2 4 3 5 6 0 1
14 3 3 2 6 5 1 0
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3. UNIVERSAL-MEDIAN SET OF SIGNED PERMUTATIONS

In this section, we extend the concept of medians to the context of signed permutations under the
generalized Kendall-7 distance, introducing the notion of a universal-median set and key operations
that play a role in its structural properties.

Given any set of signed permutations A C B,, and a signed permutation = € B,,, we have

Ter(m, A) = S dier(m, o).
oceA

We begin by formally defining the median of a set of signed permutations A in B, under the

generalized Kendall-7 distance.

Definition 6 (Medians). Given A C B,,, a median of A under the generalized Kendall-T distance is a signed
permutation m* € By, such that dgr (7%, A) < dgr (7w, A), V7 € By,
Define M(A) as the set of all medians of A. i.e.,

M(A) = {0 € B, | dkr(0, A) < dgr(m, A),Vr € By}

Having established the notion of a median, it is natural to ask whether there exist special subsets of
signed permutations for which every element of the group is a median. This leads us to the definition

of a universal-median set.
Definition 7 (Universal-median set). A set A C B,, is said to be a Universal-median set if M(A) = B,,.

To study the structure of median sets in 53,,, we now introduce two elementary operations on signed

permutations, namely, transposition and negation.

Definition 8 (Transposition operation). A unary operation on = = my - - - m, € By, called “transposition

operation" denoted by t;, for any 1 < i < n — 1, is given by
ti : By, — By, defined as
ti(ﬂ—) =T T 1T 1T T42 + -+ Ty

Definition 9 (Negation operation). A unary operation on m = 7y - - - m, € By, called “negation operation at

i" denoted by n;, for any 1 < i < n, is given by
n;i : Bn — By, defined as

772'(”) =M1 — T Tl - T
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Let us introduce some notation to avoid confusion and for better presentation.

For 1 <i < n, denote 7; as the signed permutation 7;(r), image of 7 = 7y - - - m, - - - m, under the
negation operation 7;, and denote 7(") to be the signed permutation obtained from 7 by replacing ;
with —m; for any » number of i’s.

Having introduced these definitions and notations, we now establish a fundamental lemma that

quantifies the effect of a negation operation.

Lemma 1. Let m = mymy - - - m, be an element of By, and consider m, = n,(7) = T -+ Tp_1 — Ty Tpg1 - T
Then
dKT(Tﬁﬁ'}) =1+ 4(7“ — 1).

Proof. Consider 7 and 7, as follows:

1 2 -+ n 1 - r—-1 r r+1 -+ n
T T2 o Tn T o Tp—1 —Tp Tp41l - Tp

Assume 7, = k (which can be either positive or negative). Then the inverses of = and 7, are:

7 =B B B T =1 Bret — Br Brt1 - B
Here, 8, = r or —r depending on the sign of 7.
Clearly, the number of sign differences between 7 and 7, is
[sgu(m, )| = [{r}| =1 (since sgn(fy) # sgn(—F))-

Thus, this contributes 1 to the total distance d.

Since the absolute values of the elements in 7! and 7, ' are the same, it follows that:

meaning there are no pairs of Type I disagreement (i.e., no pairs (i, j) where |3;| < |3;] in 7~! but
8i] > |B;] in 7!, or vice versa for all 7, ).

Observe that no pairs of elements in 7 and 7, are Type II order disagreement pairs and none
contributes to the distance d, since all elements in 7~ and 7, "' are the same except for the pairs of

elements containing 3 in 71 and — 8, in 7.~ !, which has to be carefully checked.

Without loss of generality, let 3;, = r. For Type II pairs, we can consider two cases:

e Case1: f, < 3;and —f3;, > B; (i.e., r < Bj and —r > B; for all j # k). This implies:
r < 5]' < -,

which cannot happen as r is not less than —r.
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e Case 2: §;, > 3;and — 3, < B; (i.e, r > fj and —r < f; for all j # k). This implies:
—r < B <.

So, B; can be any of the numbers between —(r — 1) and r — 1, but it cannot simultaneously be both
—(r —1) and r — 1 as ; is an element of a signed permutation. Thus, there are  — 1 such pairs that
satisfy case 2. Therefore,

|Og(m,70p)| =1 — 1.
Similarly, if 8 = —r, the same argument applies, yielding |Oz (7, 7,)| = r — 1.

Hence, the total distance is:
dgr(m, 7)) = 2|01(m, 70,)| + 4|O2(7, )| + | sgn(m, 7)) = 0+ 4(r — 1) + 1.

This proves the lemma.

O

Building on this lemma, we generalize the result to multiple negation operations and establish
an additive property of the generalized Kendall-7 distance when multiple positions of a signed
permutation are negated. This result will be crucial in characterizing the behavior of certain subsets

under median operations.

Theorem 2. Let dir(m, o) be the generalized Kendall-T distance between m = myma - - - mp and o = () =
o109 - - - oy, Where o; = m; for all i except for certain positions iy, iz, . .., i, such that o;, = —m;, for 1 < iy <

19 < ... <1, <n. Then

dKT(T[',O') = ZdKT(ﬂ-l'”ﬂ-nao-l"'aik"‘Un)
k=1

Proof. We prove this theorem by induction on r. For the base case r = 1, we have already proved in
Lemma 1.

Let us now take » = 2 and consider 7 and o as follows:
T =T T Ty, O =T1Mijyj—1 — Mjy Mig41 - Tig—1 — Wiy TWig41 " T
where 1 < 47 < i < n.
To prove that dxr(m,0) = dgr(m, m - Tiy—1 — Ty Tig41- - Tn)
—i—%(?ﬂﬁ STyl — Ty Mgl )

ie., dKT(ﬂ',O') =1 +4(i1 — 1) +1 +4(i2 — 1).
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Assume 7;, = k; and m;, = ko (both of which can be either positive or negative). Without loss of

generality, let k1 < ko. Then the inverses of ™ and o are:

7= BBy Bra B
U_l = 51 o 'ﬁk‘l—l - Bk‘l Bk’1+1 o 'ﬁk‘z—l - ﬁkQ Bk2+1 o ﬁn

Here, B, =1 or — 41 and [k, = iz or — i3 depending on the sign of 7;, and ;, respectively.

Clearly, the cardinality of the set of sign differences between 7 and o is

|sgn(m, )| = [{i1,i2}] = 2.

Thus, this contributes 2 to the total distance dx (7, o).

Since the absolute values of the elements in 7~ and ¢! are the same, it follows that:
O1 (777 J) =,

meaning there are no pairs of Type I disagreement (i.e., no pairs where |3;| < |5;] in 7= but | 5;| > |3;
g P yp g p j j

in o~1, or vice versa, for any,j).
Observe that no pairs of elements in 7 and o are Type Il order disagreement pairs and none contributes
to distance dx7(m, o), since all elements in 7! and o' are the same except for pairs of elements

containing B,, — Bk, in 7! and B,, — Bk, in 0. We now check all these instances.

e Case 1: Firstly we investigate those pairs containing j3j,. So Type II order disagreement pairs is
possible if for j # ko
ﬁkl > ,Bj and — Bkl < ﬁj (OI') /Bkl < 5]' and — Bkl > ﬁj

= =By < Bj < By (01) Bry < Bj < =Py
Either of these hold if 5, = i1 (or) Br, = —i1 respectively. In both of these cases, we have
—i1 < B; < i1. So B; can be any of the numbers from —(i; — 1) to (i1 — 1) (except 0) but since f3;
is an element of signed permutation, it cannot be both —/ and [, forany [, —(i; —1) <1 <i; —1.

Thus, there are i1 — 1 such pairs contributing to this case.

e Case 2: Now let us check for the pairs containing Sj,. So Type II order disagreement pairs is

possible if for j # k;
Bkz > Bj and — ,BkQ < ﬁj (OI‘) ,Bk2 < ,Bj and — ﬁkz > 5]‘

= —Bry < Bj < By (0F) Bry < B < =By
Similarly we have —is < 3; < iz but since j # ki, we cannot have 3; = 3, = £i1. Thus, there

are i3 — 2 such pairs contributing to this case.
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e Case 3: Finally we check the pairs containing 3, and f,, in which case
By > Bry and — B, < =B, (0r) By < Bry and — By > — B,

= By > Py (OF) Bry < By
Either of these always hold. Hence, there is one pair of Type II disagreements between Jj, and
B -
Thus, |Oy(m,0)| = (i1 — 1) + (i2 —2) + 1 = (i1 — 1) + (12 — 1).

Therefore, combining all contributions, we get the total generalized Kendall-7 distance as:
drr(m,0) =2+ 4(ip — 1) +4(ia — 1).
Thus, for r = 2, the identity holds:
dr(m,0) = dgp(m,m - Ty -1 — Ty 7)) + (T, T Tyt — Ty )

Inductive Step: Now, assume that the formula holds for » = m > 1. That is, suppose for any m-tuple

of positions iy, i3, . .., im, where 0;, = —m;; for j = 1,...,m, we have
L m
dier(m, 7™) = dier(m, 73) + - + dir(m, 7)) = Y (1+4(i; — 1)). (3)
j=i
Now consider the case r = m + 1. Let 7(™*1) be a signed permutation where o;,,0;,,. .., d;,, are the
same as in the inductive hypothesis, and in addition, o;,,,, = —m;,,, for some i,, 1 > iy,. Then the

distance between 7 and 7(™*1) ig
drer (m, 7™ DY = T (r, 7)) + dgep (™), g (D)

By the inductive hypothesis (3), the first term in the right hand side of the above equation becomes

m

drer(m, ™) =3 (14 4(i; — 1)),

j=i
and using the Lemma 1 for the second term, in which the additional distance between 7("™) and 7("+!)
comes solely from the sign change at position i,, 1, which contributes 1 + 4(i,,+1 — 1) to the distance.

Therefore
m+1

dper(m, w™ ) = 3" (14 4(i; — 1)).
j=t
Hence, dKT(ﬂ',ﬂ'(m)) =dgrp(m, 7)) + - +drgr(m,7,,).

Thus, this completes the proof.
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Corollary 1. Let dgr be the generalized Kendall-T distance between m = mymg - - - Tpand n~ = —my —my -+ - —
. Then

Furthermore, this simplifies to dgr(7m,7~) = n(2n — 1).

Proof. The proof is straightforward from the above Theorem 2 by setting » = n and with a simple

calculation we get dir(m,77) = n(2n — 1). O

Definition 10 (Total negation operation). A unary operation ‘—’ on the elements of B,, is defined to be the
map

— : B,, — B,, such that
for m = mmy - - - my,. The image of m = mymy - - - m, With respect to this operation ‘—’ is denoted by 7~ and we

’

call the operation “—" a total negation operation.

We now give the remarkable result of this section which characterize the Universal-median set. The

following lemma will be useful to prove this result.

Lemma 2. Forany m,0 € B, we have
dgr(o,7) +dgr(o, ) =n(2n —1). (4)
Proof. By Corollary 1, we know that for any = € B,,,
dir(m,77) =n(2n —1).
Setting o = 7 in (4), we recover the equation
dgr(m,m) +dgr(m, 77 ) =0+ n(2n — 1).
Similarly, setting o = 7~ yields
dgr(n=,7) +dgr(n~, 77 ) =n(2n — 1) + 0.

Both cases trivially satisfy (4).

Now consider the case where o € B,, \ {7, 7~ }. To verify the claim, we analyze the contributions
from Type I and Type II order disagreements between the signed permutations.

Let the inverses of 7,7~ and ¢ be 7! = a1 ---any, (7r*)_1 = —a1--—apand o7 = B1--- By,
respectively.

For an arbitrary pair of positions (i, j), assume without loss of generality that |3;| < |3;] in o~ L.

Case 1: If |o;| > |oj| in 771, then | — ;| > | — | in (7~) L. This pair (i, j) belongs to both O; (o, 7)
and O1 (o, 77).
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Case 2: If |o;| < |a;| in 771, then | — a;| < | — | in (77) ™. In this case, (i, j) does not belong to
both O (o, 7) and O (o, 7). Thus, we focus on Type II order disagreements.

Suppose 3; < 3j in o~t. We divide this case into two subcases.

(i): If o; < aj and —a; > —a, then the pair (i, j) belongs to Oz(o, 77) but not to Oz (o, 7).
(ii): If a; > oy and —oy < —ayj, then the pair (4, j) belongs to O2(c, 7) but not to Oz (o, 77).

The same conclusions hold if 3; > ;. In any case, each pair (i, j) belongs to both O;(c, ) and
O1 (o, 7™) or belongs to either Oz (o, m) or Oz(o, 7~ ) but not both. There are n(n — 1)/2 such distinct
pairs, and each pair contributes 4 to the total distance dxr (o, 7) + dgr (0, 77).

Finally, we have |sgn(o, 7)| + | sgn(o, 7~ )| = n since each position ¢ gives a contribution to either
| sgn(o, 7)| or |sgn(o, 77)|. That is, in an arbitrary position 4, if the signs of 3; and «; are the same, then
the signs of ; and —«; have to be different, and vice versa.

Thus, summing all contributions, we obtain

(n—1)

drr(o,7) +dgr(o,77) — 4" 5 +n=n(2n-1).

This completes the proof. O

Theorem 3. If A is a subset of signed permutations of BB,, with cardinality m and is closed under operation "',

ie., forall m € A, we have 7~ € A, then the set of medians equals B,,, i.e.,
M(A) = B,.
Moreover, for any 7 € A, the generalized Kendall-T distance between m and A satisfies

dir(m, A) = dip(n, A) = %n@n —1).

Proof. Let A = {r!, 7% ..., 7™} be a set of m elements in B,,. Since A is closed with respect to the
operation —, it follows that if 7 € A, then 7= € A. Observe that for every i € {1,2,...,m},we can
find j € {1,2,...,m}\ {i} such that 7/ = (7%)~. We arrange these elements in pairs such that (7%)~ is
followed by 7%, and rename this to get 0%, 02, - - , 0™, where 02 = (¢!)~, 0* = (¢3)7, and so on. That
is,
A={o' (eH) 0% (0H)7,...,a™2 (6™},
We want to show that M(.A) = B,,. To do so, we need to find the signed permutation 7* in 5,, that

minimizes the total generalized Kendall-7 distance from .A. This distance is given by
drr(n*, A) = dxr(n*,0") + dir (7™, (1) 7) + - + drr(n*, ™) + dp (7%, (0™/%)7).
By Lemma 2, for any signed permutation 7, the total distance can be calculated as:

drr(m*, A) =n2n—1)+ - +n(2n —1) (summed for % pairs) :
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Thus, we find
drr(r, A) = %n(Zn —1).

Hence, we conclude that the subset A of B, is a universal-median set, i.e.,

M(A) = B,.
g
Corollary 2. For m in B,,, the column sum (resp., row sum) of w is @n@n —1).
Proof. The proof follows easily by setting A = B3,, in Theorem 3. O

Remark 2. For any element m € B,, and any non-empty subset A C B,,, we have

dir(m, A) + dgr(m, A9) = @n(Qn —1).

4. DISTANCE GRAPH G,, OF B3,,

We define the distance graph G, (V, E,w) for B,,, where
e the set of vertices V' are the signed permutations in 3,, written in one-line notation, i.e., V = B3,
e ¢ = (m,0) € Eiff o is obtained from 7 by using the ‘first negation operation 7,” (refer Definition
9) or the ‘transposition operation ¢;” (refer Definition 8) and vice versa.
e the weight function w : E — N defined as
o) =ultmo = { 0T
2, ifo=t;(m).

The graph G, is a weighted rooted connected graph with identity-signed permutation as the root.
This graph clearly does not contain loops since m # 1, (m) and 7 # ¢;(7) for any signed permutation
T € B,.

In the context of distance graph G,, the generalized Kendall-7 distance (see Definition 5) between
any two signed permutations 7,0 € B, is defined as the minimum total weight of a path that connects
7 and o in the graph G,,.

The distance graph G,, can be constructed by following simple steps.

Step 1: Begin with the identity element e = 12 --n in B,, as the root of the graph.
Step 2: In each step, apply the operations 7; and ¢; to every vertex generated in the previous step.
For a given node m = mymy - - - 7y,
e Connect 7 to the element —m 75 - - - 7, with an edge of weight 1.
e Connect 7 to the elements 7y - - - ;117 - - - T, with an edge of weight 2, for every 1 < ¢ <
n— 1.

Step 3: Repeat the process iteratively until all elements of B,, are included in the graph.
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As an example, we provide the distance graph for B2 and B3. See Figure 1 and Figure 2, respectively.

Ficure 2. Distance graph for B3
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Now we shall see some properties relating the generalized Kendall-7 distance with reversal of a

signed permutation.

Definition 11. Let 7 = w7y - - - 7y, be any element in B,,. The reversal of a signed permutation m is a signed

permutation denoted as ©"¢" and defined by n"¢" = mpmp_1 - - - 7.

Lemma 3. For any element w in B,,, we explicitly give the generalized Kendall-T distance between 7 and its
reversal, i.e.,

dKT(W,ﬂ'Tev) = n(n — 1).

Proof. To compute the generalized Kendall-7 distance dgr(m,7") for any m € B,, we consider the
reversal operation on 7 and calculate the total minimum distance required to transform 7 into 7"
using the distance graph G,, of B,,.

The transformation from 7 = w7y - - - m, to its reversal 7"¢” = m,m,_1 - - - m1 can be systematically
achieved by sequentially relocating each element of 7 to its final position in 7"*”. We construct a specific
path in G, to achieve this transformation and calculate the total distance along this path.

We begin by swapping m; with mp, m with 73, and so on until 7 is placed in position n. This
intermediate step transforms 7 into moms - - - 1. The number of swaps required is n — 1, and each
swap contributes a distance of 2. Thus, the total distance for this step is 2(n — 1). This is evident from

the following path in G,:
T —> MWW Ty —> WMWY =Ty —> ++ TN * - MM

Next, we repeat this process for my, swapping it with 73, 74, and so on, until it reaches the position
n — 1. This transforms mom3 - - - m, Ty into w3my - - - T, wom. The number of swaps required in this step is

n — 2, and the total distance contributed by these swaps is 2(n — 2). In G,,, this is given by the path:
TQTY * * MM —> M3MQT4 ** * TpT] —> *++ —> 3T+ + - T2

Continuing in this manner, we iteratively relocate each element to its final position in 77¢. The total

distance for the whole process is summarized as follows:
2(n—1)4+2n—2)+---+2.

Using the formula for the sum of the first m natural numbers, the total distance is computed as:

n—1
dir(m,m) =23k
k=1

(n—1)n
2
=n(n—1).

:2-
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Note that there may exist multiple paths in G, connecting 7 to 7"V, but all of these paths yield the
same total distance di7 (7, 77”) = n(n — 1) due to the nature of the generalized Kendall-7 metric. This

completes the proof. O

Note that (77)"" = (7"°”)~, thus we have the following:

Theorem 4. For any element w € B,,, the generalized Kendall-T distance
dgr(m, (7)) = dgp(m, (") ") = n.

Proof. To compute the generalized Kendall-7 distance di7 (7, (7~)"?) for any 7 € B,,, we systematically
trace the path in the distance graph G, of B,, that connects 7 to (77)"*” and calculate the minimum
total distance.

The transformation from = to (7)™

involves reversing the order of elements and changing the
signs of all entries. To achieve this transformation, we proceed iteratively, ensuring that at each step,
the appropriate distance is accounted for.

We first describe the path that transforms 773 - - - m,, to the intermediate state moms - - - m, — 71. This

is done in two stages:
(1) Apply the operation 71, which flips the sign of the first element, transforming = into —my 73 - - - 7.
This operation contributes a distance of 1.
(2) Sequentially reposition 7 to the last position by applying transpositions ¢;, ¢ = 1,2,. ..,
n — 1. Each transposition contributes a distance of 2, and since n — 1 transpositions are required,
the total distance for this step is 2(n — 1).
Therefore, the total distance for this phase is 1 + 2(n — 1). We can see this in the distance graph G,
which is given by the path

1 2 2 2 2
T — =TT Ty —» T — TN+ Ty —> QW3 — L Ty —7 *++ —> QW3+ Ty, — 7]

Next, we iteratively repeat the process for each subsequent element, transforming
QM3 - - - Ty, — M1 into wgmy - - - m, — M — 71, and so on until all elements are reversed and negated. At

each step, the process involves:

(1) Applying n; to flip the sign of the next element, contributing a distance of 1.
(2) Repositioning this element to its final location through ¢; operations. If the element is in position

k, the number of required transpositions is n — k, and the corresponding distance is 2(n — k).

Summing the contributions from all steps, the total distance for transforming 7 into (77)"“" is:
der(m, (7)) = [1+2(n—1)] + [1+2(n—2)] +--- + [1+2(1)]

=n+2[1+2+4--+(n-1)].
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Using the formula for the sum of the first m natural numbers, the total distance becomes:

(n—1)n

dgr(m, (7)) =n+2- 5
=n+4+n?-n

:nQ.

Similarly, for the reversal of the negated signed permutation (7"V)~, the computation follows the same
steps since the operations of reversal and negation commute in this context. Thus, the generalized

Kendall-7 distance satisfies:
dicr(m, (7)) = dgp(m, (7)) = n’.

It is worth noting that while multiple paths in G,, may connect 7 to (77)"", all of these paths yield the
same total distance due to the intrinsic properties of the generalized Kendall-7 metric. This completes

the proof. O

Theorem 5. Let m = mymy- -7y, € By, and define 0 = o102 --0y, € By, such that o; = —m; for some

ie€{l,...,n}and o; = wj forall j # i. Then, the generalized Kendall-T distance satisfies:
dKT(ﬂ',UTev) = n(n — 1) + 1.

Proof. In the distance graph G, of B,, we trace the path connecting m and ¢ = o1 ---0;--- 0, in By,
where 0; = 7; for all j # i except 0; = —m; for 1 <4 < n. To establish the result, we explicitly construct
a path and calculate the total distance along it.

We begin by swapping 7 with m, m with 73, and so on until 7; is placed in position n. This
intermediate step transforms 7 into moms - - - 1. The number of swaps required is n — 1, and each
swap contributes a distance of 2. Thus, the total distance for this step is 2(n — 1). This is evident from

the following path in G,,:
T —> MM Ty —> QWYY * == Ty —> = - TQWZ * + + TpT]

Next, we repeat this process for m, swapping it with 73, 74, and so on, until it reaches the position
n — 1. This transforms mom3 - - - T,y into w3my - - - T, o The number of swaps required in this step is

n — 2, and the total distance contributed by these swaps is 2(n — 2). In G,,, this is given by the path:
TN+ MM —> M3MQT4 *+ * TpyT] —> «++ —> 3T« - T2

We continue this process until we reposition the element 7;_; to obtain m;m; 41 - - - mpmi—1 - - - mom1. Once
; is in the first position, we apply the first negation operation 7, to transform m; into —;. This operation

contributes a distance of 1. At this stage, the intermediate result is —m;m; 41 - - - T mi—1 - - - W27y
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Finally, to construct o"¢?, we reverse the order of the remaining elements. This involves applying the
Yy g pplyng

operation t; fori € {1,2,...,n — i} to get a path connectingto o = o1 - - 0,_10;0i41 - - oy,
€ B, where o = 7j for all j # i,and 0; = —m; for 1 <+ < n. So, the total distance for the path is given
by

dgr(myo) = 2(n—1)+2n—2)+---4+2(n—(i—1)+1+2(n—1i)+---+2(1)

= 14201424+ (n—1)

= 14+nn-1).

~ 142]

Since there may exist multiple paths in G,, connecting 7 and o, the above calculation shows that the

constructed path achieves the minimum distance. Hence, the proof is completed. O

5. &,,-MEDIAN SET OF SIGNED PERMUTATIONS

The study of median sets in particular subgroups of the hyperoctahedral group of type B,, sheds
light on the relationships and structural characteristics of signed permutations. In this section, we
introduce the notion of an &,,-median set within the group of signed permutations B,,, where &,, is
the symmetric group of order n, and explore some fundamental properties and results associated with
this concept.

We begin by formally defining the &,,-median set as follows:
Definition 12 (S,,-median set). A set A C B, is said to be a &,,-median set if M(A) = &,,.

To understand the behavior of distances between elements of &,, and their reversals within the larger
structure of B,,, we establish a crucial identity involving the generalized Kendall-7 distance between a
permutation and its reversal. The following finding is useful in describing median sets which is closed

with regards to the reversal operation.

Lemma 4. For any two permutations w, p € &, we have the identity
dgr(m, p) + dir(m, p°) = n(n —1).

Proof. Since 7 and p are elements of the symmetric group &,,, any permutation p can b acquired from
7 by a sequence of transpositions ¢;, where ¢; swaps the elements at positions i and ¢ + 1, where
ied{l,...,n—1}
To establish the result, it suffices to verify the identity for two fundamental cases:
(i): p is obtained from 7 by applying a single transposition operation, i.e., p = t;(7) for some

ie{l,....,n—1}.
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(ii): pis obtained from 7 by applying a finite number of transposition operations, i.e., p = t;(t;(7))
forsomei,j € {1,...,n—1}.
For case (i), let pbe givenby p = 7y - - - mj_1 W41 Tiy2 - - - T, which means that ¢; swaps 7; and 7;11. It

is evident by looking at the distance graph G,,s structure that the distance

dgr(m, p) = 2. (5)
Now, we analyze di7 (7, p"*’). The reversed signed permutation p"" is given by:
P = T 1 - Wi 2 MM 11 - - * T2,

To compute dr(m, p"¢"), we trace a path in the distance graph G,, connecting 7 to p"".
The transformation proceeds as follows:
e Swap m iteratively with my, 73, ..., m,, placing m; in position n. This requires n — 1 swaps,
contributing a total distance of 2(n — 1). This intermediate step transforms 7 into mams - - - T, 71

This is evident from the following path in G,:
T —> MM Ty —> QW] * == Ty —> = - TQWZ * + + TpT]

e Repeat this process for mz, moving it to position n — 1 through n — 2 swaps, contributing 2(n —2).

In G,,, this is given by the path:
TQMG ++ = My M —» M3MQTY * ** Ty T] —> *++ —> M3TW4 * -+ Ty

e Continue this process for all 7, until we reach m;_;, which is moved to its required position

with n — (i — 1) swaps, to obtain
Mgl " TpTi—1 - T2T1.

e Once 7; is in the first position, we begin to swap ;1 to the right until 7; ;| reaches a position

immediately right to m,, which is acquired in n — (i — 1) steps to get
TT4+2 T Ti41T5—1 ** - T2T 1.

e Now again we start swapping m; with m; 9, so on and place 7; in between 7, and ;1. At this

stage, the intermediate result is
it~ MpTTi4+1Tj—1 * * - ToT].
Then we again continue the process of swapping elements to finally arrive at

Tev
P = TpTp—1" " T 2T 11 -+ - 271 .
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The total distance accumulated through these swaps is given by:
drr(m,p™) = 2(n—1)+2(n—2)+--+2(n—(i—1))+2(n—(i—1))
+2n—(i+1))+---+2(2)+2(1)
= 2{(n-1)+n-2)+---+n—(t—1)+n—9)+(n—(i+1))
ot 241 = [(n—i) +n—(i—1)}

= 2{14+24+--+(n—-2)+(n—-1)] -1}

e

= nn-1)—2. (6)
Thus, we obtain from (5) and (6),
dgr(m,p) +dgr(m, p*) = n(n — 1).

For case (ii), when p = t;(t;(7)) with j = i + 1, the second transposition t; reverses the effect of the

first t;, restoring m. Hence, we have
dir(m,p) +dgr(m, p"") = dgr(m, m) + dgp (7, 7)) = n(n — 1).

When j # i + 1, without loss of generality, assume i < j. Then p differs from 7 by a finite number
of swaps (say k), contributing dxr (7, p) = 2k by the distance graph G,. Following an argument

analogous to case (i), we conclude that the identity holds for this case as well. 0

Remark 3. It is clear from the distance diagram Gy, of B,, that the converse also holds. i.e., for p € &,,, if we

have dgr(m, p) + dgr(m, p"") = n(n — 1), then necessarily m € &,,.

Building on these distance properties, we now present a characterization result for subsets of &,
that are closed under reversal. The following theorem shows that such a subset necessarily forms an

S,-median set, and moreover, provides an explicit distance formula from any &,,-element to the set.

Theorem 6. If A is a subset of the symmetric group &,, C By, of cardinality m and A is closed under the unary

operation ‘rev’ (i.e., whenever m € A, then n"¢" € A), then A is a &,,-median set. That is,

and also for any o € &,
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Proof. Let A = {r', 7% ..., 7™} be a set of m permutations in &,,. Since A is closed under the reversal
operation rev, it follows that if 7 € A, then 77’ € A. Observe that for every i € {1,2,...,m}, we can
find j € {1,2,...,m} \ {i} such that 7/ = (7%)"**. We arrange these elements in pairs such that (7?)"

is followed by 7%, and rename this to get
A= {0_17 (O_l)rev’ 0_27 (0_2)7%2@, e O_m/27 (0_771/2)1"81)}7

We want to prove that M(A) = &,,. To do so, we need to show the following.
(i): dxr(p, A) = Tn(n — 1), forevery p € &,
(ii): drr(p, A) < dgr(a, A) forevery p € S, a € By, \ G,,.

The median set M(.A) consists of signed permutations p that minimize dxr(p, A). Part (i) shows
that all elements in &,, are equidistant from A since the distance for any p € &, is exactly Fn(n — 1),
which will imply M(A) 2 &,,. Then this with part (ii) completes the proof.

For part(i), we have for any p € &,, the distance to the set A is given by

dxr(p, A) = dir(p, o) + dir(p, (1)) + -+ dr(p, ™) + dicr (p, (0"2)).
Using Lemma 4, we have,
m
dgr(p,A) = nn—1)+---4+nn-1) (summed for 5 pairs) .
Thus, drgr(p, A) = %n(n —1).

For part(ii), using the triangle inequality and Remark 3, for any o € B,, \ &,,, we have,

STev

dgr(a,0") + dgr(a, o

STev

) > dgr(ct,e" ) =n(n-1)

= dKT(O‘>Oj) + dKT(CY, 0_775”) > dKT(P, Ui) + dKT(p7 Jirev)? forpe &,
Summing over all pairs in A, we obtain
— — m
dKT(a,A) > dKT(p, A) = En(n — 1).
This confirms that for any a ¢ &,,,
dgr(p, A) < dgr(a, A).

Thus, M(A) cannot contain any element from B,, \ &,,, implying

M(A) = 6,.
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6. CONCLUSION AND FUTURE WORKS

In this paper, we have extended the classical median problem for permutations to the setting of
signed permutations by developing a generalized Kendall-7 distance that accounts for both order
disagreements and sign differences. This advancement enables a rigorous study of median sets within
the hyperoctahedral group of type B,, significantly broadening the scope of rank aggregation beyond
the symmetric group &,,. We have introduced refined notions of order disagreements (Type I and Type
IT), formalized the new distance metric, and provided theoretical characterizations for special classes of
median sets, namely, universal-median sets and &,,-median sets, which are sets closed under negation
and invariant under reversal, respectively. Furthermore, the construction of a weighted distance
graph G,, over B,, allows for efficient computation and visualization of transformations between signed
permutations.

Our approach is particularly motivated by applications in computational biology, such as aggregating
signed gene rankings from gene regulatory networks across experimental conditions. By capturing
both the relative order and the regulatory direction (upregulation or downregulation) of genes, our
method provides a principled framework for consensus analysis in biologically relevant settings.

There are several promising directions for future research. First and foremost, the computational
complexity of the generalized median problem in 3, remains an open question for larger sets; a
formal classification as polynomial-time solvable or NP-hard would deepen our understanding of
the algorithmic landscape. While we have observed experimentally that for small values of m (e.g.,
m = 2), where m is the cardinality of a subset A of B, the median set can be computed efficiently
and seems to be polynomial-time solvable, the problem appears to scale unfavorably as m increases,
because the number of candidate medians grows rapidly with n, since |B,,| = 2"n!. Therefore, while an
exact complexity classification remains open, it is reasonable to conjecture that the median problem in
B, under the Generalized Kendall-7 distance is NP-hard for general m. Second, these insights suggest
a need for heuristic methods, exploring approximation algorithms, or structural restrictions to make
median computation feasible in practice. Our future work will aim to find special sets A for which
it is easy to find medians in polynomial time. Automedian sets of signed permutations are such a
case. Lastly, it would be fruitful to investigate analogous median problems under other combinatorial

structures, such as Coxeter groups, signed posets, or graphs, to generalize the theory further.

Authors’ Contributions. All authors have read and approved the final version of the manuscript. The

authors contributed equally to this work.

Conflicts of Interest. The authors declare that there are no conflicts of interest regarding the publication

of this paper.



Asia Pac. J. Math. 2025 12:94 28 of 29

REFERENCES

[1] A. Ali, M. Meild, Experiments with Kemeny Ranking: What Works When?, Math. Soc. Sci. 64 (2012), 28-40. https:
//doi.org/10.1016/j.mathsocsci.2011.08.008.

[2] G.Bachmeier, F. Brandt, C. Geist, P. Harrenstein, K. Kardel, et al., K-majority Digraphs and the Hardness of Voting with a
Constant Number of Voters, J. Comput. Syst. Sci. 105 (2019), 130-157. https://doi.org/10.1016/j. jcss.2019.04.005.

[3] N.Betzler, R. Bredereck, R. Niedermeier, Theoretical and Empirical Evaluation of Data Reduction for Exact Kemeny Rank
Aggregation, Auton. Agents Multi-Agent Syst. 28 (2013), 721-748. https://doi.org/10.1007/s10458-013-9236-y.

[4] T. Bield, F. J. Brandenburg, X. Deng, Crossings and permutations, in: P. Healy and N. Nokolov (Eds.), Lecture Notes in
Computer Science, 3843, Springer, Berlin, 2005, pp. 1-12. https://doi.org/10.1007/11618058_1.

[5] A. Bjorner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Springer-Verlag, New York,
2005. https://doi.org/10.1007/3-540-27596-7.

[6] G.Blin, M. Crochemore, S. Hamel, S. Vialette, Median of an Odd Number of Permutations, Pure Math. Appl. 21 (2011),
161-175. https://hal.science/hal-00619773.

[7] W.W. Cohen, R.E. Schapire, Y. Singer, Learning to Order Things, J. Artif. Intell. Res. 10 (1999), 243-270.

[8] E.E. Combarro, R. Pérez-Ferndndez, J. Ranilla, B. De Baets, Solving the Kemeny Ranking Aggregation Problem with
Quantum Optimization Algorithms, Math. Methods Appl. Sci. 46 (2023), 17065-17081. https://doi.org/10.1002/
mma. 9489.

[9] L. Cunha, I. Sau, U. Souza, On the Parameterized Complexity of the Median and Closest Problems Under Some
Permutation Metrics, Algorithms Mol. Biol. 19 (2024), 24. https://doi.org/10.1186/s13015-024-00269-z.

[10] A. Davenport, J. Kalagnanam, A Computational Study of the Kemeny Rule for Preference Aggregation, in: Proceedings
of the 19th National Conference on Artifical Intelligence, AAAI Press, 2004, pp. 697-702.

[11] C.Desharnais, S. Hamel, Automedian Sets of Permutations: Direct Sum and Shuffle, Theor. Comput. Sci. 852 (2021),
121-131. https://doi.org/10.1016/j.tcs.2020.11.022.

[12] C. Dwork, R. Kumar, M. Naor, D. Sivakumar, Rank Aggregation Methods for the Web, in: Proceedings of the 10th
international conference on World Wide Web, ACM, New York, 2001, pp. 613-622. https://doi.org/10.1145/371920.
372165.

[13] S. Hamel, R. Milosz, Medians of permutations: when A = M(.A), in: Proceedings of the 12th International Conference
on Permutation Pattern, 2014, pp. 68-71.

[14] J. G. Kemeny, Mathematics without numbers, Daedalus 88(4) (1959), 577-591. https://www. jstor.org/stable/
20026529.

[15] M. G. Kendall, A new measure of rank correlation, Biometrika 30(1-2) (1938), 81-93. https://D0I.org/10.1093/
biomet/30.1-2.81.

[16] C. Kenyon-Mathieu, W. Schudy, How to rank with few errors, STOC '07: Proceedings of the 39th Annual ACM
Symposium on Theory of Computing, ACM (2007), 95-103. https://DOI.org/10.1145/1250790.1250806.

[17] R. Milosz, S. Hamel, Space Reduction Constraints for the Median of Permutations Problem, Discret. Appl. Math. 280
(2020), 201-213. https://doi.org/10.1016/j .dam.2018.03.076.

[18] N.Rico, C.R. Vela, I. Diaz, Reducing the Time Required to Find the Kemeny Ranking by Exploiting a Necessary Condition
for Being a Winner, Eur. J. Oper. Res. 305 (2023), 1323-1336. https://doi.org/10.1016/j.ejor.2022.07.031.

[19] F. Schalekamp, A.V. Zuylen, Rank Aggregation: Together We're Strong, in: 2009 Proceedings of the Eleventh Workshop
on Algorithm Engineering and Experiments (ALENEX), SIAM, Philadelphia, PA, 2009, pp. 38-51. https://doi.org/
10.1137/1.9781611972894 .4.


https://doi.org/10.1016/j.mathsocsci.2011.08.008
https://doi.org/10.1016/j.mathsocsci.2011.08.008
https://doi.org/10.1016/j.jcss.2019.04.005
https://doi.org/10.1007/s10458-013-9236-y
https://doi.org/10.1007/11618058_1
https://doi.org/10.1007/3-540-27596-7
https://hal.science/hal-00619773
https://doi.org/10.1002/mma.9489
https://doi.org/10.1002/mma.9489
https://doi.org/10.1186/s13015-024-00269-z
https://doi.org/10.1016/j.tcs.2020.11.022
https://doi.org/10.1145/371920.372165
https://doi.org/10.1145/371920.372165
https://www.jstor.org/stable/20026529
https://www.jstor.org/stable/20026529
https://DOI.org/10.1093/biomet/30.1-2.81
https://DOI.org/10.1093/biomet/30.1-2.81
https://DOI.org/10.1145/1250790.1250806
https://doi.org/10.1016/j.dam.2018.03.076
https://doi.org/10.1016/j.ejor.2022.07.031
https://doi.org/10.1137/1.9781611972894.4
https://doi.org/10.1137/1.9781611972894.4

Asia Pac. J. Math. 2025 12:94 29 of 29

. Truchon, An Extension of the Condorcet Criterion an emeny Orders, Cahiers de Recherche , Université Laval,
20] M. Truchon, An E f the Cond C d K y Ord Cah: de Recherche 9813, U é Laval,
(1998). https://ideas.repec.org/p/1lvl/laeccr/9813.html.


https://ideas.repec.org/p/lvl/laeccr/9813.html

	1. Introduction
	2. Generalized Kendall-𝜏 distance on ℬ_n
	3. Universal-median set of signed permutations
	4. Distance graph 𝒢_n of ℬ_n
	5. 𝔖_n-median set of signed permutations
	6. Conclusion and future works
	Authors' Contributions
	Conflicts of Interest

	References

