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Abstract. The “median of permutation” problem involves determining a permutation that is the “closest”
to a given set of permutations under the Kendall-τ distance metric and is a central challenge in rank
aggregation. In this article, we extend this framework to the hyperoctahedral group of type Bn of signed
permutations by introducing a generalized Kendall-τ distance metric capturing both positional and sign
disagreements. This enables the formulation of median problems in contexts where directionality is
inherent, such as gene regulatory networks (GRN). We show that any subset of Bn closed under total
negation has Bn as its median set, and that unsigned subsets closed under reversal yield the symmetric
group Sn. To support efficient distance computation, we construct a weighted distance graph Gn whose
edges represent elementary operations. Our findings provide new theoretical insights into signed rank
aggregation and offer a foundation for combinatorial optimization beyond the classical setting of Sn.
2020 Mathematics Subject Classification. 05A05; 05C12; 20F55.
Key words and phrases. median of signed permutations; generalized Kendall-τ distance; hyperoctahedral
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1. Introduction

The Kendall-τ distance, which quantifies the number of pairwise disagreements in the relative
ordering of two permutations, has long been a topic of interest in combinatorial optimization and
ranking theory. The problem of finding medians of a set of permutations under the Kendall-τ distance
[15, 20], which counts the number of pairwise order disagreements between permutations, is a central
challenge in rank aggregation and consensus-building across various disciplines. This problem, often
referred to as the Kemeny Score Problem [14], has significant applications in social choice theory,
decision-making, and data aggregation. Initially formulated in Kemeny’s seminal work on ranking
problems, the task involves determining a consensus order of n candidates based on rankings provided
bym voters in a way that minimises the overall Kendall-τ distance.
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The Kemeny Score Problem is NP-complete when the number of input rankingsm is an even number
at least 4 [4,12] and remains NP-hard form ≥ 7whenm is odd [2]. However, the complexity of the
problem for smaller odd values such asm = 3 orm = 5 remains an open question.

From the late twentieth century to recent years, various approaches have been developed to copewith
this computational challenge, including approximation algorithms, fixed parameter tractable (FPT)
strategies [7, 10], and even a polynomial-time approximation scheme (PTAS) [16]. Comparative evalu-
ations of these methods are available in [1, 19]. Complementing algorithmic efforts, several theoretical
techniques have been proposed to reduce the search space, thereby simplifying median-finding. For
example, [6] introduced constraints based on pairwise orderings and adjacency in candidate medians.
Later, [3] introduced the idea of non-dirty candidates, elements consistently ranked above or below
others in a significant fraction of input permutations, which allow for decomposition of the problem
into smaller, independent subproblems. However, such candidates are rarely encountered in randomly
generated instances. Further refinements in data reduction with less restrictive were proposed in [17],
using the combinatorial properties of “almost adjacent" elements in median sets.

Moreover, modern efforts have explored novel paradigms such as quantum optimization for solving
the Kemeny ranking aggregation problem. For instance, Combarro et al. [8] formulated the problem
using multiple Quadratic Unconstrained Binary Optimization (QUBO)-based encodings and evaluated
their effectiveness using quantum approximate optimization algorithms and quantum annealing. These
explorations, while still constrained by current hardware limitations, underscore the importance of
efficient formulations in preparing for scalable quantum solutions in the near future. Additionally, Rico
et al. [18] proposed exact algorithms based on necessary conditions for a ranking to be optimal under
the Kemeny method, significantly reducing computation time for instances with up to 14 alternatives.
These advancements reinforce the centrality of the Kemeny problem in computational social choice
and its evolving relevance in high-performance and hybrid computing contexts.

An intriguing angle on this problem is offered by the notion of automedian sets, which are subsets of
permutations that remain invariant under the median operation. Such sets inherently satisfy a centrality
property under the Kendall-τ distance and thus provide promising candidates for efficient median
computation in polynomial time. Recent studies have examined how automedian sets behave under
operations such as the direct sum and shuffle product, enabling constructive strategies for building
such sets in larger permutation groups [11]. Two notable constructions identified in [13] include sets
formed by a permutation and its cyclic shifts and sets with a shared Sk-kernel, potentially with some
fixed or common elements. These examples reveal that symmetry and regular structure often underpin
the automedian property. Furthermore, new variants based on direct sum operations have emerged,
along with parallel algorithms aimed at efficient median detection in separable permutation sets.
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This problem has gained significant attention in computational biology, particularly in the study of
genome rearrangement and gene expression patterns. In recent work, Cunha et al. [9] have conducted
a comprehensive parameterized complexity analysis of the median and closest permutation problems
under various genome rearrangement metrics. They have explored the computational complexity and
structural aspects of permutation medians under various distance functions—such as swap, breakpoint,
transposition, and block-interchange distances. They demonstrate that even when restricted to only
three input permutations, most variants of the problem remain NP-hard. While their analysis focuses
on unsigned permutations, it underscores the inherent intractability of consensus problems over
permutation spaces and motivates the need to study the analogous median problem in the signed
setting.

However, in many real-world contexts, rankings are inherently signed—each element not only has a
relative position but also an associated sign indicating activation or repression, presence or absence, or
positive or negative sentiment. This naturally leads to considering rankings as signed permutations. In
the context of Gene Regulatory Networks (GRNs), understanding the relative activity and influence of
genes under varying experimental or biological conditions is of central importance. These conditions
often yield signed rankings of genes, where each gene is not only ranked by importance but also
annotated with a direction—upregulation (activation) or downregulation (repression). Aggregating
such signed rankings across multiple datasets or conditions enables the identification of consensus
regulatory behavior, providing insight into core regulatory mechanisms.

In this work, we propose a novel approach for this aggregation task: we extend the classical Kemeny
framework to the hyperoctahedral group of type Bn, the signed permutation group, which generalizes
the symmetric group Sn, thereby enabling the computational study of median sets of signed rankings
that faithfully reflect both gene ordering and regulatory direction. The additional structure introduced
by signed permutations necessitates a refinement of classical notions such as the Kendall-τ distance and
order disagreements. By defining Type I and Type II disagreements and incorporating sign differences,
we establish a new generalized Kendall-τ distance (see Definition 5) suitable for Bn. By leveraging
the combinatorial structure of the hyperoctahedral group Bn, our framework offers a principled and
mathematically grounded method to summarize signed gene rankings across experiments. This work
not only contributes a new angle to rank aggregation in computational biology but also broadens the
applicability of median-based methods beyond the classical symmetric group Sn.

The computational complexity of the median problem under the generalized Kendall-τ distance in
Bn also presents a fundamental theoretical challenge. While the problem is computationally tractable
for small input sizes, it appears to be NP-hard in general as the number of input signed permutations
increases. This aligns with known results for the classical Kendall-τ distance in Sn and suggests that a
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similar complexity-theoretic barrier may exist in the signed case. However, a formal classification of
the problem’s computational complexity remains an open direction for future research.

Our primary contributions are the following. We formulate a Generalized Kendall-τ distance metric
on the hyperoctahedral group of type Bn and extend the median concept to this group. We prove that
the median set of a subset A ⊆ Bn equals the entire group, i.e.,M(A) = Bn if it is closed with regard
to the total negation operation ‘−’. Similarly, if a subset consists solely of unsigned permutations and is
closed under reversal, then its median set coincides with the symmetric group:M(A) = Sn. We also
introduce the notion of a distance graph Gn(V,E, ω) over Bn, where edges correspond to elementary
operations such as adjacent transpositions and sign flips. This graph framework enables efficient
computation of pairwise distances and medians, particularly for smaller instances.

The paper is organized as follows. Section 2 lays out the theoretical framework, including definitions
of order disagreements, sign differences, and the generalized Kendall-τ distance in Bn. Section 3
introduces and characterizes universal-median sets, which are subsets of Bn whose median set equals
the entire group. Section 4 presents the construction of the distance graph Gn and its application to
median computation. Section 5 focuses on Sn-median sets, where the median set aligns with the
symmetric group.

2. Generalized Kendall-τ distance on Bn

Throughout this article, n is a positive integer. A permutation π is a bijection of [n] = {1, 2, . . . , n}
onto itself. The set of all permutations of [n] under composition operation forms a group, called the
symmetric group Sn. The order of Sn is n!. By convention, we stick to the order of S0 as 1. We follow
the one-line notation to write a permutation.

Definition 1 (Hyperoctahedral group of type Bn). [5] The hyperoctahedral group of type Bn is the group of

signed permutations on n elements, representing the symmetry group of the n-dimensional hypercube. Formally,

it consists of all bijection

σ : {±1,±2, . . . ,±n} → {±1,±2, . . . ,±n}

such that σ(−i) = −σ(i) for all i.

Note that for any positive integer n, we have |Bn| = 2nn! and |B0| = 1. For a signed permutation σ,
we use the following window-like notation: σ = σ1σ2 · · ·σn.

In order to generalize the Kendall-τ distance for signed permutations in the hyperoctahedral group
of type Bn, we first introduce the notion of order disagreements between two signed permutations.
These disagreements are classified into two types based on the relative ordering and signs of their
entries in the respective inverses of the permutations. We begin by defining the order disagreement of
Type I.
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Definition 2 (Order disagreement of Type I). The order disagreement of Type I between pairs of elements of

two signed permutations in Bn is defined as follows:

For π = π1π2 · · ·πn, σ = σ1σ2 · · ·σn ∈ Bn,

O1(π, σ) =
{
(i, j) | i < j and

[
(|π−1i | < |π

−1
j | and |σ

−1
i | > |σ

−1
j |)

or (|π−1i | > |π
−1
j | and |σ

−1
i | < |σ

−1
j |)

]}
.

Similarly, we define another type of order disagreement which considers not only the relative
positions but also the relative signs of the elements in the inverses of the permutations.

Definition 3 (Order disagreement of Type II). The order disagreement of Type II between pairs of elements

of two signed permutations in Bn is defined as follows: For π = π1π2 · · ·πn, σ = σ1σ2 · · ·σn ∈ Bn,

O2(π, σ) =
{
(i, j) | i < j and

[
(|π−1i | < |π

−1
j | and |σ

−1
i | < |σ

−1
j |)

or (|π−1i | > |π
−1
j | and |σ

−1
i | > |σ

−1
j |)

]
and

[
(π−1i < π−1j and σ−1i > σ−1j )

or (π−1i > π−1j and σ−1i < σ−1j )
]}

.

Remark 1. Each pair (i, j) contributes to at most one type of order disagreement (Type 1 or Type 2). That is, if

a pair contributes to one type, it does not contribute to the other. It is also possible that a pair does not contribute

to either type.

Apart from order disagreements, another crucial aspect when comparing signed permutations is the
difference in signs at corresponding positions. This is formalized in the following definition.

Definition 4 (Sign difference). The sign difference between the elements of signed permutations in Bn is

defined as, for π = π1π2 · · ·πn, σ = σ1σ2 · · ·σn ∈ Bn,

sgn(π, σ) = {i ∈ N | sgn(π−1i ) sgn(σ−1i ) < 0}

where sgn(α) denotes the sign of α ∈ Z \ {0}, which is +1 for positive elements and −1 for negative elements.

Using these notions of order disagreements and sign differences, we now define the generalized
Kendall-τ distance for signed permutations in Bn.

Definition 5 (Generalized Kendall-τ distance on Bn). For π, σ ∈ Bn, the generalized Kendall-τ distance,

denoted as dKT , is defined as the sum of the cardinalities (countingmultiplicities) of the sets of order disagreements

of Type I, order disagreements of Type II, and the difference in sign between π and σ. i.e.,

dKT (π, σ) = 2|O1(π, σ)|+ 4|O2(π, σ)|+ | sgn(π, σ)|
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To illustrate the above definitions, we present a simple example demonstrating the computation of
the generalized Kendall-τ distance.

Example 1. Consider π = 1− 3 2, σ = −1 2 3 ∈ Bn. To compute the generalized Kendall-τ distance between π

and σ, consider π−1 = 1 3− 2 and σ−1 = −1 2 3 to be the inverses of π and σ, respectively. Clearly, the pair

(2, 3) contributes to the order disagreement of Type I and the pair (1, 3) contributes to the order disagreement of

Type II. In addition, the pair (1, 2) does not contribute to any of the order disagreement types. It is easy to check

sgn(π, σ) = {1, 3}. Thus we have

dKT (π, σ) = 2(1) + 4(1) + 2 = 8

We now establish that the generalized Kendall-τ distance satisfies the axioms of a metric on the
hyperoctahedral group of type Bn.

Theorem 1. The generalized Kendall-τ distance, dKT forms a metric on Bn, i.e., the function

dKT : Bn × Bn → R

satisfying the following axioms for all signed permutations π, σ, α ∈ Bn:

(i): dKT (π, σ) ≥ 0 for π 6= σ (Non-negativity)

(ii): dKT (π, σ) = 0 if and only if π = σ

(iii): dKT (π, σ) = dKT (σ, π) (Symmetry)

(iv): dKT (π, σ) ≤ dKT (π, α) + dKT (α, σ). (Triangle inequality)

Proof. (i) (Non-negativity). We need to show that dKT (π, σ) ≥ 0 for all π, σ ∈ Bn.
Since O1(π, σ), O2(π, σ), and sgn(π, σ) are sets that count the pairs of elements of some sort as

defined above, and the cardinality of these sets are always non-negative, we have

|O1(π, σ)| ≥ 0, |O2(π, σ)| ≥ 0, | sgn(π, σ)| ≥ 0.

Thus the generalized Kendall-τ distance is

dKT (π, σ) = 2|O1(π, σ)|+ 4|O2(π, σ)|+ | sgn(π, σ)| ≥ 0.

Therefore, dKT (π, σ) ≥ 0 for all π, σ ∈ Bn.
(ii) We need to show that dKT (π, σ) = 0 if and only if π = σ.
If π = σ, then the elements of π and σ are identical at every position. Therefore, there are no order

disagreement of Type I or Type II, and there are no sign differences:

O1(π, σ) = O2(π, σ) = sgn(π, σ) = ∅.

Thus
dKT (π, σ) = 2|O1(π, σ)|+ 4|O2(π, σ)|+ | sgn(π, σ)| = 0.
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Hence, if π = σ, then dKT (π, σ) = 0.
Conversely, suppose dKT (π, σ) = 0. Then

dKT (π, σ) = 2|O1(π, σ)|+ 4|O2(π, σ)|+ | sgn(π, σ)| = 0.

⇒ |O1(π, σ)| = |O2(π, σ)| = | sgn(π, σ)| = 0.

since O1(π, σ), O2(π, σ), and sgn(π, σ) are non-negative. This implies that there are no Type I or Type
II order disagreements and there are no sign differences. Therefore, the relative order of the elements
of π and σ must be identical, and the signs of the elements must match. The only way this can happen
is if π = σ. Thus, dKT (π, σ) = 0 implies that π = σ.

Therefore, dKT (π, σ) = 0 if and only if π = σ.
(iii) (Symmetry). We need to show that dKT (π, σ) = dKT (σ, π) for all π, σ ∈ Bn.
By the definition of O1(π, σ), O2(π, σ), and sgn(π, σ), these sets depend only on the relative ordering

and signs of the elements of π and σ, not on the order in which they are compared. Specifically:

O1(π, σ) = O1(σ, π), O2(π, σ) = O2(σ, π), sgn(π, σ) = sgn(σ, π).

Thus, dKT (π, σ) = 2|O1(π, σ)|+ 4|O2(π, σ)|+ | sgn(π, σ)|

= 2|O1(σ, π)|+ 4|O2(σ, π)|+ | sgn(σ, π)| = dKT (σ, π).

Therefore, dKT is symmetric.
(iv) (Triangle Inequality). We need to prove that for all π, σ, ρ ∈ Bn,

dKT (π, σ) ≤ dKT (π, ρ) + dKT (ρ, σ). (1)

We aim to show that for all π, σ, ρ ∈ Bn:

|O1(π, σ)| ≤ |O1(π, ρ)|+ |O1(ρ, σ)|,

|O2(π, σ)| ≤ |O2(π, ρ)|+ |O2(ρ, σ)|,

| sgn(π, σ)| ≤ | sgn(π, ρ)|+ | sgn(ρ, σ)|

so that
2|O1(π, σ)|+ 4|O2(π, σ)|+ | sgn(π, σ)| ≤ 2|O1(π, ρ)|+ 4|O2(π, ρ)|

+| sgn(π, ρ)|+ 2|O1(ρ, σ)|+ 4|O2(ρ, σ)|+ | sgn(ρ, σ)|,

which will prove the inequality (1).
Claim 1: |O1(π, σ)| ≤ |O1(π, ρ)|+ |O1(ρ, σ)| ∀π, σ, ρ ∈ Bn.

Consider any pair i < j of positions in the set [n]. Consider the signed permutations in Bn:

π = π1π2 · · ·πn, σ = σ1σ2 · · ·σn, ρ = ρ1ρ2 · · · ρn
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and their inverses:

π−1 = α1α2 · · ·αn, σ−1 = β1β2 · · ·βn, ρ−1 = γ1γ2 · · · γn.

If (i, j) does not count as a disagreement for O1(π, σ), then either (|αi| < |αj | and |βi| < |βj |) or
(|αi| > |αj | and |βi| > |βj |).

Suppose |αi| < |αj | and |βi| < |βj |. The possibilities in ρ−1 are: |γi| < |γj | or |γi| > |γj |. If |γi| < |γj |,
then the pair (i, j) does not belong toO1(π, σ), O1(π, ρ) and O1(ρ, σ). If |γi| > |γj |, then (i, j) contributes
to each of |O1(π, ρ)| and |O1(ρ, σ)|, but contributes 0 to |O1(π, σ)|.

Similarly, if we suppose |αi| > |αj | and |βi| > |βj |, then (|γi| > |γj |) or (|γi| < |γj |). If |γi| > |γj |, then
(i, j) contributes nothing to all three terms, and if |γi| < |γj |, we have (i, j) contributing 0 to |O1(π, σ)|

and (i, j) belongs to both O1(π, ρ) and O1(ρ, σ).
If (i, j) counts as a disagreement for O1(π, σ), then either (|αi| < |αj | and |βi| > |βj |) or (|αi| >

|αj | and |βi| < |βj |).
Suppose |αi| < |αj | and |βi| > |βj |. Then in ρ−1, |γi| < |γj | or |γi| > |γj |. If |γi| < |γj |, then the pair

(i, j) belongs to O1(π, σ), and O1(ρ, σ) but does not belong to O1(π, ρ). If |γi| > γj |, then (i, j) is in
O1(π, σ), and O1(π, ρ) but not in O1(ρ, σ).

Similarly, if we consider |αi| > |αj | and |βi| < |βj |, then |γi| > |γj | or |γi| < |γj |. In either case,
there is an order disagreement of Type I between π and ρ, contributing to O1(π, ρ), or between ρ and σ,
contributing to O1(ρ, σ).

Thus, considering all the cases and summing over all pairs (i, j), we conclude that:

|O1(π, σ)| ≤ |O1(π, ρ)|+ |O1(ρ, σ)|.

Claim 2: |O2(π, σ)| ≤ |O2(π, ρ)|+ |O2(ρ, σ)| ∀π, σ, ρ ∈ Bn.

This inequality is similar to Claim 1, but now it applies to Type II disagreements, which involve both
relative order inversions and sign changes. The proof follows an analogous reasoning to that of Claim
1.

Claim 3: | sgn(π, σ)| ≤ | sgn(π, ρ)|+ | sgn(ρ, σ)| ∀π, σ, ρ ∈ Bn.

On the contrary, suppose ∀π, σ, ρ ∈ Bn

| sgn(π, σ)| > | sgn(π, ρ)|+ | sgn(ρ, σ)| (2)

It is easy to see that | sgn(π, σ)| is at most n. Let us break down and check for all possibilities of the
value of | sgn(π, σ)|.

If | sgn(π, σ)| = n, then sgn(πi) 6= sgn(σi) for all i, therefore, each position i contributes 1 to | sgn(π, σ)|.
Consider ρ = ρ1ρ2 · · · ρn. Here, for each i, ρi can be positive or negative. That is, for each i, either
sgn(ρi) = sgn(πi) or sgn(ρi) = sgn(σi).
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Furthermore, if sgn(ρi) = sgn(πi), then sgn(ρi) 6= sgn(σi), which means that the element at position
i contributes 1 to | sgn(ρ, σ)| and 0 to | sgn(π, ρ)| and if sgn(ρi) = sgn(σi), then sgn(ρi) 6= sgn(πi),
contributing 1 to | sgn(π, ρ)| and 0 to | sgn(ρ, σ)|. In either case, we will have the contribution of 1 (from
position i) to the Right Hand Side (RHS) of (2).

This scenario implies that

| sgn(π, σ)| = | sgn(π, ρ)|+ | sgn(ρ, σ)|,

which is a contradiction to our assumption in (2).
If | sgn(π, σ)| < n, then there exists at least one position i at which sgn(πi) = sgn(σi), contributing

0 on the Left Hand Side (LHS) of (2). Now, ρi can be such that sgn(ρi) = sgn(πi) = sgn(σi) or
sgn(ρi) 6= sgn(πi) = sgn(σi), contributing 0 and 1 to both the terms of the RHS of (2) by the former and
latter case, respectively. We continue with all such i’s with this property.

Thus, in the former case, we will get the contribution 0 on both LHS and RHS of (2) at i’s, ensuring
LHS = RHS again, a contradiction to (2). In the latter case, at position i′s, it contributes 0 to the LHS of
(2) and contributes 1 + 1 = 2 to the RHS of (2), showing clearly that

| sgn(π, σ)| < | sgn(π, ρ)|+ | sgn(ρ, σ)|,

which is a contradiction. So we must have

| sgn(π, σ)| ≤ | sgn(π, ρ)|+ | sgn(ρ, σ)| ∀π, σ, ρ ∈ Bn.

Summing these inequalities, we get:

dKT (π, σ) = 2|O1(π, σ)|+ 4|O2(π, σ)|+ | sgn(π, σ)|

≤ 2|O1(π, ρ)|+ 4|O2(π, ρ)|+ | sgn(π, ρ)|

+ 2|O1(ρ, σ)|+ 4|O2(ρ, σ)|+ | sgn(ρ, σ)|

Thus, the triangle inequality holds:

dKT (π, σ) ≤ dKT (π, ρ) + dKT (ρ, σ).

�

Letm be the number of elements in Bn. Consider (π1, π2, . . . , πm) denote an ordered sequence of
signed permutations in Bn. We define am×m table, called the distance table of Bn, where the entry in
the (i, j)-cell of the distance table represents the generalized Kendall-τ distance dKT (πi, πj) between
the signed permutations πi and πj , for 1 ≤ i, j ≤ m.

For a signed permutation π ∈ Bn, the column sum of π is defined as:∑
σ∈Bn

dKT (π, σ),
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which represents the sum of distances from π to all elements in Bn. Similarly, the row sum of π is
defined as: ∑

σ∈Bn

dKT (σ, π),

which represents the sum of the distances from all elements in Bn to π.
For a subset A ⊆ Bn, we define the column sum of A as:∑

π∈A

∑
σ∈Bn

dKT (π, σ),

and similarly, the row sum of A is: ∑
π∈A

∑
σ∈Bn

dKT (σ, π).

These sums can also be obtained directly from the distance table by summing the relevant rows and
columns.

Since dKT is symmetric, it follows that the distance table is also symmetric; specifically, the entry in
the (i, j)-cell equals the entry in the (j, i)-cell. Consequently, for any signed permutation π ∈ Bn and
subset A ⊆ Bn, the row sum and column sum of π (respectively, of A) are identical. Additionally, the
entries along the main diagonal of the distance table are zero, as the distance from a signed permutation
to itself is zero.

In the following, we provide the distance table for B2. See Table 1 below. Let the elements of B2
be ordered as π1 = 1 2, π2 = −1 2, π3 = 1 − 2, π4 = −1 − 2, π5 = 2 1, π6 = −2 1, π7 = 2 − 1, and
π8 = −2 − 1.

Table 1. The distance table for B2

π1 π2 π3 π4 π5 π6 π7 π8

π1 0 1 5 6 2 3 3 4
π2 1 0 6 5 3 4 2 3
π3 5 6 0 1 3 2 4 3
π4 6 5 1 0 4 3 3 2
π5 2 3 3 4 0 1 5 6
π6 3 4 2 3 1 0 6 5
π7 3 2 4 3 5 6 0 1
π8 4 3 3 2 6 5 1 0
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3. Universal-median set of signed permutations

In this section, we extend the concept of medians to the context of signed permutations under the
generalized Kendall-τ distance, introducing the notion of a universal-median set and key operations
that play a role in its structural properties.

Given any set of signed permutations A ⊆ Bn and a signed permutation π ∈ Bn, we have

dKT (π,A) =
∑
σ∈A

dKT (π, σ).

We begin by formally defining the median of a set of signed permutations A in Bn under the
generalized Kendall-τ distance.

Definition 6 (Medians). Given A ⊆ Bn, a median of A under the generalized Kendall-τ distance is a signed

permutation π∗ ∈ Bn such that dKT (π∗,A) ≤ dKT (π,A), ∀π ∈ Bn.

DefineM(A) as the set of all medians of A. i.e.,

M(A) = {σ ∈ Bn | dKT (σ,A) ≤ dKT (π,A),∀π ∈ Bn}

Having established the notion of a median, it is natural to ask whether there exist special subsets of
signed permutations for which every element of the group is a median. This leads us to the definition
of a universal-median set.

Definition 7 (Universal-median set). A set A ⊆ Bn is said to be a Universal-median set ifM(A) = Bn.

To study the structure of median sets in Bn, we now introduce two elementary operations on signed
permutations, namely, transposition and negation.

Definition 8 (Transposition operation). A unary operation on π = π1 · · ·πn ∈ Bn, called “transposition

operation" denoted by ti, for any 1 ≤ i ≤ n− 1, is given by

ti : Bn → Bn defined as

ti(π) = π1 · · ·πi−1πi+1πiπi+2 · · ·πn.

Definition 9 (Negation operation). A unary operation on π = π1 · · ·πn ∈ Bn, called “negation operation at

i" denoted by ηi, for any 1 ≤ i ≤ n, is given by

ηi : Bn → Bn defined as

ηi(π) = π1 · · ·πi−1 − πi πi+1 · · ·πn.
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Let us introduce some notation to avoid confusion and for better presentation.
For 1 ≤ i ≤ n, denote π̂i as the signed permutation ηi(π), image of π = π1 · · ·πr · · ·πn under the

negation operation ηi, and denote π(r) to be the signed permutation obtained from π by replacing πi
with −πi for any r number of i’s.

Having introduced these definitions and notations, we now establish a fundamental lemma that
quantifies the effect of a negation operation.

Lemma 1. Let π = π1π2 · · ·πn be an element of Bn and consider π̂r = ηr(π) = π1 · · ·πr−1 − πr πr+1 · · ·πn.

Then

dKT (π, π̂r) = 1 + 4(r − 1).

Proof. Consider π and π̂r as follows:

π =

 1 2 · · · n

π1 π2 · · · πn

 , π̂r =

 1 · · · r − 1 r r + 1 · · · n

π1 · · · πr−1 −πr πr+1 · · · πn


Assume πr = k (which can be either positive or negative). Then the inverses of π and π̂r are:

π−1 = β1 · · ·βk · · ·βn, π̂r
−1 = β1 · · ·βk−1 − βk βk+1 · · ·βn.

Here, βk = r or −r depending on the sign of πr.
Clearly, the number of sign differences between π and π̂r is

| sgn(π, π̂r)| = |{r}| = 1 (since sgn(βk) 6= sgn(−βk)).

Thus, this contributes 1 to the total distance d.
Since the absolute values of the elements in π−1 and π̂r−1 are the same, it follows that:

O1(π, π̂r) = ∅,

meaning there are no pairs of Type I disagreement (i.e., no pairs (i, j) where |βi| < |βj | in π−1 but
|βi| > |βj | in π̂r−1, or vice versa for all i, j).

Observe that no pairs of elements in π and π̂r are Type II order disagreement pairs and none
contributes to the distance d, since all elements in π−1 and π̂r−1 are the same except for the pairs of
elements containing βk in π−1 and −βk in π̂r−1, which has to be carefully checked.

Without loss of generality, let βk = r. For Type II pairs, we can consider two cases:
• Case 1: βk < βj and −βk > βj (i.e., r < βj and −r > βj for all j 6= k). This implies:

r < βj < −r,

which cannot happen as r is not less than −r.
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• Case 2: βk > βj and −βk < βj (i.e., r > βj and −r < βj for all j 6= k). This implies:

−r < βj < r.

So, βj can be any of the numbers between −(r − 1) and r − 1, but it cannot simultaneously be both
−(r − 1) and r − 1 as βj is an element of a signed permutation. Thus, there are r − 1 such pairs that
satisfy case 2. Therefore,

|O2(π, π̂r)| = r − 1.

Similarly, if βk = −r, the same argument applies, yielding |O2(π, π̂r)| = r − 1.
Hence, the total distance is:

dKT (π, π̂r) = 2|O1(π, π̂r)|+ 4|O2(π, π̂r)|+ | sgn(π, π̂r)| = 0 + 4(r − 1) + 1.

This proves the lemma.
�

Building on this lemma, we generalize the result to multiple negation operations and establish
an additive property of the generalized Kendall–τ distance when multiple positions of a signed
permutation are negated. This result will be crucial in characterizing the behavior of certain subsets
under median operations.

Theorem 2. Let dKT (π, σ) be the generalized Kendall-τ distance between π = π1π2 · · ·πn and σ = π(r) =

σ1σ2 · · ·σn, where σi = πi for all i except for certain positions i1, i2, . . . , ir such that σik = −πik for 1 ≤ i1 <

i2 < . . . < ir ≤ n. Then

dKT (π, σ) =

r∑
k=1

dKT (π1 · · ·πn, σ1 · · ·σik · · ·σn)

i.e., dKT (π, π(r)) = dKT (π, π̂i1) + · · ·+ dKT (π, π̂ir)

Proof. We prove this theorem by induction on r. For the base case r = 1, we have already proved in
Lemma 1.

Let us now take r = 2 and consider π and σ as follows:

π = π1 π2 · · ·πn, σ = π1 · · ·πi1−1 − πi1 πi1+1 · · ·πi2−1 − πi2 πi2+1 · · ·πn

where 1 ≤ i1 < i2 ≤ n.

To prove that dKT (π, σ) = dKT (π, π1 · · ·πi1−1 − πi1 πi1+1 · · ·πn)

+dKT (π, π1 · · ·πi2−1 − πi2 πi2+1 · · ·πn)

i.e., dKT (π, σ) = 1 + 4(i1 − 1) + 1 + 4(i2 − 1).
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Assume πi1 = k1 and πi2 = k2 (both of which can be either positive or negative). Without loss of
generality, let k1 < k2. Then the inverses of π and σ are:

π−1 = β1 · · ·βk1 · · ·βk2 · · ·βn,

σ−1 = β1 · · ·βk1−1 − βk1 βk1+1 · · ·βk2−1 − βk2 βk2+1 · · ·βn.

Here, βk1 = i1 or − i1 and βk2 = i2 or − i2 depending on the sign of πi1 and πi2 respectively.
Clearly, the cardinality of the set of sign differences between π and σ is

| sgn(π, σ)| = |{i1, i2}| = 2.

Thus, this contributes 2 to the total distance dKT (π, σ).
Since the absolute values of the elements in π−1 and σ−1 are the same, it follows that:

O1(π, σ) = ∅,

meaning there are no pairs of Type I disagreement (i.e., no pairs where |βi| < |βj | in π−1 but |βi| > |βj |
in σ−1, or vice versa, for any i, j).

Observe that no pairs of elements in π and σ are Type II order disagreement pairs and none contributes
to distance dKT (π, σ), since all elements in π−1 and σ−1 are the same except for pairs of elements
containing βk1 ,−βk1 in π−1 and βk2 ,−βk2 in σ−1. We now check all these instances.

• Case 1: Firstly we investigate those pairs containing βk1 . So Type II order disagreement pairs is
possible if for j 6= k2

βk1 > βj and − βk1 < βj (or) βk1 < βj and − βk1 > βj

⇒ −βk1 < βj < βk1 (or) βk1 < βj < −βk1 .

Either of these hold if βk1 = i1 (or) βk1 = −i1 respectively. In both of these cases, we have
−i1 < βj < i1. So βj can be any of the numbers from−(i1− 1) to (i1− 1)(except 0) but since βj
is an element of signed permutation, it cannot be both−l and l, for any l, −(i1−1) ≤ l ≤ i1−1.
Thus, there are i1 − 1 such pairs contributing to this case.

• Case 2: Now let us check for the pairs containing βk2 . So Type II order disagreement pairs is
possible if for j 6= k1

βk2 > βj and − βk2 < βj (or) βk2 < βj and − βk2 > βj

⇒ −βk2 < βj < βk2 (or) βk2 < βj < −βk2 .

Similarly we have −i2 < βj < i2 but since j 6= k1, we cannot have βj = βk1 = ±i1. Thus, there
are i2 − 2 such pairs contributing to this case.
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• Case 3: Finally we check the pairs containing βk1 and βk2 , in which case

βk1 > βk2 and − βk1 < −βk2 (or) βk1 < βk2 and − βk1 > −βk2

⇒ βk1 > βk2 (or) βk1 < βk2 .

Either of these always hold. Hence, there is one pair of Type II disagreements between βk1 and
βk2 .

Thus, |O2(π, σ)| = (i1 − 1) + (i2 − 2) + 1 = (i1 − 1) + (i2 − 1).
Therefore, combining all contributions, we get the total generalized Kendall-τ distance as:

dKT (π, σ) = 2 + 4(i1 − 1) + 4(i2 − 1).

Thus, for r = 2, the identity holds:

dKT (π, σ) = dKT (π, π1 · · ·πi1−1 − πi1 · · ·πn) + dKT (π, π1 · · ·πi2−1 − πi2 · · ·πn).

Inductive Step: Now, assume that the formula holds for r = m ≥ 1. That is, suppose for anym-tuple
of positions i1, i2, . . . , im, where σij = −πij for j = 1, . . . ,m, we have

dKT (π, π
(m)) = dKT (π, π̂i1) + · · ·+ dKT (π, π̂ir) =

m∑
j=i

(1 + 4(ij − 1)). (3)

Now consider the case r = m+ 1. Let π(m+1) be a signed permutation where σi1 , σi2 , . . . , σim are the
same as in the inductive hypothesis, and in addition, σim+1 = −πim+1 for some im+1 > im. Then the
distance between π and π(m+1) is

dKT (π, π
(m+1)) = dKT (π, π

(m)) + dKT (π
(m), π(m+1)).

By the inductive hypothesis (3), the first term in the right hand side of the above equation becomes

dKT (π, π
(m)) =

m∑
j=i

(1 + 4(ij − 1)),

and using the Lemma 1 for the second term, in which the additional distance between π(m) and π(m+1)

comes solely from the sign change at position im+1, which contributes 1 + 4(im+1 − 1) to the distance.
Therefore

dKT (π, π
(m+1)) =

m+1∑
j=i

(1 + 4(ij − 1)).

Hence, dKT (π, π(m)) = dKT (π, π̂i1) + · · ·+ dKT (π, π̂im).
Thus, this completes the proof.

�
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Corollary 1. Let dKT be the generalized Kendall-τ distance between π = π1π2 · · ·πn and π− = −π1−π2 · · ·−

πn. Then

dKT (π, π
−) = dKT (π1 · · ·πn,−π1 π2 · · ·πn) + · · ·+ dKT (π1 · · ·πn, π1 · · ·πn−1 − πn).

Furthermore, this simplifies to dKT (π, π−) = n(2n− 1).

Proof. The proof is straightforward from the above Theorem 2 by setting r = n and with a simple
calculation we get dKT (π, π−) = n(2n− 1). �

Definition 10 (Total negation operation). A unary operation ‘−’ on the elements of Bn is defined to be the

map

− : Bn → Bn such that

−(π1π2 · · ·πn) = −π1 − π2 · · · − πn

for π = π1π2 · · ·πn. The image of π = π1π2 · · ·πn with respect to this operation ‘−’ is denoted by π− and we

call the operation “−" a total negation operation.

We now give the remarkable result of this section which characterize the Universal-median set. The
following lemma will be useful to prove this result.

Lemma 2. For any π, σ ∈ Bn, we have

dKT (σ, π) + dKT (σ, π
−) = n(2n− 1). (4)

Proof. By Corollary 1, we know that for any π ∈ Bn,

dKT (π, π
−) = n(2n− 1).

Setting σ = π in (4), we recover the equation

dKT (π, π) + dKT (π, π
−) = 0 + n(2n− 1).

Similarly, setting σ = π− yields

dKT (π
−, π) + dKT (π

−, π−) = n(2n− 1) + 0.

Both cases trivially satisfy (4).
Now consider the case where σ ∈ Bn \ {π, π−}. To verify the claim, we analyze the contributions

from Type I and Type II order disagreements between the signed permutations.
Let the inverses of π, π− and σ be π−1 = α1 · · ·αn, (π−)−1 = −α1 · · · − αn and σ−1 = β1 · · ·βn,

respectively.
For an arbitrary pair of positions (i, j), assume without loss of generality that |βi| < |βj | in σ−1.
Case 1: If |αi| > |αj | in π−1, then | − αi| > | − αj | in (π−)−1. This pair (i, j) belongs to both O1(σ, π)

and O1(σ, π
−).
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Case 2: If |αi| < |αj | in π−1, then | − αi| < | − αj | in (π−)−1. In this case, (i, j) does not belong to
both O1(σ, π) and O1(σ, π

−). Thus, we focus on Type II order disagreements.
Suppose βi < βj in σ−1. We divide this case into two subcases.

(i): If αi < αj and −αi > −αj , then the pair (i, j) belongs to O2(σ, π
−) but not to O2(σ, π).

(ii): If αi > αj and −αi < −αj , then the pair (i, j) belongs to O2(σ, π) but not to O2(σ, π
−).

The same conclusions hold if βi > βj . In any case, each pair (i, j) belongs to both O1(σ, π) and
O1(σ, π

−) or belongs to either O2(σ, π) or O2(σ, π
−) but not both. There are n(n− 1)/2 such distinct

pairs, and each pair contributes 4 to the total distance dKT (σ, π) + dKT (σ, π
−).

Finally, we have | sgn(σ, π)| + | sgn(σ, π−)| = n since each position i gives a contribution to either
| sgn(σ, π)| or | sgn(σ, π−)|. That is, in an arbitrary position i, if the signs of βi and αi are the same, then
the signs of βi and −αi have to be different, and vice versa.

Thus, summing all contributions, we obtain

dKT (σ, π) + dKT (σ, π
−) = 4

n(n− 1)

2
+ n = n(2n− 1).

This completes the proof. �

Theorem 3. If A is a subset of signed permutations of Bn with cardinalitym and is closed under operation ‘−’,

i.e., for all π ∈ A, we have π− ∈ A, then the set of medians equals Bn, i.e.,

M(A) = Bn.

Moreover, for any π ∈ A, the generalized Kendall-τ distance between π and A satisfies

dKT (π,A) = dKT (π
−,A) = m

2
n(2n− 1).

Proof. Let A = {π1, π2, . . . , πm} be a set of m elements in Bn. Since A is closed with respect to the
operation −, it follows that if π ∈ A, then π− ∈ A. Observe that for every i ∈ {1, 2, . . . ,m},we can
find j ∈ {1, 2, . . . ,m} \ {i} such that πj = (πi)−. We arrange these elements in pairs such that (πi)− is
followed by πi, and rename this to get σ1, σ2, · · · , σm, where σ2 = (σ1)−, σ4 = (σ3)−, and so on. That
is,

A = {σ1, (σ1)−, σ2, (σ2)−, . . . , σm/2, (σm/2)−},

We want to show thatM(A) = Bn. To do so, we need to find the signed permutation π∗ in Bn that
minimizes the total generalized Kendall-τ distance from A. This distance is given by

dKT (π
∗,A) = dKT (π

∗, σ1) + dKT (π
∗, (σ1)−) + · · ·+ dKT (π

∗, σm/2) + dKT (π
∗, (σm/2)−).

By Lemma 2, for any signed permutation π∗, the total distance can be calculated as:

dKT (π
∗,A) = n(2n− 1) + · · ·+ n(2n− 1)

(
summed for m

2
pairs

)
.
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Thus, we find
dKT (π

∗,A) = m

2
n(2n− 1).

Hence, we conclude that the subset A of Bn is a universal-median set, i.e.,

M(A) = Bn.

�

Corollary 2. For π in Bn, the column sum (resp., row sum) of π is |Bn|2 n(2n− 1).

Proof. The proof follows easily by setting A = Bn in Theorem 3. �

Remark 2. For any element π ∈ Bn and any non-empty subset A ⊆ Bn, we have

dKT (π,A) + dKT (π,Ac) =
|Bn|
2
n(2n− 1).

4. Distance graph Gn of Bn

We define the distance graph Gn(V,E, ω) for Bn, where
• the set of vertices V are the signed permutations in Bn written in one-line notation, i.e., V = Bn,
• e = (π, σ) ∈ E iff σ is obtained from π by using the ‘first negation operation η1’ (refer Definition
9) or the ‘transposition operation ti’ (refer Definition 8) and vice versa.
• the weight function ω : E → N defined as

ω(e) = ω((π, σ)) =

1, if σ = η1(π)

2, if σ = ti(π).

The graph Gn is a weighted rooted connected graph with identity-signed permutation as the root.
This graph clearly does not contain loops since π 6= η1(π) and π 6= ti(π) for any signed permutation
π ∈ Bn.

In the context of distance graph Gn, the generalized Kendall-τ distance (see Definition 5) between
any two signed permutations π, σ ∈ Bn is defined as the minimum total weight of a path that connects
π and σ in the graph Gn.

The distance graph Gn can be constructed by following simple steps.
Step 1: Begin with the identity element e = 12 · · ·n in Bn as the root of the graph.
Step 2: In each step, apply the operations η1 and ti to every vertex generated in the previous step.

For a given node π = π1π2 · · ·πn:
• Connect π to the element −π1π2 · · ·πn with an edge of weight 1.
• Connect π to the elements π1 · · ·πi+1πi · · ·πn with an edge of weight 2, for every 1 ≤ i ≤

n− 1.
Step 3: Repeat the process iteratively until all elements of Bn are included in the graph.
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As an example, we provide the distance graph for B2 and B3. See Figure 1 and Figure 2, respectively.
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Figure 1. Distance graph for B2
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Now we shall see some properties relating the generalized Kendall-τ distance with reversal of a
signed permutation.

Definition 11. Let π = π1π2 · · ·πn be any element in Bn. The reversal of a signed permutation π is a signed

permutation denoted as πrev and defined by πrev = πnπn−1 · · ·π1.

Lemma 3. For any element π in Bn, we explicitly give the generalized Kendall-τ distance between π and its

reversal, i.e.,

dKT (π, π
rev) = n(n− 1).

Proof. To compute the generalized Kendall-τ distance dKT (π, πrev) for any π ∈ Bn, we consider the
reversal operation on π and calculate the total minimum distance required to transform π into πrev

using the distance graph Gn of Bn.
The transformation from π = π1π2 · · ·πn to its reversal πrev = πnπn−1 · · ·π1 can be systematically

achieved by sequentially relocating each element of π to its final position in πrev. We construct a specific
path in Gn to achieve this transformation and calculate the total distance along this path.

We begin by swapping π1 with π2, π1 with π3, and so on until π1 is placed in position n. This
intermediate step transforms π into π2π3 · · ·πnπ1. The number of swaps required is n− 1, and each
swap contributes a distance of 2. Thus, the total distance for this step is 2(n− 1). This is evident from
the following path in Gn:

π → π2π1π3 · · ·πn → π2π3π1 · · ·πn → · · ·π2π3 · · ·πnπ1

Next, we repeat this process for π2, swapping it with π3, π4, and so on, until it reaches the position
n− 1. This transforms π2π3 · · ·πnπ1 into π3π4 · · ·πnπ2π1. The number of swaps required in this step is
n− 2, and the total distance contributed by these swaps is 2(n− 2). In Gn, this is given by the path:

π2π3 · · ·πnπ1 → π3π2π4 · · ·πnπ1 → · · · → π3π4 · · ·πnπ2π1

Continuing in this manner, we iteratively relocate each element to its final position in πrev. The total
distance for the whole process is summarized as follows:

2(n− 1) + 2(n− 2) + · · ·+ 2.

Using the formula for the sum of the firstm natural numbers, the total distance is computed as:

dKT (π, π
rev) = 2

n−1∑
k=1

k

= 2 · (n− 1)n

2

= n(n− 1).
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Note that there may exist multiple paths in Gn connecting π to πrev, but all of these paths yield the
same total distance dKT (π, πrev) = n(n− 1) due to the nature of the generalized Kendall-τ metric. This
completes the proof. �

Note that (π−)rev = (πrev)−, thus we have the following:

Theorem 4. For any element π ∈ Bn, the generalized Kendall-τ distance

dKT (π, (π
−)rev) = dKT (π, (π

rev)−) = n2.

Proof. To compute the generalized Kendall-τ distance dKT (π, (π−)rev) for any π ∈ Bn, we systematically
trace the path in the distance graph Gn of Bn that connects π to (π−)rev and calculate the minimum
total distance.

The transformation from π to (π−)rev involves reversing the order of elements and changing the
signs of all entries. To achieve this transformation, we proceed iteratively, ensuring that at each step,
the appropriate distance is accounted for.

We first describe the path that transforms π1π2 · · ·πn to the intermediate state π2π3 · · ·πn − π1. This
is done in two stages:

(1) Apply the operation η1, which flips the sign of the first element, transforming π into−π1π2 · · ·πn.
This operation contributes a distance of 1.

(2) Sequentially reposition π1 to the last position by applying transpositions ti, i = 1, 2, . . . ,

n−1. Each transposition contributes a distance of 2, and since n−1 transpositions are required,
the total distance for this step is 2(n− 1).

Therefore, the total distance for this phase is 1 + 2(n − 1). We can see this in the distance graph Gn,
which is given by the path

π
1−→ −π1π2 · · ·πn

2−→ π2 − π1π3 · · ·πn
2−→ π2π3 − π1 · · ·πn

2−→ · · · 2−→ π2π3 · · ·πn − π1

Next, we iteratively repeat the process for each subsequent element, transforming
π2π3 · · ·πn − π1 into π3π4 · · ·πn − π2 − π1, and so on until all elements are reversed and negated. At
each step, the process involves:

(1) Applying η1 to flip the sign of the next element, contributing a distance of 1.
(2) Repositioning this element to its final location through ti operations. If the element is in position

k, the number of required transpositions is n− k, and the corresponding distance is 2(n− k).
Summing the contributions from all steps, the total distance for transforming π into (π−)rev is:

dKT (π, (π
−)rev) =

[
1 + 2(n− 1)

]
+
[
1 + 2(n− 2)

]
+ · · ·+

[
1 + 2(1)

]
= n+ 2

[
1 + 2 + · · ·+ (n− 1)

]
.
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Using the formula for the sum of the firstm natural numbers, the total distance becomes:

dKT (π, (π
−)rev) = n+ 2 · (n− 1)n

2

= n+ n2 − n

= n2.

Similarly, for the reversal of the negated signed permutation (πrev)−, the computation follows the same
steps since the operations of reversal and negation commute in this context. Thus, the generalized
Kendall-τ distance satisfies:

dKT (π, (π
−)rev) = dKT (π, (π

rev)−) = n2.

It is worth noting that while multiple paths in Gn may connect π to (π−)rev, all of these paths yield the
same total distance due to the intrinsic properties of the generalized Kendall-τ metric. This completes
the proof. �

Theorem 5. Let π = π1π2 · · ·πn ∈ Bn, and define σ = σ1σ2 · · ·σn ∈ Bn such that σi = −πi for some

i ∈ {1, . . . , n} and σj = πj for all j 6= i. Then, the generalized Kendall-τ distance satisfies:

dKT (π, σ
rev) = n(n− 1) + 1.

Proof. In the distance graph Gn of Bn, we trace the path connecting π and σ = σ1 · · ·σi · · ·σn in Bn,
where σj = πj for all j 6= i except σi = −πi for 1 ≤ i ≤ n. To establish the result, we explicitly construct
a path and calculate the total distance along it.

We begin by swapping π1 with π2, π1 with π3, and so on until π1 is placed in position n. This
intermediate step transforms π into π2π3 · · ·πnπ1. The number of swaps required is n− 1, and each
swap contributes a distance of 2. Thus, the total distance for this step is 2(n− 1). This is evident from
the following path in Gn:

π → π2π1π3 · · ·πn → π2π3π1 · · ·πn → · · ·π2π3 · · ·πnπ1

Next, we repeat this process for π2, swapping it with π3, π4, and so on, until it reaches the position
n− 1. This transforms π2π3 · · ·πnπ1 into π3π4 · · ·πnπ2π1. The number of swaps required in this step is
n− 2, and the total distance contributed by these swaps is 2(n− 2). In Gn, this is given by the path:

π2π3 · · ·πnπ1 → π3π2π4 · · ·πnπ1 → · · · → π3π4 · · ·πnπ2π1

We continue this process until we reposition the element πi−1 to obtain πiπi+1 · · ·πnπi−1 · · ·π2π1. Once
πi is in the first position, we apply the first negation operation η1 to transform πi into−πi. This operation
contributes a distance of 1. At this stage, the intermediate result is −πiπi+1 · · ·πnπi−1 · · ·π2π1.
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Finally, to construct σrev, we reverse the order of the remaining elements. This involves applying the
operation ti for i ∈ {1, 2, . . . , n− i} to get a path connecting to σ = σ1 · · ·σi−1σiσi+1 · · ·σn
∈ Bn, where σj = πj for all j 6= i, and σi = −πi for 1 ≤ i ≤ n. So, the total distance for the path is given
by

dKT (π, σ) = 2(n− 1) + 2(n− 2) + · · ·+ 2(n− (i− 1)) + 1 + 2(n− i) + · · ·+ 2(1)

= 1 + 2[1 + 2 + · · ·+ (n− 1)]

= 1 + 2

[
(n− 1)n

2

]
= 1 + n(n− 1).

Since there may exist multiple paths in Gn connecting π and σ, the above calculation shows that the
constructed path achieves the minimum distance. Hence, the proof is completed. �

5. Sn-median set of signed permutations

The study of median sets in particular subgroups of the hyperoctahedral group of type Bn sheds
light on the relationships and structural characteristics of signed permutations. In this section, we
introduce the notion of an Sn-median set within the group of signed permutations Bn, where Sn is
the symmetric group of order n, and explore some fundamental properties and results associated with
this concept.

We begin by formally defining the Sn-median set as follows:

Definition 12 (Sn-median set). A set A ⊆ Bn is said to be a Sn-median set ifM(A) = Sn.

To understand the behavior of distances between elements ofSn and their reversals within the larger
structure of Bn, we establish a crucial identity involving the generalized Kendall-τ distance between a
permutation and its reversal. The following finding is useful in describing median sets which is closed
with regards to the reversal operation.

Lemma 4. For any two permutations π, ρ ∈ Sn, we have the identity

dKT (π, ρ) + dKT (π, ρ
rev) = n(n− 1).

Proof. Since π and ρ are elements of the symmetric group Sn, any permutation ρ can b acquired from
π by a sequence of transpositions ti, where ti swaps the elements at positions i and i + 1, where
i ∈ {1, . . . , n− 1}.

To establish the result, it suffices to verify the identity for two fundamental cases:
(i): ρ is obtained from π by applying a single transposition operation, i.e., ρ = ti(π) for some
i ∈ {1, . . . , n− 1}.
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(ii): ρ is obtained from π by applying a finite number of transposition operations, i.e., ρ = tj(ti(π))

for some i, j ∈ {1, . . . , n− 1}.
For case (i), let ρ be given by ρ = π1 · · ·πi−1πi+1πiπi+2 · · ·πn, which means that ti swaps πi and πi+1. It
is evident by looking at the distance graph Gn’s structure that the distance

dKT (π, ρ) = 2. (5)

Now, we analyze dKT (π, ρrev). The reversed signed permutation ρrev is given by:

ρrev = πnπn−1 · · ·πi+2πiπi+1πi−1 · · ·π2π1.

To compute dKT (π, ρrev), we trace a path in the distance graph Gn connecting π to ρrev.
The transformation proceeds as follows:
• Swap π1 iteratively with π2, π3, . . . , πn, placing π1 in position n. This requires n − 1 swaps,
contributing a total distance of 2(n− 1). This intermediate step transforms π into π2π3 · · ·πnπ1.
This is evident from the following path in Gn:

π → π2π1π3 · · ·πn → π2π3π1 · · ·πn → · · ·π2π3 · · ·πnπ1

• Repeat this process for π2, moving it to position n−1 through n−2 swaps, contributing 2(n−2).
In Gn, this is given by the path:

π2π3 · · ·πnπ1 → π3π2π4 · · ·πnπ1 → · · · → π3π4 · · ·πnπ2π1

• Continue this process for all πk until we reach πi−1, which is moved to its required position
with n− (i− 1) swaps, to obtain

πiπi+1 · · ·πnπi−1 · · ·π2π1.

• Once πi is in the first position, we begin to swap πi+1 to the right until πi+1 reaches a position
immediately right to πn which is acquired in n− (i− 1) steps to get

πiπi+2 · · ·πnπi+1πi−1 · · ·π2π1.

• Now again we start swapping πi with πi+2, so on and place πi in between πn and πi+1. At this
stage, the intermediate result is

πi+2 · · ·πnπiπi+1πi−1 · · ·π2π1.

Then we again continue the process of swapping elements to finally arrive at

ρrev = πnπn−1 · · ·πi+2πiπi+1πi−1 · · ·π2π1.



Asia Pac. J. Math. 2025 12:94 25 of 29

The total distance accumulated through these swaps is given by:

dKT (π, ρ
rev) = 2(n− 1) + 2(n− 2) + · · ·+ 2(n− (i− 1)) + 2(n− (i− 1))

+2(n− (i+ 1)) + · · ·+ 2(2) + 2(1)

= 2 {[(n− 1) + (n− 2) + · · ·+ (n− (i− 1)) + (n− i) + (n− (i+ 1))

+ · · ·+ 2 + 1]− [(n− i) + n− (i− 1)]}

= 2{[1 + 2 + · · ·+ (n− 2) + (n− 1)]− 1}

= 2

[
n−1∑
k=1

k − 1

]

=

[
2
(n− 1)n

2
− 2

]
= n(n− 1)− 2. (6)

Thus, we obtain from (5) and (6),

dKT (π, ρ) + dKT (π, ρ
rev) = n(n− 1).

For case (ii), when ρ = tj(ti(π)) with j = i+ 1, the second transposition tj reverses the effect of the
first ti, restoring π. Hence, we have

dKT (π, ρ) + dKT (π, ρ
rev) = dKT (π, π) + dKT (π, π

rev) = n(n− 1).

When j 6= i + 1, without loss of generality, assume i < j. Then ρ differs from π by a finite number
of swaps (say k), contributing dKT (π, ρ) = 2k by the distance graph Gn. Following an argument
analogous to case (i), we conclude that the identity holds for this case as well. �

Remark 3. It is clear from the distance diagram Gn of Bn that the converse also holds. i.e., for ρ ∈ Sn, if we

have dKT (π, ρ) + dKT (π, ρ
rev) = n(n− 1), then necessarily π ∈ Sn.

Building on these distance properties, we now present a characterization result for subsets of Sn

that are closed under reversal. The following theorem shows that such a subset necessarily forms an
Sn-median set, and moreover, provides an explicit distance formula from any Sn-element to the set.

Theorem 6. If A is a subset of the symmetric group Sn ⊂ Bn of cardinalitym and A is closed under the unary

operation ‘rev’ (i.e., whenever π ∈ A, then πrev ∈ A), then A is a Sn-median set. That is,

M(A) = Sn.

and also for any σ ∈ Sn,

dKT (σ,A) =
m

2
n(n− 1).
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Proof. Let A = {π1, π2, . . . , πm} be a set ofm permutations in Sn. Since A is closed under the reversal
operation rev, it follows that if π ∈ A, then πrev ∈ A. Observe that for every i ∈ {1, 2, . . . ,m}, we can
find j ∈ {1, 2, . . . ,m} \ {i} such that πj = (πi)rev. We arrange these elements in pairs such that (πi)rev

is followed by πi, and rename this to get

A = {σ1, (σ1)rev, σ2, (σ2)rev, . . . , σm/2, (σm/2)rev},

We want to prove thatM(A) = Sn. To do so, we need to show the following.
(i): dKT (ρ,A) = m

2 n(n− 1), for every ρ ∈ Sn,
(ii): dKT (ρ,A) < dKT (α,A) for every ρ ∈ Sn, α ∈ Bn \Sn.

The median setM(A) consists of signed permutations ρ that minimize dKT (ρ,A). Part (i) shows
that all elements in Sn are equidistant from A since the distance for any ρ ∈ Sn is exactly m

2 n(n− 1),
which will implyM(A) ⊇ Sn. Then this with part (ii) completes the proof.

For part(i), we have for any ρ ∈ Sn, the distance to the set A is given by

dKT (ρ,A) = dKT (ρ, σ
1) + dKT (ρ, (σ

1)rev) + · · ·+ dKT (ρ, σ
m/2) + dKT (ρ, (σ

m/2)rev).

Using Lemma 4, we have,

dKT (ρ,A) = n(n− 1) + · · ·+ n(n− 1)
(
summed for m

2
pairs

)
.

Thus, dKT (ρ,A) =
m

2
n(n− 1).

For part(ii), using the triangle inequality and Remark 3, for any α ∈ Bn \Sn , we have,

dKT (α, σ
i) + dKT (α, σ

irev) > dKT (σ
i, σi

rev
) = n(n− 1)

⇒ dKT (α, σ
i) + dKT (α, σ

irev) > dKT (ρ, σ
i) + dKT (ρ, σ

irev), for ρ ∈ Sn

Summing over all pairs in A, we obtain

dKT (α,A) > dKT (ρ,A) =
m

2
n(n− 1).

This confirms that for any α /∈ Sn,

dKT (ρ,A) < dKT (α,A).

Thus,M(A) cannot contain any element from Bn \Sn, implying

M(A) = Sn.

�
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6. Conclusion and future works

In this paper, we have extended the classical median problem for permutations to the setting of
signed permutations by developing a generalized Kendall-τ distance that accounts for both order
disagreements and sign differences. This advancement enables a rigorous study of median sets within
the hyperoctahedral group of type Bn, significantly broadening the scope of rank aggregation beyond
the symmetric groupSn. We have introduced refined notions of order disagreements (Type I and Type
II), formalized the new distance metric, and provided theoretical characterizations for special classes of
median sets, namely, universal-median sets and Sn-median sets, which are sets closed under negation
and invariant under reversal, respectively. Furthermore, the construction of a weighted distance
graph Gn over Bn allows for efficient computation and visualization of transformations between signed
permutations.

Our approach is particularly motivated by applications in computational biology, such as aggregating
signed gene rankings from gene regulatory networks across experimental conditions. By capturing
both the relative order and the regulatory direction (upregulation or downregulation) of genes, our
method provides a principled framework for consensus analysis in biologically relevant settings.

There are several promising directions for future research. First and foremost, the computational
complexity of the generalized median problem in Bn remains an open question for larger sets; a
formal classification as polynomial-time solvable or NP-hard would deepen our understanding of
the algorithmic landscape. While we have observed experimentally that for small values ofm (e.g.,
m = 2), where m is the cardinality of a subset A of Bn, the median set can be computed efficiently
and seems to be polynomial-time solvable, the problem appears to scale unfavorably asm increases,
because the number of candidate medians grows rapidly with n, since |Bn| = 2nn!. Therefore, while an
exact complexity classification remains open, it is reasonable to conjecture that the median problem in
Bn under the Generalized Kendall-τ distance is NP-hard for generalm. Second, these insights suggest
a need for heuristic methods, exploring approximation algorithms, or structural restrictions to make
median computation feasible in practice. Our future work will aim to find special sets A for which
it is easy to find medians in polynomial time. Automedian sets of signed permutations are such a
case. Lastly, it would be fruitful to investigate analogous median problems under other combinatorial
structures, such as Coxeter groups, signed posets, or graphs, to generalize the theory further.
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