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Abstract. Influenza, a contagious respiratory illness caused by influenza viruses, poses a significant global
public health and economic burden. This study develops a deterministic SEIR (Susceptible-Exposed-
Infectious-Recovered) model exclusively for influenza to analyze its transmission dynamics, progression,
and recovery. By dividing the population into four compartments—susceptible (S), exposed (Ei), infected
(Ii), and recovered (Ri)—and incorporating key epidemiological parameters such as transmission, pro-
gression, and recovery rates, the model provides a comprehensive mathematical framework represented
by a system of nonlinear differential equations. The findings emphasize the SEIR model’s critical role in
guiding public health interventions, optimizing resource allocation, and informing policy decisions. As a
vital tool for global health organizations like the World Health Organization and national health agencies,
this model underscores the power of data-driven strategies in managing influenza outbreaks, reducing
societal impacts, and saving lives.
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1. Introduction

Influenza, or the flu, is a highly contagious respiratory illness caused by influenza viruses,
posing major public health and economic burdens worldwide. It affects all age groups, leading to
severe illness, hospitalizations, and deaths [1]. The World Health Organization (WHO) highlights
the need for continuous monitoring and research due to its high infection rates and unpredictable
transmission [2]. Influenza follows seasonal patterns, with winter epidemics in temperate regions and
year-round outbreaks in tropical areas, making its epidemiology crucial for effective prevention and
control [3].

Globally, the virus’s ability to mutate enables seasonal and pandemic outbreaks, as seen in the
2009 H1N1 pandemic [4]. WHO estimates that annual epidemics cause 3–5 million severe cases and
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290,000–650,000 respiratory deaths worldwide [1]. This highlights the need for ongoing research on
epidemiological trends, prevention, and control strategies [5].

In the Philippines, influenza-like illnesses (ILIs) remain a concern due to the country’s tropical
climate. Seasonal outbreaks are unpredictable, and the Department of Health (DOH) reported 158,307
ILI cases from January to October 2023—a 46% increase from the previous year [6]. Regions such as I,
IV-B, XII, Caraga, and the Bangsamoro Autonomous Region saw significant surges, underscoring the
need for improved surveillance and localized disease modeling [6].

In the Caraga Region, acute respiratory infections were the leading reported illness in 2020, totaling
over 35,600 cases [7]. Fluctuating ILI trends in recent years highlight the importance of studying
influenza transmission in the region to develop targeted intervention strategies [8].

Mathematical models, especially the Susceptible-Exposed-Infectious-Recovered (SEIR) framework,
have been key in analyzing influenza spread. Studies have used SEIR models to assess vaccination
programs [9], zoonotic transmission [10], andpopulationmobility’s impact on outbreaks [11]. However,
most rely on numerical simulations or focus on specific populations like age groups, animals, or urban
areas [12].

This study proposes a novel SEIR deterministic model for influenza transmission dynamics. Unlike
previous studies that rely on numerical approaches, this model adopts a deterministic framework to
improve the accuracy of outbreak predictions. By refining existing SEIR models, this research aims to
enhance public health strategies and policymaking for better disease control. Ultimately, the findings
will contribute to a broader understanding of influenza dynamics and mitigation efforts.

2. Preliminary Concepts

Definition 2.1 (Lipschitz Continuity) [13] A function f : Rn → Rn is Lipschitz continuous if there
exists a constant L ≥ 0 such that:

‖f(x)− f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn.

Theorem 2.1 (Cauchy–Lipschitz / Picard–Lindelöf Theorem: Existence and Uniqueness) [14] Con-
sider the initial value problem:

dy

dt
= f(t, y), y(t0) = y0,

where f : R×Rn → Rn is continuous and satisfies a Lipschitz condition with respect to y; that is, there
exists a constant L > 0 such that:

‖f(t, y1)− f(t, y2)‖ ≤ L‖y1 − y2‖ for all t ∈ R, y1, y2 ∈ Rn.

Theorem 2.2 (Operations on Continuous Functions) [13] Let f, g : Rn → R be continuous functions,
and let c ∈ R be a constant. Then the functions cf , f + g, and fg are also continuous.
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Definition 2.2 (The Euclidean Norm) [15] Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn). The
Euclidean distance between u and v is defined as:

‖u− v‖ =

√√√√ n∑
i=1

(ui − vi)2.

Inequality (A Special Case of the Cauchy–Schwarz Inequality) Let u = (u1, u2, . . . , un) and v =

(v1, v2, . . . , vn). Then
n∑
i=1

|ui − vi| ≤
√
n‖u− v‖.

Definition 2.3 (Next GenerationMatrix) [16] Let F be the transmission matrix representing the rate of
appearance of new infections in each compartment, and let V be the transition matrix representing the
rate at which individuals leave the infected compartments. The Next Generation MatrixK is defined
as:

K = FV −1.

Interpretation and Properties of the Next Generation Matrix

• The dominant eigenvalue of K is the basic reproduction number R0, which represents the
average number of secondary infections caused by one infected individual in a fully susceptible
population.
• If R0 < 1, the infection will eventually die out.
• If R0 > 1, the infection can spread and potentially lead to an epidemic.

This matrix is widely used in epidemiological modeling to analyze the stability of disease-free
equilibrium points and evaluate intervention strategies.
Theorem 2.3 (Routh–Hurwitz Criteria) [17] The Routh–Hurwitz Criteria is a mathematical method
used to determine the stability of a linear time-invariant (LTI) system by analyzing the characteristic
polynomial of its transfer function. Given a polynomial of the form

P (s) = a0s
n + a1s

n−1 + · · ·+ an,

where a0, a1, . . . , an ∈ R, the system is stable if and only if all roots of P (s) have negative real parts. In
particular:

• For a quadratic polynomial, P (s) = s2 + b1s + b2, the system is stable if and only if b1 >
0 and b2 > 0.

• For a cubic polynomial, P (s) = s3 + b1s
2 + b2s + b3, the system is stable if and only if b1 >

0, b2 > 0, and b1b2 > b3.

These conditions are both necessary and sufficient for ensuring that all roots of the polynomial lie in
the left half of the complex plane.
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Theorem 2.4 (Lyapunov Function) [18] Consider a dynamical system described by the differential
equation:

ẋ = f(x), x ∈ Rn,

where f(x) is a continuously differentiable vector field. The equilibrium point x∗ of the system is
asymptotically stable if there exists a Lyapunov function V (x) that satisfies the following conditions:

• V (x) is continuous, differentiable, and positive definite, i.e.,

V (x) > 0 for x 6= x∗, V (x∗) = 0.

• The time derivative of V (x), denoted V̇ (x), is negative definite (i.e., V̇ (x) < 0 for all x 6= x∗).

In this case, x∗ is an asymptotically stable equilibrium point, meaning that the solutions to the system
will approach x∗ as time progresses.
Theorem 2.5 (Integrating Factor Method) [19] Consider a first-order linear differential equation

dx

dt
+ p(t)x = q(t),

where p(t) and q(t) are continuous functions. The solution is given by

x(t) = e−
∫
p(t) dt

∫
e
∫
p(t) dtq(t) dt.

This is the integrating factor method, where e
∫
p(t) dt is the integrating factor that simplifies the differen-

tial equation.
Theorem 2.6 (LaSalle’s Invariance Principle) [20] Consider the dynamical system

ẋ = f(x), x ∈ Rn,

where f(x) is a continuously differentiable vector field, and x∗ is an equilibrium point of the system,
i.e., f(x∗) = 0.

Let V : Rn → R be a continuously differentiable function (a Lyapunov function) that satisfies the
following conditions:

• Positive definiteness: V (x) > 0 for x 6= x∗ and V (x∗) = 0.
• Non-increasing derivative: The time derivative of V (x), denoted by V̇ (x) = ∇V (x) · f(x),
satisfies V̇ (x) ≤ 0 for all x ∈ Rn.

Then, the set
M = {x ∈ Rn : V̇ (x) = 0}

is invariant, meaning that any trajectory that starts inM remains inM for all future times. Furthermore,
ifM contains the equilibrium point x∗, then all trajectories that start inM will asymptotically approach
the set of equilibrium points inM .
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In particular, ifM consists only of the equilibrium point x∗, then all trajectories in the state space
will converge to x∗ as t→∞.
Definition 2.4 (Normalized Forward Sensitivity Index (NFSI)) [21] The Normalized Forward Sen-
sitivity Index (NFSI) using the basic reproduction number (commonly denoted R0) measures how
sensitive R0 is to changes in the model’s parameters. It quantifies the relative change in R0 due to small
variations in input parameters, normalized by the value of R0 itself.
The NFSI for a parameter x is defined as:

SN (x) =
∂R0

∂x
· x
R0
,

where:

• ∂R0
∂x is the partial derivative of R0 with respect to the parameter x,

• x is the model parameter under consideration,
• R0 is the basic reproduction number.

This index helps evaluate the impact of changes in different model parameters (e.g., transmission rate,
recovery rate) on the overall transmission potential of a disease, while accounting for the scale of R0.
Lemma 2.1 (Positivity of Solutions of ODE Systems) [13] Let u(t) = (u1(t), u2(t), . . . , un(t)) be the
solution to a system of ordinary differential equations (ODEs) defined on a domain D ⊆ Rn, and
suppose that the initial conditions satisfy u(0) ∈ Rn+. If the vector field defining the system satisfies

fi(u) ≥ 0 whenever ui = 0 and u ∈ Rn+,

then the solution u(t) remains inRn+ for all t ≥ 0; that is, the non-negative orthant is positively invariant.

3. Model Formulation

This study builds upon the numerical models presented in [22], [23], [24]. Consistent with previous
studies on the mathematical modeling of influenza [25], [26], [27], [28], we develop an SEIR deter-
ministic model specifically for influenza dynamics. To construct this mathematical model, the human
population is divided into four (4) mutually exclusive compartments, representing individuals’ health
statuses concerning influenza:

• Susceptible individuals, S: People who are predisposed or vulnerable to infection with
influenza.
• Exposed individuals with influenza, Ei: People who have been exposed to influenza and can
still transmit the disease.
• Infected individuals with influenza, Ii: People who are infectious or symptomatic with
influenza and capable of transmitting the disease.
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• Recovered individuals from influenza infection, Ri: People who have recovered from in-
fluenza, with immunity against future infection.

Hence, the total human population N at time t is given by:

Ni(t) = S(t) + Ei(t) + Ii(t) +Ri(t).

The parameters and their descriptions, commonly used in the formulation of the influenza model,
are presented in Table 1. It is important to note that the formulation of the influenza model assumes
that all parameters are positive constants.

Parameter Description

ω Recruitment rate of susceptible individuals into the population
βi Transmission rate of influenza
σi Progression rate from Ei class to Ii class
γi Recovery rate from influenza
µ Natural mortality rate

Table 1. Description of the Model Parameters

Figure 1 presents a schematic diagram that illustrates the transmissions between compartments,
as individuals move between states of susceptibility, exposure, infection, and recovery, based on the
biological progression of influenza [29].

Figure 1. Schematic diagram of the compartmental influenza infection model

In formulating the influenza model, the parameter ω represents the inflow (or recruitment) rate into
the susceptible compartment S. Susceptible individuals are exposed to influenza at a rate βi(Ei + Ii),
transitioning into the exposed compartment Ei. Exposed individuals with influenza have a tendency to
become infected with influenza at a rate σi, moving into the infected compartment Ii. Influenza-infected
individuals recover from the disease at a rate γi, subsequently transitioning to the influenza-recovered
compartment Ri. It is important to note that all individuals in each compartment experience natural
death at a rate µ.
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From the above description and the flow chart shown in Figure 1, the following system of non-linear
differential equations for the influenza infection model is derived:

dS

dt
= ω − βi(Ei + Ii)S − µS,

dEi
dt

= βi(Ei + Ii)S − (σi + µ)Ei,

dIi
dt

= σiEi − (γi + µ)Ii,

dRi
dt

= γiIi − µRi.

(3.1)

The system (3.1) satisfies the following conditions:

S(t), Ei(t), Ii(t), Ri(t) ≥ 0.

4. Positivity and Boundedness of the Solutions

Consider the system of ordinary differential equations given in (3.1),
dui
dt

= fi(u, t), i = 1, 2, 3, 4

where the variables are defined as:

u1 = S, u2 = Ei, u3 = Ii, u4 = Ri.

Then we have the following system of ordinary differential equations:

u′ =


ω − βi(u2 + u3)u1 − µu1
βi(u2 + u3)u1 − (σi + µ)u2

σiu2 − (γi + µ)u3

γiu3 − µu4

 (4.1)

Theorem 4.1 The solution of the influenza infection model given in (4.1) is non-negative, unique, and bounded

in the given feasible region:

Ω = {(u1, u2, u3, u4) ∈ R4
+ : u1 + u2 + u3 + u4 ≤

ω

µ
}.

Proof: To show the non-negativity of the solutions, assume u = (u1, u2, u3, u4) ∈ [0,∞)4 and ui = 0 for
some i = 1, 2, 3, 4. Suppose that at some t = t∗, one of the state variables first becomes zero. Without
loss of generality, consider the following cases:

If u1(t∗) = 0, then (by Lemma 2.1)

u′1(t∗) = ω − βi(u2(t∗) + u3(t∗))u1(t∗)− µu1(t∗)

= ω − βi(u2(t∗) + u3(t∗))(0)− µ(0)

= ω
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Since ω > 0, it follows that u2(t∗), u3(t∗) ≥ 0, and u′1(t∗) > 0. Thus, u1(t) ≥ 0 for all t.
If u2(t∗) = 0, then (by Lemma 2.1)

u′2(t∗) = βi(u2(t∗) + u3(t∗))u1(t∗)− (σi + µ)u2(t∗)

= βi((0) + u3(t∗))u1(t∗)− (σi + µ)(0)

= βi(u3(t∗))u1(t∗)

Since βi > 0, and u1(t∗), u3(t∗) ≥ 0, we have u′2(t∗) ≥ 0. Thus, u2(t) ≥ 0 for all t.
If u3(t∗) = 0, then (by Lemma 2.1)

u′3(t∗) = σiu2(t∗)− (γi + µ)u3(t∗)

= σiu2(t∗)− (γi + µ)(0)

= σiu2(t∗)

Since σi > 0 and u2(t∗) ≥ 0, it follows that u′3(t∗) ≥ 0. Thus, u3(t) ≥ 0 for all t.
If u4(t∗) = 0, then (by Lemma 2.1)

u′4(t∗) = γiu3(t∗)− µu4(t∗)

= γiu3(t∗)− µ(0)

= γiu3(t∗)

Since γi > 0 and u3(t∗) ≥ 0, it follows that u′4(t∗) ≥ 0. Thus, u4(t) ≥ 0 for all t.
Since all state variables remain non-negative for all t, we conclude that the solution of the influenza
infection model is non-negative for all t ≥ 0.

To show boundedness, summing all equations in (4.1) gives the total population rate of change:
dN

dt
≤ ω − µN.

This implies that
dN

dt
+ µN ≤ ω.

Multiplying both sides by the integrating factor e
∫
µdt = eµt, we have

eµt
dN

dt
+ eµtµN ≤ ωeµt

d

dt
(eµtN) ≤ ωeµt.

Integrating both sides, we get
eµtN ≤ ω

µ
eµt + C0,

where C0 is a constant.
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N ≤ ω

µ
+ C0e

−µt.

Taking the initial condition, that is, when t = 0, N(0) = ω
µ + C0. Thus,

N(t) ≤ ω

µ
+

(
N(0)− ω

µ

)
e−µt

In effect,

lim
t→∞

supN(t) ≤ ω

µ
as t→∞.

Hence, the solution remains bounded within the feasible region.
On the other hand, consider the function f : R4 × R→ R4 defined by a vector of components:

dui
dt

= fi(u, t) =


f1(u, t)

f2(u, t)

f3(u, t)

f4(u, t)

 ,

where each component fi(u, t) corresponds to a differential equation describing the rate of change
of each variable ui in the system, based on the given system of ordinary differential equations. The
components fi(u, t) are defined as follows:

f1(u, t) = ω − βi(u2 + u3)u1 − µu1,

f2(u, t) = βi(u2 + u3)u1 − (σi + µ)u2,

f3(u, t) = σiu2 − (γi + µ)u3,

f4(u, t) = γiu3 − µu4.

Each fi(u, t) is defined using the variables u1, u2, u3, u4 along with constants such as ω, βi, σi, γi, and µ.
Since these parameters are constants, we will focus on the expressions involving the ui terms. Thus,
here’s the structure of each component.
Consider the first compartment:

f1(u, t) = ω − βi(u2 + u3)u1 − µu1.

This component consists of terms ω, −βi(u2 + u3)u1, and µu1 involving ui terms and constants. Each
term in f1(u, t) is a sum or product of continuous functions, which are continuous by basic properties
of functions. Therefore, based on Theorem 2.2, f1(u, t) is continuous.
The second compartment is given by:

f2(u, t) = βi(u2 + u3)u1 − (σi + µ)u2.
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This component includes terms such as βi(u2 + u3)u1 and −(σi + µ)u2. Each term here is a product
or sum involving continuous variables and constants, based on Theorem 2.2 ensuring that f2(u, t) is
continuous.
The third compartment is given by:

f3(u, t) = σiu2 − (γi + µ)u3.

This component consists of terms such as σiu2 and−(γi +µ)u3, each of which is a product of a constant
with a continuous variable. Therefore, based on Theorem 2.2, f3(u, t) is continuous.
The fourth compartment is given by:

f4(u, t) = γiu3 − µu4.

This component has terms like γiu3 and −µu4. Since each term is a product or sum of continuous
functions, based on Theorem 2.2, f4(u, t) is continuous.
Since each component fi(u, t) (for i = 1, 2, 3, 4) consists of sums and products of continuous functions,
each fi is continuous. Therefore, the entire function f : R4 × R→ R4 is continuous.

Now, to show Lipschitz continuity of the solutions for each compartment in the system, we need
to show that the difference between two solutions, say u = (u1, u2, u3, u4) and v = (v1, v2, v3, v4), is
bounded by a constant times the norm of the difference between the state vectors u− v. Thus, we will
compute the differences between the functions for each compartment and show that they satisfy this
condition.
The first compartment is given by:

f1(u, t) = ω − βi(u2 + u3)u1 − µu1.

Then,

|f1(u, t)− f1(v, t)| = |(ω − βi(u2 + u3)u1 − µu1)− (ω − βi(v2 + v3)v1 − µv1)|.

= |ω − ω − βi ((u2 + u3)u1 − (v2 + v3)v1)− µ(u1 − v1)|.

≤ βi|(u2 + u3)u1 − (v2 + v3)v1|+ µ|u1 − v1|.

= βi|u1u2 + u1u3 − v1v2 − v1v3|+ µ|u1 − v1|.

= βi|u1u2 − v1v2 + u1u3 − v1v3|+ µ|u1 − v1|.

= βi|u1u2 − u1v2 + u1v2 − v1v2 + u1u3 − u1v3 + u1v3 − v1v3|+ µ|u1 − v1|.

= βi|u1(u2 − v2) + v2(u1 − v1) + u1(u3 − v3) + v3(u1 − v1)|+ µ|u1 − v1|.

≤ βi [u1|u2 − v2|+ v2|u1 − v1|+ u1|u3 − v3|+ v3|u1 − v1|] + µ|u1 − v1|.

≤ βi
[
ω

µ
|u2 − v2|+

ω

µ
|u1 − v1|+

ω

µ
|u3 − v3|+

ω

µ
|u1 − v1|

]
+ µ|u1 − v1|.
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≤
(

2βiω

µ
+ µ

)
|u1 − v1|+

βiω

µ
|u2 − v2|+

βiω

µ
|u3 − v3|.

Let a1 = 2βiω
µ + µ. Then,

|f1(u, t)− f1(v, t)| ≤ a1|u1 − v1|+ a1|u2 − v2|+ a1|u3 − v3|.

≤ a1(|u1 − v1|+ |u2 − v2|+ |u3 − v3|).

≤ a1

(
4∑
i=1

|ui − vi|

)
. (by Cauchy-Schwarz Inequality)

≤ a1
√

4‖u− v‖. (by Cauchy-Schwarz Inequality)

≤ 2a1‖u− v‖.

Let L1 = 2a1. Then,

|f1(u, t)− f1(v, t)| ≤ L1‖u− v‖.

The second compartment is given by:

f2(u, t) = βi(u2 + u3)u1 − (σi + µ)u2.

Then,

|f2(u, t)− f2(v, t)| = |(βi(u2 + u3)u1 − (σi + µ)u2)− (βi(v2 + v3)v1 − (σi + µ)v2)| .

= |βi((u2 + u3)u1 − (v2 + v3)v1)− (σi + µ)(u2 − v2)|.

≤ βi|(u2 + u3)u1 − (v2 + v3)v1|+ (σi + µ)|u2 − v2|.

= βi|u1u2 + u1u3 − v1v2 − v1v3|+ (σi + µ)|u2 − v2|.

= βi|u1u2 − v1v2 + u1u3 − v1v3|+ (σi + µ)|u2 − v2|.

= βi|u1u2 − u1v2 + u1v2 − v1v2 + u1u3 − u1v3 + u1v3 − v1v3|+ (σi + µ)|u2 − v2|.

= βi|u1(u2 − v2) + v2(u1 − v1) + u1(u3 − v3) + v3(u1 − v1)|+ (σi + µ)|u2 − v2|.

≤ βi[u1|(u2 − v2)|+ v2|(u1 − v1)|+ u1|(u3 − v3)|+ v3|(u1 − v1)|] + (σi + µ)|u2 − v2|.

≤ βi
[
ω

µ
|u2 − v2|+

ω

µ
|u1 − v1|+

ω

µ
|u3 − v3|+

ω

µ
|u1 − v1|

]
+ (σi + µ)|u2 − v2|.

≤ 2βiω

µ
|u1 − v1|+

(
βiω

µ
+ σi + µ

)
|u2 − v2|+

βiω

µ
|u3 − v3|.

Defining the Lipschitz constant, a2 = max
{

2βiω
µ , σi + µ

}
. Now,

|f2(u, t)− f2(v, t)| ≤ a2|u1 − v1|+ a2|u2 − v2|+ a2|u3 − v3|.

≤ a2(|u1 − v1|+ |u2 − v2|+ |u3 − v3|).
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≤ a2

(
4∑
i=1

|ui − vi|

)
. (by Cauchy-Schwarz Inequality)

≤ a2
√

4‖u− v‖. (by Cauchy-Schwarz Inequality)

≤ 2a2‖u− v‖.

Let L2 = 2a2. Then,
|f2(u, t)− f2(v, t)| ≤ L2‖u− v‖.

The third compartment is given by:

f3(u, t) = σiu2 − (γi + µ)u3.

Then,

|f3(u, t)− f3(v, t)| = |(σiu2 − (γi + µ)u3)− (σiv2 − (γi + µ)v3)| .

= |σi(u2 − v2)− (γi + µ)(u3 − v3)|.

≤ σi|u2 − v2|+ (γi + µ)|u3 − v3|.

Defining the Lipschitz constant, a3 = max{σi, γi + µ}. Now,

|f3(u, t)− f3(v, t)| ≤ a3|u2 − v2|+ a3|u3 − v3|.

≤ a3(|u2 − v2|+ |u3 − v3|).

≤ a3

(
4∑
i=1

|ui − vi|

)
. (by Cauchy-Schwarz Inequality)

≤ a3
√

4‖u− v‖. (by Cauchy-Schwarz Inequality)

≤ 2a3‖u− v‖.

Let L3 = 2a3. Then,
|f3(u, t)− f3(v, t)| ≤ L3‖u− v‖.

The fourth compartment is given by:

f4(u, t) = γiu3 − µu4.

Then,

|f4(u, t)− f4(v, t)| = |(γiu3 − µu4)− (γiv3 − µv4)| .

= |γi(u3 − v3)− µ(u4 − v4)|.

≤ γi|u3 − v3|+ µ|u4 − v4|.



Asia Pac. J. Math. 2025 12:97 13 of 38

Defining the Lipschitz constant, a4 = max{γi, µ}. Now,

|f4(u, t)− f4(v, t)| ≤ a4|u3 − v3|+ a4|u4 − v4|.

≤ a4(|u3 − v3|+ |u4 − v4|).

≤ a4

(
4∑
i=1

|ui − vi|

)
. (by Cauchy-Schwarz Inequality)

≤ a4
√

4‖u− v‖. (by Cauchy-Schwarz Inequality)

≤ 2a4‖u− v‖.

Let L4 = 2a4. Then,
|f4(u, t)− f4(v, t)| ≤ L4‖u− v‖.

Define L∗ = max{L1, L2, L3, L4}, and set L = 4L∗. Then,

‖f(u, t)− f(v, t)‖ ≤ L1‖u− v‖+ L2‖u− v‖+ L3‖u− v‖+ L4‖u− v‖.

≤ L∗‖u− v‖+ L∗‖u− v‖+ L∗‖u− v‖+ L∗‖u− v‖.

= 4L∗(‖u− v‖).

= L‖u− v‖.

Since N(t) is continuous and satisfies the Lipschitz condition, the existence and uniqueness theorem
(Picard-Lindelöf theorem) guarantees that the system of differential equations has a unique solution
for any given initial condition. This establishes the uniqueness of solutions to the given system of
ordinary differential equations.

Therefore, the solution of the system exists, is non-negative, unique, and bounded in a feasible region
Ω, which concludes the proof. �

5. The Equilibrium Points and Basic Reproduction Number

Understanding the equilibrium points in epidemiological models is essential for predicting disease
dynamics and implementing effective control measures. The equilibrium points—specifically, the
disease-free and endemic equilibrium points—help determine the conditions under which a disease
may either die out or persist in a population. By computing these equilibrium states, researchers and
public health officials can assess the stability of disease outbreaks, estimate the impact of interventions,
and design strategies for disease eradication or containment. The disease-free equilibrium represents
a scenario where the infection is eliminated, while the endemic equilibrium describes a steady-state
where the disease remains present in the population at a constant level. Analyzing these points provides
valuable insights into the transmission and control of infectious diseases like influenza. For example,
in the SIR model with vital dynamics, the disease-free equilibrium occurs when no infection remains,
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determined by the basic reproduction number R0. If R0 ≤ 1, the disease dies out; if R0 > 1, it persists
at an endemic equilibrium [30].

In this section, we will demonstrate the existence of the equilibrium points and compute the basic
reproduction number for the influenza model (3.1). Equilibrium points are values of the state variables
where their rates of change are 0 over time t. Thus, we set:

dS

dt
=
dEi
dt

=
dIi
dt

=
dRi
dt

= 0.

Theorem 5.1 The system (3.3) has two equilibrium points, the disease-free equilibrium point

ε0i =

(
ω

µ
, 0, 0, 0

)
and the endemic equilibrium point

ε1i = (S∗, E∗i , I
∗
i , R

∗
i ),

where

S∗ =
(γi + µ)(σi + µ)

βi(γi + µ+ σi)
,

E∗i =
ω − µ

(
(γi+µ)(σi+µ)
βi(γi+µ+σi)

)
σi + µ

,

I∗i =
σiωβi(γi + µ+ σi)− σiµ(γi + µ)(σi + µ)

βi(σi + µ)(γi + µ+ σi)(γi + µ)
,

R∗i =
γiσiωβi(γi + µ+ σi)− γiσiµ(γi + µ)(σi + µ)

µβi(σi + µ)(γi + µ+ σi)(γi + µ)
.

Proof: To solve the equilibrium points, we need to set the equations in system (3.1) to 0, that is:

ω − βi(Ei + Ii)S − µS = 0, (5.1)

βi(Ei + Ii)S − (σi + µ)Ei = 0, (5.2)

σiEi − (γi + µ)Ii = 0, (5.3)

γiIi − µRi = 0. (5.4)

From equation (5.3), we have:

Ii

(
σiEi
Ii
− (γi + µ)

)
= 0.

This yields two cases: Ii = 0 or σiEiIi
− (γi + µ) = 0.

Case 1: If Ii = 0, then from equation (5.3), Ei = 0. Since Ei = 0 and Ii = 0, from equation (5.4), Ri = 0.
From equation (5.1),

S =
ω

µ
.
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This means that the environment is disease-free from influenza. Hence, the disease-free equilibrium
point of system (3.1) is

ε0i = (S,Ei, Ii, Ri) =

(
ω

µ
, 0, 0, 0

)
.

Case 2: If Ii 6= 0, then Ii = σiEi
γi+µ

. Adding equations (5.1) and (5.2), and equations (5.2) and (5.3), we
derive:

ω − µS − (σi + µ)Ei = 0, (5.5)

βi(Ei + Ii)S − µEi − (γi + µ)Ii = 0. (5.6)

From equation (5.5), we get:
Ei =

ω − µS
σi + µ

. (5.7)

So,

Ii =
σiEi
γi + µ

=
σi

(
ω−µS
σi+µ

)
γi + µ

=
σi(ω − µS)

(γi + µ)(σi + µ)
.

By substituting the values of Ei and Ii into equation (5.6), we obtain

βi

(
(ω − µS)(γi + µ) + σi(ω − µS)

(γi + µ)(σi + µ)

)
S − µ(ω − µS)

(σi + µ)
− σi(ω − µS)

(σi + µ)
= 0.

βiS(ω − µS)

(
(γi + µ) + σi

(γi + µ)(σi + µ)

)
− (µ(ω − µS) + σi(ω − µS))

(σi + µ)
= 0.

βiS(ω − µS)

(
(γi + µ) + σi

(γi + µ)(σi + µ)

)
= (ω − µS)

(
µ+ σi
σi + µ

)
.

βiS

(
(γi + µ) + σi

(γi + µ)(σi + µ)

)
= 1.

S =
(γi + µ)(σi + µ)

βi(γi + µ+ σi)
.

By equation (5.7), we get

Ei =
ω − µ

(
(γi+µ)(σi+µ)
βi(γi+µ+σi)

)
σi + µ

=
ωβi(γi + µ+ σi)− µ(γi + µ)(σi + µ)

βi(σi + µ)(γi + µ+ σi)

Then,
Ii =

σiωβi(γi + µ+ σi)− σiµ(γi + µ)(σi + µ)

βi(σi + µ)(γi + µ+ σi)(γi + µ)

By equation (5.4),
Ri =

γiσiωβi(γi + µ+ σi)− γiσiµ(γi + µ)(σi + µ)

µβi(σi + µ)(γi + µ+ σi)(γi + µ)
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Thus, the endemic equilibrium point (3.1) is

ε1i = (S,Ei, Ii, Ri),

where
S =

(γi + µ)(σi + µ)

βi(γi + µ+ σi)
,

the number of individuals still at risk of infection, determined by transmission, recovery, and natural
death rates.

Ei =
ω − µ

(
(γi+µ)(σi+µ)
βi(γi+µ+σi)

)
σi + µ

,

the number of individuals infected but not yet infectious, influenced by recruitment, natural death,
and progression rates.

Ii =
σiωβi(γi + µ+ σi)− σiµ(γi + µ)(σi + µ)

βi(σi + µ)(γi + µ+ σi)(γi + µ)
,

the actively infected individuals spreading the disease, showing the extent of disease transmission.

Ri =
γiσiωβi(γi + µ+ σi)− γiσiµ(γi + µ)(σi + µ)

µβi(σi + µ)(γi + µ+ σi)(γi + µ)
,

individuals who have recovered and gained immunity, indicating the level of protection in the popula-
tion.
This completes the proof for the existence of the equilibrium points for the influenza model (3.1). �

The basic reproduction numberR0 is a fundamental metric in infectious disease modeling, providing
a clear threshold for determining whether an outbreak will spread or eventually die out. Unlike other
analytical methods, such as stochastic modeling or network-based approaches, R0 directly quantifies
disease transmissibility and serves as the foundation for public health interventions, including vaccina-
tion, quarantine, and social distancing. Its simplicity and predictive capability make it a more essential
tool in epidemic control, allowing researchers and policymakers to assess the potential impact of an
infectious disease and design effective mitigation strategies. The following theorem establishes the R0

for the influenza model (3.1).
Theorem 5.2. The basic reproduction number of the influenza model (3.1) is captured by

R0i =
βiω

(σi + µ)µ
+

βiωσi
(σi + µ)(γi + µ)µ

.

Proof: The basic reproduction number is a mathematical notion used to quantify and describe the
transmission dynamics of infectious diseases. It is calculated using theNextGenerationMatrix approach
[16]. To perform the next generation matrix, we need to determine the infected compartments.

Now suppose xc be the vector of the infected states [31]. In system (3.1), the vector xc is given by

xc =

Ei
Ii

 .
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By taking the first derivative of xc, we have

x′c =

E′i
I ′i

 =

βi(Ei + Ii)S − (σi + µ)Ei

σiEi − (γi + µ)Ii

 .

Thus, x′c can be written as

x′c =

βi(Ei + Ii)S − (σi + µ)Ei

σiEi − (γi + µ)Ii

 = F − V,

where F refers to the transmission matrix and V refers to the transitional matrix.
Accordingly,

F =

βi(Ei + Ii)S

0

 ,

and

V =

 (σi + µ)Ei

−σiEi + (γi + µ)Ii

 .

Solving the Jacobian of F and V evaluated at the disease-free equilibrium point E0i =
(
ω
µ , 0, 0, 0

)
, we

get

F =
∂F

∂x

∣∣∣∣
E0i

=

βiS βiS

0 0


E0i

=

βiω
µ

βiω
µ

0 0

 .

V =
∂V

∂x

∣∣∣∣
E0i

=

σi + µ 0

−σi γi + µ

 .

where

V −1 =

 1
σi+µ

0

σi
(σi+µ)(γi+µ)

1
γi+µ

 .

Now, the next-generation matrix is given by

FV −1 =

βiω
µ

βiω
µ

0 0

 1
σi+µ

0

σi
(σi+µ)(γi+µ)

1
γi+µ

 .

Computing the product, we obtain

FV −1 =

 βiω
(σi+µ)µ

+ βiωσi
(σi+µ)(γi+µ)µ

βiω
(γi+µ)µ

0 0

 .

To solve for the characteristic polynomial of FV −1, we compute

det(FV −1 − λI2) =

∣∣∣∣∣∣
βiω

(σi+µ)µ
+ βiωσi

(σi+µ)(γi+µ)µ
− λ βiω

(γi+µ)µ

0 −λ

∣∣∣∣∣∣ .
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Expanding the determinant, we get

−λ
(

βiω

(σi + µ)µ
+

βiωσi
(σi + µ)(γi + µ)µ

− λ
)

= 0.

By solving det(FV −1 − λI2) = 0, we obtain the eigenvalues

λ1 = 0, λ2 =
βiω

(σi + µ)µ
+

βiωσi
(σi + µ)(γi + µ)µ

.

Since the basic reproduction number is the dominant eigenvalue of the matrix FV −1, we conclude

R0i =
βiω

(σi + µ)µ
+

βiωσi
(σi + µ)(γi + µ)µ

.

Thus, we have established the following result. The first term of this quantity represents the number of
new infections generated by individuals in the exposed class Ei. It is the product of the average rate of
new infections generated by these individuals, βiωµ , and the average duration an individual remains in
the exposed class, 1

σi+µ
. The second term accounts for new infections generated by individuals in the

infected class Ii. This term is derived from the product of the average rate of new infections generated
in the Ii class, βiωµ , the proportion of exposed individuals that transition to the infected class, σi

σi+µ
, and

the average duration in the Ii class, 1
γi+µ

. �

Now, we show the existence and uniqueness of the endemic equilibrium point for the influenza
model (3.1) in terms of the reproduction number.
Theorem 5.3. The influenza model (3.1) has a unique endemic equilibrium point if and only if R0i > 1.

Proof: Suppose that the point ε1i = (S∗, E∗i , I
∗
i , R

∗
i ) is the endemic equilibrium point of the influenza

model (3.1). Hence, it also satisfies the equations (5.1) to (5.4). Let λ∗i = βi(E
∗
i + I∗i ). Then equations

(5.1) to (5.4) become

ω − βi(Ei + Ii)S − µS = 0 (5.1)

βi(Ei + Ii)S − (σi + µ)Ei = 0 (5.2)

σiEi − (γi + µ)Ii = 0 (5.3)

γiIi − µRi = 0 (5.4)

Now, from (5.1):

ω − βi(Ei + Ii)S − µS = 0

ω − λ∗iS∗ − µS∗ = 0

S∗ =
ω

λ∗i + µ
(5.8)

Using (5.2):

βi(Ei + Ii)S − (σi + µ)Ei = 0
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λ∗iS
∗ − (σi + µ)E∗i = 0

ωλ∗i
λ∗i + µ

− (σi + µ)E∗i = 0

E∗i =
ωλ∗i

(σi + µ)(λ∗i + µ)
(5.9)

From (5.3):

σiEi − (γi + µ)Ii = 0

ωσiλ
∗
i

(σi + µ)(λ∗i + µ)
− (γi + µ)I∗i = 0

I∗i =
ωσiλ

∗
i

(σi + µ)(γi + µ)(λ∗i + µ)
(5.10)

Finally, from (5.4):

γiIi − µRi = 0

ωσiγiλ
∗
i

(σi + µ)(γi + µ)(λ∗i + µ)
− µR∗i = 0

R∗i =
ωσiγiλ

∗
i

µ(σi + µ)(γi + µ)(λ∗i + µ)
(5.11)

By substituting equations (5.9) and (5.10) into the expression for λ∗i , we get

λ∗i = βi(E
∗
i + I∗i )

λ∗i = βi

(
ωλ∗i

(σi + µ)(λ∗i + µ)
+

ωσiλ
∗
i

(σi + µ)(γi + µ)(λ∗i + µ)

)
Simplifying further using simple algebra, we obtain

λ∗i = βi ·
ωλ∗i

(
1 + σi

γi+µ

)
(σi + µ)(λ∗i + µ)

λ∗i =
βiωλ

∗
i ((γi + µ) + σi)

(σi + µ)(γi + µ)(λ∗i + µ)

Rearranging, we get

λ∗i (σi + µ)(γi + µ)(λ∗i + µ) = βiωλ
∗
i ((γi + µ) + σi)

Assuming λ∗i 6= 0, we obtain

(σi + µ)(γi + µ)(λ∗i + µ) = βiω ((γi + µ) + σi)

Solving for λ∗i , we get

λ∗i =
βiω ((γi + µ) + σi)− (σi + µ)(γi + µ)µ

(σi + µ)(γi + µ)

= µ(R0i − 1).
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This implies that the endemic equilibrium point is positive if and only if R0i > 1. �

6. Local Stability Analysis

In this section, we will determine the local stability of the equilibrium points for the influenza model
(3.1) in terms of the reproduction number.
Theorem 6.1. The influenza model (3.1) is locally asymptotically stable at the disease-free equilibrium point ε0i
if R0i < 1, and unstable if R0i > 1.

Proof: First, we compute the Jacobian matrix J of the system (3.3), given by:

J =


∂f1
∂S

∂f1
∂Ei

∂f1
∂Ii

∂f1
∂Ri

∂f2
∂S

∂f2
∂Ei

∂f2
∂Ii

∂f2
∂Ri

∂f3
∂S

∂f3
∂Ei

∂f3
∂Ii

∂f3
∂Ri

∂f4
∂S

∂f4
∂Ei

∂f4
∂Ii

∂f4
∂Ri


which simplifies to:

J =


−βi(Ei + Ii)− µ −βiS −βiS 0

βi(Ei + Ii) βiS − (σi + µ) βiS 0

0 σi −(γi + µ) 0

0 0 γi −µ


Now, evaluating at the disease-free equilibrium point ε0i =

(
ω
µ , 0, 0, 0

)
, we get the Jacobian matrix:

Jε0i =


−µ −ωβi

µ −ωβi
µ 0

0 ωβi
µ − (σi + µ) ωβi

µ 0

0 σi −(γi + µ) 0

0 0 γi −µ


Defining parameters:

A1 = µ, A2 =
ωβi
µ
, A3 = σi + µ, A4 = σi, A5 = γi + µ, A6 = γi,

we rewrite Jε0i as:

Jε0i =


−A1 −A2 −A2 0

0 A2 −A3 A2 0

0 A4 −A5 0

0 0 A6 −A1


Solving the characteristic polynomial of Jε0i , given by det(Jε0i − λI4), using cofactor expansion, we
obtain:
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det(Jε0i − λI4) =

∣∣∣∣∣∣∣∣∣∣∣∣

−A1 − λ −A2 −A2 0

0 A2 −A3 − λ A2 0

0 A4 −A5 − λ 0

0 0 A6 −A1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= (−A1 − λ)

∣∣∣∣∣∣∣∣∣
A2 −A3 − λ A2 0

A4 −A5 − λ 0

0 A6 −A1 − λ

∣∣∣∣∣∣∣∣∣
= (−A1 − λ)(−A1 − λ)

∣∣∣∣∣∣A2 −A3 − λ A2

A4 −A5 − λ

∣∣∣∣∣∣
= (−A1 − λ)(−A1 − λ)

(
λ2 + (A5 +A3 −A2)λ+A3A5 −A2A5 −A2A4

)
.

Now, substituting the parameter values:

= (−µ−λ)(−µ−λ)

(
λ2 +

[
(γi + µ) + (σi + µ)− ωβi

µ

]
λ+ (σi + µ)(γi + µ)− ωβi(γi + µ)

µ
− ωβiσi

µ

)
.

By setting det(Jε0i − λI4) = 0 and solving for λ, we extract the following eigenvalues:

λ1 = −µ, (with multiplicity of 2)

and the solution of the polynomial equation:

P (λ) = λ2 + a1λ+ a0, (6.1)

where:
a0 = (σi + µ)(γi + µ)− ωβi(γi + µ)

µ
− ωβiσi

µ
,

a1 = (γi + µ) + (σi + µ)− ωβi
µ
.

Note that:

a0 = (σi + µ)(γi + µ)− ωβi(γi + µ)

µ
− ωβiσi

µ

= (σi + µ)(γi + µ)

(
1− ωβi

(σi + µ)µ
− ωβiσi

(σi + µ)(γi + µ)µ

)
= (σi + µ)(γi + µ)(1−R0i).

Thus, a0 > 0 if R0i < 1. Moreover, it follows that
βiω

(σi + µ)µ
< 1 if R0i < 1.

Subsequently,

a1 = (γi + µ) + (σi + µ)− ωβi
µ
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= (γi + µ) + (σi + µ)

(
1− ωβi

(σi + µ)µ

)
.

As a result, a1 > 0 if R0i < 1. Therefore, by the Routh-Hurwitz criteria [17], the roots of the
polynomial (3.15) have negative real parts when R0i < 1. Since all eigenvalues are negative, the
disease-free equilibrium point of the influenza model (3.1) is locally asymptotically stable if R0i < 1. �
Theorem 6.2 The influenza model (3.1) is locally asymptotically stable at the endemic equilibrium point ε1i if

R0i > 1.

Proof: Note that the Jacobian matrix corresponding to the system (3.1) is given by:

J =


−βi(Ei + Ii)− µ −βiS −βiS 0

βi(Ei + Ii) βiS − (σi + µ) βiS 0

0 σi −(γi + µ) 0

0 0 γi −µ


Evaluating at the Endemic Equilibrium Point ε1i , the Jacobian matrix at the endemic equilibrium point
ε1i is given by:

J =


−βi(E∗i + I∗i )− µ −βiS∗ −βiS∗ 0

βi(E
∗
i + I∗i ) βiS

∗ − (σi + µ) βiS
∗ 0

0 σi −(γi + µ) 0

0 0 γi −µ


Substituting equilibrium values, we obtain:

J =


−(λ∗i + µ) −ωβi

λ∗i+µ
−ωβi
λ∗i+µ

0

λ∗i
ωβi
λ∗i+µ

− (σi + µ) ωβi
λ∗i+µ

0

0 σi −(γi + µ) 0

0 0 γi −µ



J =


−µR0i

−ωβi
µR0i

−ωβi
µR0i

0

µ(R0i − 1) ωβi
µR0i

− (σi + µ) ωβi
µR0i

0

0 σi −(γi + µ) 0

0 0 γi −µ


Defining constants:

C1 =
ωβi
µ
, C2 = σi + µ, C3 = σi, C4 = γi + µ, C5 = γi
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The Jacobian can be rewritten as:

J =


−µR0i − C1

R0i
− C1
R0i

0

µ(R0i − 1) C1
R0i
− C2

C1
R0i

0

0 C3 −C4 0

0 0 C5 −µ


Now, the characteristic polynomial of the Jacobian matrix J(ε1i) is given by:

det(J(ε1i)− λI4) =


−µR0i − λ − C1

R0i
− C1
R0i

0

µ(R0i − 1) C1
R0i
− C2 − λ C1

R0i
0

0 C3 −C4 − λ 0

0 0 C5 −µ− λ


Factoring out (−µ− λ), we obtain:

(−µ− λ)

∣∣∣∣∣∣∣∣∣
−µR0i − λ − C1

R0i
− C1
R0i

µ(R0i − 1) C1
R0i
− C2 − λ C1

R0i

0 C3 −C4 − λ

∣∣∣∣∣∣∣∣∣
Solving for the determinant, the characteristic polynomial simplifies to:

P (λ) = (−µ− λ)(λ3 + b1λ
2 + b2λ+ b3)

where:

b1 = C2 + C4 + µR0i −
C1

R0i

b2 = C2C4 + C2µR0i + C4µR0i −
C1(C3 + C4 + µ)

R0i

b3 = C2C4µR0i −
C1µ(C3 + C4)

R0i

Subsequently, the eigenvalues of the characteristic polynomial are λ1 = −µ and the solutions of the
equation:

λ3 + b1λ
2 + b2λ+ b3 = 0. (6.2)

By the Routh-Hurwitz criteria [17], the eigenvalues of the cubic polynomial have negative real parts if
the following conditions are satisfied:

(1) b1, b2, and b3 are all positive.
(2) b1b2 > b3.
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For stability, we need to check that the conditions b1 > 0, b2 > 0, and b3 > 0 are satisfied.
From the expression for b1:

b1 = C2 + C4 + µR0i −
C1

R0i

.

For b1 > 0, we require:

C2 + C4 + µR0i −
C1

R0i

> 0.

This inequality holds if the terms involving C1 and R0i are balanced with the other coefficients, partic-
ularly when R0i is sufficiently large (depending on the values of C1, C2, C4, and µ).
From the expression for b2:

b2 = C2C4 + C2µR0i + C4µR0i −
C1(C3 + C4 + µ)

R0i

.

For b2 > 0, we need:

C2C4 + C2µR0i + C4µR0i −
C1(C3 + C4 + µ)

R0i

> 0.

This inequality suggests that for stability, the terms involving R0i and C1 should be such that the sum
of the terms

C2C4 + C2µR0i + C4µR0i

outweighs the fraction
C1(C3 + C4 + µ)

R0i

.

From the expression for b3:

b3 = C2C4µR0i −
C1µ(C3 + C4)

R0i

.

For b3 > 0, we require:

C2C4µR0i −
C1µ(C3 + C4)

R0i

> 0.

This holds if the term involving C2C4µR0i is large enough to compensate for the term involving C1 and
R0i . Specifically, it requires that:

C2C4µR0i >
C1µ(C3 + C4)

R0i

.

Multiplying both sides by R0i , we obtain:

C2C4µR
2
0i > C1µ(C3 + C4).

In addition to the sign conditions, we must also satisfy the determinant condition for stability, which is:

b1b2 > b3.
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We begin by multiplying b1 and b2:

b1 · b2 =

(
C2 + C4 + µR0i −

C1

R0i

)
×
(
C2C4 + C2µR0i + C4µR0i −

C1(C3 + C4 + µ)

R0i

)
.

Expanding the terms:

b1 · b2 = (C2 + C4 + µR0i −
C1

R0i

)C2C4

+ (C2 + C4 + µR0i −
C1

R0i

)C2µR0i

+ (C2 + C4 + µR0i −
C1

R0i

)C4µR0i

− (C2 + C4 + µR0i −
C1

R0i

)
C1(C3 + C4 + µ)

R0i

.

Simplifying further:

b1 · b2 = C2
2C4 + C2C

2
4 + C2C4µR0i −

C1C2C4

R0i

+ C2
2µR0i + C2µC4R0i + C2µ

2R2
0i −

C2µC1

R0i

+ C4C2µR0i + C2
4µR0i + C4µ

2R2
0i −

C4µC1

R0i

− C1(C3 + C4 + µ)

R0i

C2 −
C1(C3 + C4 + µ)

R0i

C4

− C1(C3 + C4 + µ)

R0i

µR0i +
C2
1 (C3 + C4 + µ)

R2
0i

.

Recall the expression for b3:

b3 = C2C4µR0i −
C1µ(C3 + C4)

R0i

.

Now, using the condition b1b2 > b3, we obtain:

C2
2C4 + C2C

2
4 + C2C4µR0i −

C1C2C4

R0i

+ C2
2µR0i + C2µC4R0i + C2µ

2R2
0i −

C2µC1

R0i

+ C4C2µR0i + C2
4µR0i + C4µ

2R2
0i −

C4µC1

R0i

− C1(C3 + C4 + µ)

R0i

C2

− C1(C3 + C4 + µ)

R0i

C4 −
C1(C3 + C4 + µ)

R0i

µR0i +
C2
1 (C3 + C4 + µ)

R2
0i

> C2C4µR0i −
C1µ(C3 + C4)

R0i

.

Rearranging, we get:

C2
2C4 + C2C

2
4 + C2C4µR0i −

C1C2C4

R0i

+ C2
2µR0i + C2µC4R0i + C2µ

2R2
0i −

C2µC1

R0i

+ C4C2µR0i + C2
4µR0i + C4µ

2R2
0i −

C4µC1

R0i

− C1(C3 + C4 + µ)

R0i

C2
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− C1(C3 + C4 + µ)

R0i

C4 −
C1(C3 + C4 + µ)

R0i

µR0i +
C2
1 (C3 + C4 + µ)

R2
0i

−
[
C2C4µR0i −

C1µ(C3 + C4)

R0i

]
> 0.

Since all parameters are positive, it follows that:

b1b2 − b3 > 0.

Thus, by the Routh-Hurwitz criteria [17], the solutions of equation (6.2) have negative real parts
when R0i > 1. Consequently, all eigenvalues of the matrix Jε1i are negative. Therefore, the endemic
equilibrium point of the influenza model (3.1) is locally asymptotically stable if R0i > 1. �

7. Global Stability Analysis

In this section, we will establish the global stability of the disease-free equilibrium point for the
influenza model (3.1) in terms of the basic reproduction number.
Theorem 7.1. The influenza model (3.1) is globally asymptotically stable at the disease-free equilibrium point

ε0i if R0i < 1.

Proof: Consider the candidate Lyapunov function [18]:

Li = (γi + µ)Ei +
ωβi
µ
Ii,

defined on the region

Ω = {(S,Ei, Ii, Ri) ∈ R4
+ | S + Ei + Ii +Ri ≤

ω

µ
}.

By Theorem 4.1, the solution of Li exists and is unique, non-negative, and bounded in the feasible
region Ω. Note that from the influenza model (3.1), Ei and Ii have continuous derivatives at any time t.
Thus, Li is continuous.
Next, we show that Li is positive definite in the region Ω, meaning that Li satisfies the following
conditions:

(1) Li(ε0i) = 0, and
(2) Li(x) > 0 for any x 6= ε0i , where ε0i is the disease-free equilibrium point of the model.

It is evident that the first condition holds. Since all parameters in the model are positive, Li(x) > 0 if
x 6= ε0i , meaning Ei > 0 and Ii > 0. Hence, the second condition is satisfied, proving that Li is positive
definite.
Next, we show that the time derivative of Li, denoted by dLi

dt , computed along the solution of the model,
is negative definite. That is,

dLi
dt

= (γi + µ)
dEi
dt

+
ωβi
µ

dIi
dt
.
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Substituting the equations for dEidt and dIi
dt from the influenza model (3.1), we obtain:

dLi
dt

= (γi + µ)
[
βi(Ei + Ii)S − (σi + µ)Ei

]
+
ωβi
µ

[
σiEi − (γi + µ)Ii

]
.

We simplify the time derivative of Li as follows:
dLi
dt

=

[
βi(γi + µ)S +

ωβiσi
µ
− (σi + µ)(γi + µ)

]
Ei +

(
S − ω

µ

)
βi(γi + µ)Ii.

Now, we establish that:
dLi
dt
≤ ωβi(γi + µ)

µ
Ei +

ωβiσi
µ

Ei − (σi + µ)(γi + µ)Ei

= (σi + µ)(γi + µ)(R0i − 1)Ei.

Since (σi + µ)(γi + µ) is always positive, we conclude that:
dLi
dt
≤ 0, if R0i ≤ 1.

Thus, dLidt is negative definite when R0i ≤ 1. Furthermore, for R0i ≤ 1, we have dLi
dt = 0 if and only if

Ei = Ii = 0 or S = ω
µ .

Now, we check whether the solution converges to the disease-free equilibrium point.
Suppose Ei = 0 and Ii = 0. From the first equation in (3.1), we obtain:

dS

dt
= ω − µS.

Rearranging gives:
dS

dt
+ µS = ω.

Multiplying both sides by eµt: (by Theorem 2.5)
d

dt

(
eµtS

)
= ωeµt.

Integrating both sides over the interval [0, t], we obtain:

S(t) =
ω

µ
+

(
S(0)− ω

µ

)
e−µt.

Consequently, S(t)→ ω
µ as t→∞.

Similarly, from the fourth equation in (5.4), we have:
dRi
dt

= −µRi.

Rearranging gives:
dRi
dt

+ µRi = 0.
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Multiplying both sides by eµt: (by Theorem 2.5)
d

dt

(
eµtRi

)
= 0.

Integrating both sides over the interval [0, t], we obtain:

Ri(t) = Ri(0)e−µt.

Thus, Ri(t)→ 0 as t→∞.

Now, suppose S = ω
µ . From the second equation in (3.1), we obtain:

dEi
dt

= βi(Ei + Ii)
ω

µ
− (σi + µ)Ei.

Rearranging gives:
dEi
dt

+

(
(σi + µ)− ωβi

µ

)
Ei =

ωβi
µ
Ii.

Multiplying both sides by e
(
(σi+µ)−

ωβi
µ

)
t: (by Theorem 2.5)

d

dt

(
e

(
(σi+µ)−

ωβi
µ

)
t
Ei

)
=
ωβi
µ
e

(
(σi+µ)−

ωβi
µ

)
t
Ii.

Integrating both sides over the interval [0, t]:

Ei(t) =

[
Ei(0) +

ωβi
µ

∫ t

0
e

(
(σi+µ)−

ωβi
µ

)
t
Iidt

]
e
−
(
(σi+µ)−

ωβi
µ

)
t
.

Since (σi + µ)− ωβi
µ > 0 if R0i ≤ 1, it follows that Ei → 0 as t→∞.

From the third equation in (3.1):
dIi
dt

= σiEi − (γi + µ)Ii.

Rearranging gives:
dIi
dt

+ (γi + µ)Ii = σiEi.

Multiplying both sides by e(γi+µ)t: (by Theorem 2.5)
d

dt

(
e(γi+µ)tIi

)
= σie

(γi+µ)tEi.

Integrating both sides of the equation over the interval [0, t]:

Ii(t) =

[
Ii(0) + σi

∫ t

0
e(γi+µ)tEi dt

]
e−(γi+µ)t.

Thus, Ii(t)→ 0 as t→∞.
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From the fourth equation in (3.1):
dRi
dt

= γiIi − µRi.

Rearranging gives:
dRi
dt

+ µRi = γiIi.

Multiplying both sides by eµt: (by Theorem 2.5)
d

dt

(
eµtRi

)
= γie

µtIi.

Integrating both sides over the interval [0, t]:

Ri(t) =

[
Ri(0) + γi

∫ t

0
eµtIi dt

]
e−µt.

Hence, Ri(t)→ 0 as t→∞.

As a result, as t→∞, the solution converges to

ε0i =

(
ω

µ
, 0, 0, 0

)
if and only if

dLi
dt

= 0.

Thus, Li is a Lyapunov function on Ω, and since ε0i is the only element of the set

S = {(S,Ei, Ii, Ri) ∈ Ω :
dLi
dt

= 0},

the largest compact invariant set in S is

ε0i =

(
ω

µ
, 0, 0, 0

)
.

Therefore, by LaSalle’s Invariance Principle [20], every solution of themodel (3.1)with initial conditions
in Ω approaches ε0i =

(
ω
µ , 0, 0, 0

)
as t→∞whenever R0i < 1.

Hence, at the disease-free equilibrium point ε0i , the influenza model is globally asymptotically stable
if R0i < 1. �

8. Sensitivity Analysis

Sensitivity analysis is a technique used to assess the impact of changes in input parameters on the
output of a model or system. In the context of the basic reproduction number R0i , which measures the
average number of secondary infections produced by a typical infected individual, sensitivity analysis
helps us understand how variations in different factors affect the spread of infectious diseases.
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Using the normalized forward sensitivity index [21] of the basic reproduction number that depends
differentiably on a parameter φ, we define:

Sφ =
∂R0

∂φ
× φ

R0
.

From the basic reproduction number of the influenza model R0i , we evaluate the sensitivity index for
the parameter ω:

Sω =
∂R0i

∂ω
× ω

R0i

Substituting the expression for R0i :

Sω =

(
βi

(σi + µ)µ
+

βiσi
(σi + µ)(γi + µ)µ

)
× ω

R0i

=

(
βi

(σi + µ)µ
+

βiσi
(σi + µ)(γi + µ)µ

)
× ω(

βiω
(σi+µ)µ

+ βiωσi
(σi+µ)(γi+µ)µ

)
=

(
βi(γi + µ) + βiσi
(σi + µ)(γi + µ)µ

)
× ω

ω
(
βi(γi+µ)+βiσi
(σi+µ)(γi+µ)µ

)
=

(
βi(γi + µ) + βiσi
(σi + µ)(γi + µ)µ

)
×
(

(σi + µ)(γi + µ)µ

βi(γi + µ) + βiσi

)
= 1.

The sensitivity index Sω = 1 indicates that the parameter ω (the rate of recruitment of susceptible
individuals) has a unitary sensitivity with respect toR0i . This means that any increase in ω will directly
lead to an increase in R0i , the basic reproduction number for the influenza model. This result aligns
with standard sensitivity analysis principles, such as those discussed in [32] and [33], which explain
how the sensitivity index measures the proportionality of changes between model parameters and
outputs. Since Sω > 0, we conclude that ω directly influences the transmission dynamics of influenza.
Specifically, increasing the recruitment rate ω will lead to a higher value of R0i , which in turn suggests
an increase in the potential for influenza spread in the population.
For the parameter βi, the sensitivity index is given by:

Sβi =
∂R0i

∂βi
× βi
R0i

Substituting the expression for R0i :

Sβi =

(
ω

(σi + µ)µ
+

ωσi
(σi + µ)(γi + µ)µ

)
× βi
R0i

=

(
ω

(σi + µ)µ
+

ωσi
(σi + µ)(γi + µ)µ

)
× βi(

βiω
(σi+µ)µ

+ βiωσi
(σi+µ)(γi+µ)µ

)
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=

(
ω(γi + µ) + ωσi

(σi + µ)(γi + µ)µ

)
× βi(

βi[ω(γi+µ)+ωσi]
(σi+µ)(γi+µ)µ

)
=

(
ω(γi + µ) + ωσi

(σi + µ)(γi + µ)µ

)
×
(

(σi + µ)(γi + µ)µ

ω(γi + µ) + ωσi

)
= 1.

Since Sβi = 1, the parameter βi directly influences the transmission dynamics of influenza. Specifically,
any increase in βi (the transmission rate) will lead to an increase in R0i , indicating that the disease
will spread more rapidly in the population. Thus, controlling βi, through measures such as reducing
contact rates or improving infection control, can directly reduce the potential for transmission of the
disease.
For the parameter σi, the sensitivity index is given by:

Sσi =
∂R0i

∂σi
× σi
R0i

Substituting the derivative:

Sσi =

(
− ωβi

(σi + µ)2µ
+

ωβi(γi + µ)µ2

[(σi + µ)(γi + µ)µ]2

)
× σi
R0i

Substituting the expression for R0i :

Sσi =

(
−ωβiγi(γi + µ)

[(σi + µ)(γi + µ)µ]2

)
× σi(

βiω
(σi+µ)µ

+ βiωσi
(σi+µ)(γi+µ)µ

)
=

(
−ωβiγi(γi + µ)

[(σi + µ)(γi + µ)µ]2

)
× σi(

βiω((γi+µ)+σi)
(σi+µ)(γi+µ)µ

)
=

(
−ωβiγi(γi + µ)

[(σi + µ)(γi + µ)µ]2

)
×
(
σi(σi + µ)(γi + µ)µ

βiω((γi + µ) + σi)

)
=

γiσi(γi + µ)2

(σi + µ)µ((γi + µ) + σi)
.

The sign of Sσi provides insight into how the parameter σi influences the basic reproduction number
R0i . If Sσi > 0, this implies that increasing σi (the rate at which infected individuals recover or are
removed from the infectious pool) decreases the basic reproduction number R0i , thereby slowing the
spread of the disease. On the other hand, if Sσi < 0, it would imply that increasing σi leads to an
increase in R0i , causing a faster spread of the disease. However, this scenario is rare in this context, as
higher recovery rates typically help control outbreaks rather than accelerate them.
For the parameter γi, the sensitivity index is given by:

Sγi =
∂R0i

∂γi
× γi
R0i
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Substituting the derivative:

Sγi =

(
− ωβiσi(σi + µ)µ

[(σi + µ)(γi + µ)µ]2

)
× γi
R0i

Substituting the expression for R0i :

Sγi =

(
− ωβiσi(σi + µ)µ

[(σi + µ)(γi + µ)µ]2

)
× γi(

βiω
(σi+µ)µ

+ βiωσi
(σi+µ)(γi+µ)µ

)
=

(
− ωβiσi(σi + µ)µ

[(σi + µ)(γi + µ)µ]2

)
× γi(

βiω((γi+µ)+σi)
(σi+µ)(γi+µ)µ

)
=

(
− ωβiσi(σi + µ)µ

[(σi + µ)(γi + µ)µ]2

)
×
(
γi(σi + µ)(γi + µ)µ

βiω((γi + µ) + σi)

)
=

−γiσi
µ((γi + µ) + σi)

.

The sensitivity index Sγi provides insight into how the parameter γi affects the basic reproduction
numberR0i . Since Sγi < 0, this indicates that increasing γi (which represents faster recovery or removal
of infected individuals) decreases the basic reproduction number R0i . A negative value of Sγi suggests
that increasing the recovery rate reduces the number of secondary infections generated by each infected
individual, thereby slowing the transmission of the disease.
For the parameter µ, the sensitivity index is given by:

Sµ =
∂R0i

∂µ
× µ

R0i

Substituting the derivative:

Sµ =

(
−ωβi(σi + 2µ)

[(σi + µ)µ]2
− ωβiσi(µ(γi + σi + 2µ) + (σi + µ)(γi + µ))

[(σi + µ)(γi + µ)µ]2

)
× µ

R0i

Substituting the expression for R0i :

Sµ =

(
−ωβi(2σiγi + (2 + 2γi + σi)µ+ (3 + 2σi)µ

2)

[(σi + µ)(γi + µ)µ]2

)
× µ(

βiω
(σi+µ)µ

+ βiωσi
(σi+µ)(γi+µ)µ

)
=

(
−ωβi(2σiγi + (2 + 2γi + σi)µ+ (3 + 2σi)µ

2)

[(σi + µ)(γi + µ)µ]2

)
× µ(

βiω((γi+µ)+σi)
(σi+µ)(γi+µ)µ

)
=

(
−ωβi(2σiγi + (2 + 2γi + σi)µ+ (3 + 2σi)µ

2)

[(σi + µ)(γi + µ)µ]2

)
×
(
µ(σi + µ)(γi + µ)µ

βiω((γi + µ) + σi)

)
= −(γi + µ)(2σiγi + (2 + 2γi + σi)µ+ (3 + 2σi)µ

2)

((σi + µ)(γi + µ)µ)((γi + µ) + σi)
.

Since Sµ < 0, increasing the natural mortality rate µ reduces R0i , thereby slowing the spread of the
disease. This is expected because individuals with higher mortality will spend less time in the infectious
state, reducing opportunities for transmission.
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Conclusion: The recruitment rate ω and the effective transmission rate βi have a strong positive
influence on the propagation of the disease. Conversely, the parameters σi, γi, and µ play a significant
role in reducing the burden of influenza infection in the population. Increasing these parameters leads
to a decrease in the basic reproduction number, which in turn reduces the prevalence of the disease
within the population.

9. Numerical Simulations

This section presents the numerical simulations done in Maple software, which will illustrate and
support the established results in the previous sections. The parameter values used in the simulation
are found in Table 2.

Description Parameters Value Unit Source

Recruitment rate ω 3 day−1 Assumed
Transmission rate of influenza βi 0.0011 day−1 Assumed
Progression rate from Ei class to Ii class σi 0.5000 day−1 [34]
Recovery rate from influenza γi 0.1998 day−1 [35]
Natural mortality rate µ 0.0400 day−1 Assumed

Table 2. Parameter Values for the Influenza Model

Some of the parameter values in Table 2 were assumed for modeling purposes to maintain simplicity
while ensuring that the basic reproduction number R0 stays below 1, ensuring the stability of the
disease-free equilibrium. The following explains the rationale behind each assumption:

Recruitment Rate ω = 3day−1:
The recruitment rate ω = 3day−1 was assumed to maintain a moderate and realistic inflow of sus-
ceptible individuals into the population. This value was specifically chosen so that the computed
basic reproduction number Ri0 ≈ 0.4713 remains less than 1, which satisfies the condition for the local
asymptotic stability of the disease-free equilibrium. Since Ri0 is directly proportional to ω, increasing it
would result in a higher reproductive number, potentially making the disease endemic. Thus, setting
ω = 3 strikes a balance between biological realism and the mathematical goal of exploring a stable
disease-free scenario.

Transmission Rate βi = 0.0011day−1:
The transmission rate governs how efficiently the disease spreads between susceptible and infected
individuals. The value βi = 0.0011day−1 was assumed to reflect typical influenza transmission rates
in a controlled or seasonal setting, resulting in a basic reproduction number R0 that stays below 1. This
ensures that the disease will not spread indefinitely in the population under these conditions.
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Natural Mortality Rate µ = 0.0400day−1:
This value represents the background death rate in the population, which includes deaths unrelated to
influenza infection, such as those caused by aging, accidents, or other health conditions. The assumption
of µ = 0.0400day−1 (or 1

25 day−1) reflects the normal rate of mortality, ensuring the population size
remains realistic and doesn’t grow indefinitely. It helps simulate the continuous loss of individuals from
the population due to non-disease factors, enabling a more accurate representation of the influenza
dynamics without allowing for unrealistic population growth.
Simulation 1. Consider the parameter values in Table 2 with ω = 3. We obtain R0i = 0.4713302753

and the disease-free equilibrium point is ε0i = (S,Ei, Ii, Ri) =
(
ω
µ , 0, 0, 0

)
= (75, 0, 0, 0). To support

our result, we take the following initial conditions:

(a) (S,Ei, Ii, Ri) = (100, 50, 10, 1) (b) (S,Ei, Ii, Ri) = (200, 60, 20, 2)

(c) (S,Ei, Ii, Ri) = (300, 70, 30, 3) (d) (S,Ei, Ii, Ri) = (500, 90, 50, 4)

Figure 2. (Simulation 1) The Influenza model is locally asymptotically stable at ε0i
when R0i < 1.



Asia Pac. J. Math. 2025 12:97 35 of 38

Figure 2 shows that for different initial conditions, the lines of the solutions converge to ε0i = (75, 0, 0, 0).
This implies that the influenza model is locally asymptotically stable at the disease-free equilibrium
point when R0i < 1.
Simulation 2. Consider the same parameter values as in Simulation 1, except for the increased value of
βi = 0.0060. As a result, R0i becomes 2.5708924106, and the disease-free equilibrium point remains
unchanged at ε0i = (S,Ei, Ii, Ri) =

(
ω
µ , 0, 0, 0

)
= (75, 0, 0, 0).

Figure 3. (Simulation 2) The influenza model is locally asymptotically stable at ε1i
when R0i > 1.

By using the same initial conditions as in Simulation 1, we observe from Figure 2 that the lines of the
solutions do not converge to ε0i = (75, 0, 0, 0). This indicates that the influenza model is unstable at the
disease-free equilibrium point when R0i > 1. Moreover, since we have obtained R0i = 2.570892410

and the endemic equilibrium ε1i = (29, 3, 7, 35) now exists, we observe that the lines of the solutions
converge to ε1i = (29, 3, 7, 35). Therefore, the influenza model is locally asymptotically stable at the
endemic point whenever R0i > 1.
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