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AsstrRACT. Influenza, a contagious respiratory illness caused by influenza viruses, poses a significant global
public health and economic burden. This study develops a deterministic SEIR (Susceptible-Exposed-
Infectious-Recovered) model exclusively for influenza to analyze its transmission dynamics, progression,
and recovery. By dividing the population into four compartments—susceptible (.5), exposed (E;), infected
(I:), and recovered (R;)—and incorporating key epidemiological parameters such as transmission, pro-
gression, and recovery rates, the model provides a comprehensive mathematical framework represented
by a system of nonlinear differential equations. The findings emphasize the SEIR model’s critical role in
guiding public health interventions, optimizing resource allocation, and informing policy decisions. As a
vital tool for global health organizations like the World Health Organization and national health agencies,
this model underscores the power of data-driven strategies in managing influenza outbreaks, reducing
societal impacts, and saving lives.
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1. INTRODUCTION

Influenza, or the flu, is a highly contagious respiratory illness caused by influenza viruses,
posing major public health and economic burdens worldwide. It affects all age groups, leading to
severe illness, hospitalizations, and deaths [1]. The World Health Organization (WHO) highlights
the need for continuous monitoring and research due to its high infection rates and unpredictable
transmission [2]. Influenza follows seasonal patterns, with winter epidemics in temperate regions and
year-round outbreaks in tropical areas, making its epidemiology crucial for effective prevention and
control [3].

Globally, the virus’s ability to mutate enables seasonal and pandemic outbreaks, as seen in the

2009 HIN1 pandemic [4]. WHO estimates that annual epidemics cause 3-5 million severe cases and
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290,000-650,000 respiratory deaths worldwide [1]. This highlights the need for ongoing research on
epidemiological trends, prevention, and control strategies [5].

In the Philippines, influenza-like illnesses (ILIs) remain a concern due to the country’s tropical
climate. Seasonal outbreaks are unpredictable, and the Department of Health (DOH) reported 158,307
ILI cases from January to October 2023—a 46% increase from the previous year [6]. Regions such as I,
IV-B, XII, Caraga, and the Bangsamoro Autonomous Region saw significant surges, underscoring the
need for improved surveillance and localized disease modeling [6].

In the Caraga Region, acute respiratory infections were the leading reported illness in 2020, totaling
over 35,600 cases [7]. Fluctuating ILI trends in recent years highlight the importance of studying
influenza transmission in the region to develop targeted intervention strategies [8].

Mathematical models, especially the Susceptible-Exposed-Infectious-Recovered (SEIR) framework,
have been key in analyzing influenza spread. Studies have used SEIR models to assess vaccination
programs [9], zoonotic transmission [ 10], and population mobility’s impact on outbreaks [ 11]. However,
most rely on numerical simulations or focus on specific populations like age groups, animals, or urban
areas [ 12].

This study proposes a novel SEIR deterministic model for influenza transmission dynamics. Unlike
previous studies that rely on numerical approaches, this model adopts a deterministic framework to
improve the accuracy of outbreak predictions. By refining existing SEIR models, this research aims to
enhance public health strategies and policymaking for better disease control. Ultimately, the findings

will contribute to a broader understanding of influenza dynamics and mitigation efforts.

2. PreLiMINARY CONCEPTS

Definition 2.1 (Lipschitz Continuity) [13] A function f : R” — R" is Lipschitz continuous if there

exists a constant L > 0 such that:
[f(z) = fW)I < Lllz —y| forallz,y € R".

Theorem 2.1 (Cauchy-Lipschitz / Picard-Lindel6f Theorem: Existence and Uniqueness) [14] Con-

sider the initial value problem:

dy

E = f(ta y)v y(tO) = Yo,

where f : R x R™ — R" is continuous and satisfies a Lipschitz condition with respect to y; that is, there

exists a constant L > 0 such that:

1F(ty1) = f(&y2)ll < Lllys —wal| forallz € R, y1,y2 € R™.

Theorem 2.2 (Operations on Continuous Functions) [13] Let f, g : R" — R be continuous functions,

and let ¢ € R be a constant. Then the functions cf, f + g, and fg are also continuous.
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Definition 2.2 (The Euclidean Norm) [15] Let u = (u1,ug,...,u,) and v = (vi,v2,...,v,). The

Euclidean distance between u and v is defined as:

[

Inequality (A Special Case of the Cauchy-Schwarz Inequality) Let u = (u1,ug,...,u,) and v =

(v1,v2,...,v,). Then
n
S s — vl < Vi~ o,
i=1

Definition 2.3 (Next Generation Matrix) [ 16] Let F' be the transmission matrix representing the rate of
appearance of new infections in each compartment, and let V' be the transition matrix representing the
rate at which individuals leave the infected compartments. The Next Generation Matrix K is defined

as:

K=FVv~HL

Interpretation and Properties of the Next Generation Matrix

e The dominant eigenvalue of K is the basic reproduction number Ry, which represents the
average number of secondary infections caused by one infected individual in a fully susceptible
population.

o If Ry < 1, the infection will eventually die out.

e If Ry > 1, the infection can spread and potentially lead to an epidemic.

This matrix is widely used in epidemiological modeling to analyze the stability of disease-free
equilibrium points and evaluate intervention strategies.
Theorem 2.3 (Routh-Hurwitz Criteria) [17] The Routh-Hurwitz Criteria is a mathematical method
used to determine the stability of a linear time-invariant (LTI) system by analyzing the characteristic

polynomial of its transfer function. Given a polynomial of the form
P(s) = ags" +a1s" 1+ -+ apn,
where ag, a1, ..., a, € R, the system is stable if and only if all roots of P(s) have negative real parts. In

particular:

e For a quadratic polynomial, P(s) = s? + bys + by, the system is stable if and only if b; >
0 and b2 > 0.
e For a cubic polynomial, P(s) = s34 by1s® + bys + bs, the system is stable if and only if b; >
0, by >0, and biby > b3.
These conditions are both necessary and sufficient for ensuring that all roots of the polynomial lie in

the left half of the complex plane.
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Theorem 2.4 (Lyapunov Function) [15] Consider a dynamical system described by the differential

equation:

= f(x), zeR"
where f(x) is a continuously differentiable vector field. The equilibrium point z* of the system is
asymptotically stable if there exists a Lyapunov function V' (z) that satisfies the following conditions:

e V(z) is continuous, differentiable, and positive definite, i.e.,
V(z) >0 for z#2z*, V(z")=0.

e The time derivative of V(z), denoted V (z), is negative definite (i.e., V (x) < 0 for all = # z*).
In this case, z* is an asymptotically stable equilibrium point, meaning that the solutions to the system
will approach z* as time progresses.
Theorem 2.5 (Integrating Factor Method) [19] Consider a first-order linear differential equation

dx

Pt = q(t),

where p(t) and ¢(t) are continuous functions. The solution is given by
(t) = e~ I P / e/ POty .

This is the integrating factor method, where e/ ?(*) ¢ is the integrating factor that simplifies the differen-
tial equation.

Theorem 2.6 (LaSalle’s Invariance Principle) [20] Consider the dynamical system
&= f(z), zeR"

where f(x) is a continuously differentiable vector field, and z* is an equilibrium point of the system,
ie, f(z*) = 0.
Let V : R™ — R be a continuously differentiable function (a Lyapunov function) that satisfies the
following conditions:
e Positive definiteness: V(x) > 0 for x # z* and V(z*) = 0.
e Non-increasing derivative: The time derivative of V(x), denoted by V(z) = VV (x) - f(z),
satisfies V(x) < 0 for all z € R™.
Then, the set
M={zeR":V(z)=0}

is invariant, meaning that any trajectory that starts in M remains in M for all future times. Furthermore,
if M contains the equilibrium point z*, then all trajectories that start in A/ will asymptotically approach

the set of equilibrium points in M.
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In particular, if M consists only of the equilibrium point z*, then all trajectories in the state space
will converge to z* as t — oo.
Definition 2.4 (Normalized Forward Sensitivity Index (NFSI)) [21] The Normalized Forward Sen-
sitivity Index (NFSI) using the basic reproduction number (commonly denoted R,) measures how
sensitive Ry is to changes in the model’s parameters. It quantifies the relative change in Ry due to small
variations in input parameters, normalized by the value of Ry itself.

The NFSI for a parameter z is defined as:

ORy =
S¥) =5y Ry

where:

. % is the partial derivative of R, with respect to the parameter z,
e 1 is the model parameter under consideration,

e Ry is the basic reproduction number.

This index helps evaluate the impact of changes in different model parameters (e.g., transmission rate,
recovery rate) on the overall transmission potential of a disease, while accounting for the scale of Ry.
Lemma 2.1 (Positivity of Solutions of ODE Systems) [13] Let u(t) = (u1(t), ua(t), ..., u,(t)) be the
solution to a system of ordinary differential equations (ODEs) defined on a domain D C R", and

suppose that the initial conditions satisfy «(0) € R}. If the vector field defining the system satisfies
fi(u) >0 whenever u; = 0and u € R},

then the solution u(t) remains in R} for all ¢ > 0; that is, the non-negative orthant is positively invariant.

3. MobEeL FORMULATION

This study builds upon the numerical models presented in [22], [23], [24]. Consistent with previous
studies on the mathematical modeling of influenza [25], [26], [27], [28], we develop an SEIR deter-
ministic model specifically for influenza dynamics. To construct this mathematical model, the human
population is divided into four (4) mutually exclusive compartments, representing individuals” health

statuses concerning influenza:

e Susceptible individuals, S: People who are predisposed or vulnerable to infection with
influenza.

e Exposed individuals with influenza, E;: People who have been exposed to influenza and can
still transmit the disease.

e Infected individuals with influenza, I;: People who are infectious or symptomatic with

influenza and capable of transmitting the disease.
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e Recovered individuals from influenza infection, R;: People who have recovered from in-

fluenza, with immunity against future infection.

Hence, the total human population N at time ¢ is given by:
Ni(t) = S(t) + Ei(t) + Li(t) + Ri(2).

The parameters and their descriptions, commonly used in the formulation of the influenza model,
are presented in Table 1. It is important to note that the formulation of the influenza model assumes

that all parameters are positive constants.

Parameter Description

w Recruitment rate of susceptible individuals into the population
Bi Transmission rate of influenza

o; Progression rate from FE; class to I; class

Vi Recovery rate from influenza

1 Natural mortality rate

TaBLE 1. Description of the Model Parameters

Figure 1 presents a schematic diagram that illustrates the transmissions between compartments,
as individuals move between states of susceptibility, exposure, infection, and recovery, based on the

biological progression of influenza [29].

@

I Ei ‘ Rj
lu Bl( EiT) ’ i { ] Vi ’ g

FiGure 1. Schematic diagram of the compartmental influenza infection model

In formulating the influenza model, the parameter w represents the inflow (or recruitment) rate into
the susceptible compartment S. Susceptible individuals are exposed to influenza at a rate §8;(E; + I;),
transitioning into the exposed compartment £;. Exposed individuals with influenza have a tendency to
become infected with influenza at a rate o;, moving into the infected compartment I;. Influenza-infected
individuals recover from the disease at a rate +;, subsequently transitioning to the influenza-recovered
compartment R;. It is important to note that all individuals in each compartment experience natural

death at a rate p.
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From the above description and the flow chart shown in Figure 1, the following system of non-linear

differential equations for the influenza infection model is derived:

d

9B - Bi(Ei + 1;)S — S,

dt
dFE;

= Bi(E; + 1;)S — (0 + p) E;,
dt
(3.1)

dt = 0L Yi — H)4q,
dR;

dt Y Y

The system (3.1) satisfies the following conditions:
S(t), Ei(t), Ii(t), Ri(t) > 0.

4. PosITIvITY AND BOUNDEDNESS OF THE SOLUTIONS

Consider the system of ordinary differential equations given in (3.1),

dui
dt

= fi(u,t), i=1,2,3,4
where the variables are defined as:

w =S, ww==~F;, wus3=1, us=R,.
Then we have the following system of ordinary differential equations:

w — Bi(ug + uz)uy — puy
i(u2 +ug)ur — (o + p)u
I e e R wy
oiug — (Vi + pus
Yiu3 — P4
Theorem 4.1 The solution of the influenza infection model given in (4.1) is non-negative, unique, and bounded

in the given feasible region:
w
= {(ul,UQ,U3,u4) S Ri tup +ug +ug +ug < ;}

Proof: To show the non-negativity of the solutions, assume u = (u1, ug, usz, us) € [0, o0)* and u; = 0 for
some ¢ = 1,2,3,4. Suppose that at some ¢ = t,, one of the state variables first becomes zero. Without
loss of generality, consider the following cases:
If uy(t«) = 0, then (by Lemma 2.1)
) (te) = w — Bi(ua(ts) +us(te))un (te) — pun (i)
= w — Bi(uz(ts) + us(ts))(0) — p(0)

= w
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Since w > 0, it follows that ua(t.), ug(tx) > 0, and u (t.) > 0. Thus, u1(¢) > 0 for all ¢.
If us(t«) = 0, then (by Lemma 2.1)
uy(ts) = Biua(ts) + us(ts))ur (ts) — (o7 + pua(te)
= Bi((0) + ua(ts))ur(ts) — (oi + p)(0)
= Bi(us(ts))ua(ts)
Since f3; > 0, and u; (t«), us(t«) > 0, we have uj(t,) > 0. Thus, ua(t) > 0 for all ¢.
If us(t«) = 0, then (by Lemma 2.1)
ug(ts) = ojua(ts) — (vi + pus(ts)
= oiug(ts) = (i + 1)(0)
= O;U3 (t*)
Since o; > 0 and ua(t.) > 0, it follows that u4(¢) > 0. Thus, uz(t) > 0 for all ¢.
If uy(ts) = 0, then (by Lemma 2.1)
uy(te) = yiug(ts) — pua(ts)
= ’Yiu3(t*) - M(O)
= Yius(t«)

Since ; > 0 and us(t.) > 0, it follows that u/(¢.) > 0. Thus, uy(t) > 0 for all ¢.
Since all state variables remain non-negative for all ¢, we conclude that the solution of the influenza
infection model is non-negative for all ¢t > 0.

To show boundedness, summing all equations in (4.1) gives the total population rate of change:

dN

— < w — uN.

ar = F
This implies that

dN

— N < w.

0t +ulN <w

Multiplying both sides by the integrating factor e/ ## = ¢/, we have

e“t% + e N < welt

%(e“tN) < wekt,

Integrating both sides, we get

eMN < ge”t + Co,
1

where Cj is a constant.
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N < v —|—Coe_p“t.
U

Taking the initial condition, that is, when ¢t = 0, N(0) = % + Cy. Thus,

N(t) <t <N(0) - “) o

In effect,

w

lim sup N(t) < ast — oo.
t—00

Hence, the solution remains bounded within the feasible region.

On the other hand, consider the function f : R* x R — R* defined by a vector of components:

_fl (u7 t)_

du; f2(u7t)
= fi(u,t) = )

o = filw) )

_f4('LL, t)_

where each component f;(u,t) corresponds to a differential equation describing the rate of change
of each variable u; in the system, based on the given system of ordinary differential equations. The

components f;(u,t) are defined as follows:

fi(u,t) = w — Bi(ug + uz)ur — pua,

fa(u,t) = Bi(ug +uz)ur — (o + p)us,

fs(u,t) = oiug — (Vi + p)us,

fa(u,t) = viug — pua.
Each f;(u,t) is defined using the variables w1, u2, us, u4 along with constants such as w, 3;, 04, y;, and p.
Since these parameters are constants, we will focus on the expressions involving the u; terms. Thus,

here’s the structure of each component.

Consider the first compartment:

fi(u,t) = w — Bi(uz + uz)ur — puy.

This component consists of terms w, —f;(u2 + uz)u;, and pu; involving u; terms and constants. Each
term in f(u,t) is a sum or product of continuous functions, which are continuous by basic properties
of functions. Therefore, based on Theorem 2.2, fi(u,t) is continuous.

The second compartment is given by:

f2(u7t) = Bi(uz + u3>U1 — (Ui + p)us.
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This component includes terms such as 3;(u2 + uz)u; and —(o; + p)us. Each term here is a product
or sum involving continuous variables and constants, based on Theorem 2.2 ensuring that f»(u,t) is
continuous.

The third compartment is given by:

f3(u,t) = oup — (i + p)us.
This component consists of terms such as o;uz and —(y; + 1) us, each of which is a product of a constant
with a continuous variable. Therefore, based on Theorem 2.2, f3(u,t) is continuous.
The fourth compartment is given by:
Ja(u,t) = yiuz — puy.

This component has terms like v;u3 and —puy. Since each term is a product or sum of continuous
functions, based on Theorem 2.2, fy(u,t) is continuous.

Since each component f;(u,t) (fori = 1,2, 3,4) consists of sums and products of continuous functions,
each f; is continuous. Therefore, the entire function f : R* x R — R* is continuous.

Now, to show Lipschitz continuity of the solutions for each compartment in the system, we need
to show that the difference between two solutions, say u = (u1, u2,us3, us) and v = (vy,ve, v3,v4), is
bounded by a constant times the norm of the difference between the state vectors u — v. Thus, we will
compute the differences between the functions for each compartment and show that they satisfy this
condition.

The first compartment is given by:

fi(u,t) = w — Bi(uz + uz)ur — puy.

Then,

[f1(u,t) = fi(v, 1) = [(w = Bi(uz + ug)ur — pur) — (w — Bi(v2 + v3)vr — pv1)]-
= |w—w— B (ug + us)u; — (va + v3)v1) — p(ug — v1)|.
< Bil(ug + uz)ur — (vo +v3)vr| + plur —v1].
= Bilurug + urug — vive — v1v3| + plug — vi|.
= Bilurug — vive +urug — v1v3| + plug — v1|.
= Bilurug — uve + ugve — v1v2 + Uruz — U1v3 + U3 — v1vs| + plug — vql.
= Bilui(uz — v2) + va(ur — v1) + w1 (us — v3) + v3(ur — v1)| + plur — vi).

< Bi [ur|ug — va| + volur — v1| + ur|uz — v3| + v3lur — v1|] + plug — V1.

w w w w
< Bi |~ lug — vl + —|ur — o1 + —[uz — vs| + —|ur — v1]| + plug — v1.
u u u 7
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208w iw W
S( P —|—u> |u1—v1|+ﬁz—|u2—vg\+@—|u3—v3.
7 7 7

Leta; = wT’” + . Then,
|fi(u,t) = fi(v, 1) < a1|lur — vi] + a1lug — v2| + arfug — v3l.

< a1(Jur — vi| + Jug — vo| + |uz — vs3)).

4
<ar (Z |u; — v,]) . (by Cauchy-Schwarz Inequality)
i=1
< a1VA|ju —vl|. (by Cauchy-Schwarz Inequality)

< 2a1||lu —v]|.

Let L1 = 2a1. Then,
|f1(u,t) = fi(v,8)] < Lyllu—vl|.

The second compartment is given by:
fa(u,t) = Bi(uz + uz)ur — (07 + pus.
Then,

| f2(u,t) = fa(v, )| = [(Bi(ua + ug)ur — (07 + p)uz) — (Bi(va + v3)v1 — (07 + p)v2)|.
= |Bi((uz + ug)ur — (v2 + v3)v1) — (07 + p)(uz — v2)|.
< Bil(u2 + ug)ur — (v2 +vz)vr| + (07 + p)|ug — val.
= Bilurug + urug — vive — vivs| + (o + p)|ug — vol.
= Bilurug — vivy + ujug — vivs| + (o + p)|ug — vol.
= Bilurug — urve + urve — V12 + uruz — U1v3 + vz — v1vs| + (07 + p)|ug — vol.
= Bilui(ug — v2) +v2(u1 — v1) +ur(uz — v3) + v3(u1 — v1)| + (07 + p)|ug — va|.
< Bilua|(ug = v2)| 4 v2l(ur — vi)| + wa|(uz — v3)[ + v3|(ur — v1)[] + (o3 + p)[uz — va.
< Bi [W|U2 — oo + Zfur — o] + SJug — va| + —Jur — 0] | + (5 + ) g — va.
[ 7 p [

28w
1

<

1% 1%
lur — v1| + (ﬁ; +U7;+,u) lug — va| + ﬂ;\u:s — v

Defining the Lipschitz constant, as = max { 2%“ , 05+ u} . Now,

|fa(u,t) — fo(v, )| < azlur — vi| + aglug — v2| + az|uz — v3l.

< az(Jur —v1| + |ug — vo| + [ug — v3).
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4
< az (Z |u; — Uz|> . (by Cauchy-Schwarz Inequality)
i=1
< agV4|ju — vl (by Cauchy-Schwarz Inequality)

< 2asju — vl
Let Ly = 2as. Then,
|fa(u, t) = fa(v, )] < Loflu —vl.

The third compartment is given by:

fa(u,t) = oiug — (i + pus.
Then,

|f3(u,t) = f3(v,t)] = [(oiug — (vi + p)us) — (oive — (i + p)vs)] -

= |oi(uz — v2) — (i + p)(us — v3)|.

< oilug — vo| + (vi + p)|us — vs|.
Defining the Lipschitz constant, a3 = max{o;,v; + }. Now,

|f3(u,t) — f3(v,t)| < azlug — va| + azluz — v3|.

< CL3(|U2 — U2| + |U3 — U3|).

4
<as (Z lu; — vll> ) (by Cauchy-Schwarz Inequality)
i=1
< azVA|ju —v|. (by Cauchy-Schwarz Inequality)
< 2aslju — vl

Let L3 = 2a3. Then,
‘f3(u7t) - fg(’l),tﬂ < LSHU — ’UH
The fourth compartment is given by:
fa(u,t) = viug — pug.
Then,

= 7i(us — v3) — p(ua — va)|.

< viluz — v3| + plug — vgl.
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Defining the Lipschitz constant, a4 = max{;, u}. Now,

|fa(u,t) — fa(v,t)| < aslug — v3] 4+ aslug — v4).

< a4(|U3 — U3| + |U4 — 1}4’).

4
< ayq (Z lu; — m!) . (by Cauchy-Schwarz Inequality)

=1

< agVa|lu — vl (by Cauchy-Schwarz Inequality)

< 2a4lju — vl

Let Ly = 2a4. Then,
| fa(u,t) — fa(v,t)] < Lallu —o].

Define L* = max{Ly, Lo, L3, L4}, and set L = 4L*. Then,

1f(u,t) = f(0, )| < Lallu — ol + Lallu — vf| + Laflu — v]| + Lalju — v].
< L*lu —v|| + L*|Ju — v|| + L*||u — v|| + L*||u — v||.
— 42" (Ju o],
= L|lu —v|.

Since N (t) is continuous and satisfies the Lipschitz condition, the existence and uniqueness theorem
(Picard-Lindelof theorem) guarantees that the system of differential equations has a unique solution
for any given initial condition. This establishes the uniqueness of solutions to the given system of
ordinary differential equations.

Therefore, the solution of the system exists, is non-negative, unique, and bounded in a feasible region

2, which concludes the proof. O

5. TuEe EqQuiLiBriuMm PoinTs AND Basic ReprobucTiON NUMBER

Understanding the equilibrium points in epidemiological models is essential for predicting disease
dynamics and implementing effective control measures. The equilibrium points—specifically, the
disease-free and endemic equilibrium points—help determine the conditions under which a disease
may either die out or persist in a population. By computing these equilibrium states, researchers and
public health officials can assess the stability of disease outbreaks, estimate the impact of interventions,
and design strategies for disease eradication or containment. The disease-free equilibrium represents
a scenario where the infection is eliminated, while the endemic equilibrium describes a steady-state
where the disease remains present in the population at a constant level. Analyzing these points provides
valuable insights into the transmission and control of infectious diseases like influenza. For example,

in the SIR model with vital dynamics, the disease-free equilibrium occurs when no infection remains,



Asia Pac. J. Math. 2025 12:97 14 of 38

determined by the basic reproduction number Ry. If Ry < 1, the disease dies out; if Ry > 1, it persists
at an endemic equilibrium [30].

In this section, we will demonstrate the existence of the equilibrium points and compute the basic
reproduction number for the influenza model (3.1). Equilibrium points are values of the state variables
where their rates of change are 0 over time ¢. Thus, we set:

dS dE; dI; dR;

dt ~ dt  dt dt 0-

Theorem 5.1 The system (3.3) has two equilibrium points, the disease-free equilibrium point
€0, = <°", 0,0, o>
I

e, = (5% Ef, I}, Ry),

R

and the endemic equilibrium point

where

g = i+ mw)(oi + 4

B+ pto)

(yitu)(oi+p)
2 wp < Bi (it o) >

' o; +
oiwbBi(Yi + p+ 0i) — oip(vi + 1) (0i + 1)

I

)

I = :
Bi(os + ) (vi + p 4 04) (Vi + 1)
Rt — YioiwfBi (Vi + 14 i) — vioip(vi + p) (o + 1)
‘ wBi(oi + ) (vi + p+ 0i) (v + 1)

Proof: To solve the equilibrium points, we need to set the equations in system (3.1) to 0, that is:

w— Bi(E; + 1;)S — uS =0, (5.1)
Bi(Ei + 1;)S — (07 + p)E; = 0, (5.2)
o B — (vi + ) Il; =0, (5.3)

Yili — pR; = 0. (5.4)

From equation (5.3), we have:

O'iEi
I; < i —(%’-Hi)) =0.

This yields two cases: I; = 0 or "}—? —(vi+up)=0.
Case 1: If I; = 0, then from equation (5.3), E; = 0. Since E; = 0 and I; = 0, from equation (5.4), R; = 0.
From equation (5.1),

s="2.
I



Asia Pac. J. Math. 2025 12:97 15 of 38

This means that the environment is disease-free from influenza. Hence, the disease-free equilibrium
point of system (3.1) is
o, = (S, By, Iy i) = <“,0,o,0> .
o

Case 2: If I; # 0, then [; = % Adding equations (5.1) and (5.2), and equations (5.2) and (5.3), we

derive:

w—pS = (o; + p)E; =0, (5.5)
From equation (5.5), we get:

By =M (5.7)

o + [
So,
w—uS
O'Z'Ei N gi (Jif,u> B ai(w - ,uS)

I = — .
Yoyt Yi + p (Vi + ) (o + )

By substituting the values of E; and I; into equation (5.6), we obtain

(@ pS) it ) ol pS)Y o (@ pS)  oilw—puS)
b < (i + w)(oi + 1) ) S (oi+p)  (oi+p) 0
ey (it Fon (u(w = pS) + ol — S)) _
Pilw = uS) <(% + p)(oi + u)) (05 + 1) 0

BiS(w — uS) <(;17;Z¢(Ljf;)> = (= pS) (%) '

. (itw+oi \ _
b5 <<%+u><m+u>> =1

(vi + p)(oi + )

T Bitvi+ptoy)

By equation (5.7), we get
(vitu)(oitp)
we ( Bi(yitptoi) )
o + [
_ whilyi+ A+ oi) = p(vi + ) (oi + 1)
Bi(oi + 1) (i + p + 04)

Then,
owBi(vi + p 4 03) — oy + p) (o + p)
Biloi + p)(vi + p+ o) (v + 1)

I =

By equation (5.4),
_ 2ioiwbBi(vi + p+ 0i) = vioip(yi + 1) (0i + 1)

R;
pBi(os + 1) (vi + p 4 o) (vi + 1)
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Thus, the endemic equilibrium point (3.1) is
1, = (5, Ei, I;, Ri),

where
_ (it m)(oi+p)
Bi(vi + 1+ o)
the number of individuals still at risk of infection, determined by transmission, recovery, and natural

)

death rates. ( . :
Yitp)(oitp
E = voH ( Bi(vit+pto;) >

o; + 1
the number of individuals infected but not yet infectious, influenced by recruitment, natural death,

)

and progression rates.

owBi(vi + p 4+ 0;) — oip(yi + p) (o + )
Biloi + p)(vi + p+ i) (i + )

the actively infected individuals spreading the disease, showing the extent of disease transmission.

I =

)

R — YioiwBi(vi + o+ 05) — vioipu(vi + p) (o + )
' pBi(oi + ) (vi + p+ o) (v + )

individuals who have recovered and gained immunity, indicating the level of protection in the popula-

Y

tion.
This completes the proof for the existence of the equilibrium points for the influenza model (3.1). O
The basic reproduction number Ry is a fundamental metric in infectious disease modeling, providing
a clear threshold for determining whether an outbreak will spread or eventually die out. Unlike other
analytical methods, such as stochastic modeling or network-based approaches, R directly quantifies
disease transmissibility and serves as the foundation for public health interventions, including vaccina-
tion, quarantine, and social distancing. Its simplicity and predictive capability make it a more essential
tool in epidemic control, allowing researchers and policymakers to assess the potential impact of an
infectious disease and design effective mitigation strategies. The following theorem establishes the R
for the influenza model (3.1).
Theorem 5.2. The basic reproduction number of the influenza model (3.1) is captured by

Biw n Biwo;
(i +mp (o + p)(vi + p)p

Ry, =

K3

Proof: The basic reproduction number is a mathematical notion used to quantify and describe the
transmission dynamics of infectious diseases. It is calculated using the Next Generation Matrix approach
[16]. To perform the next generation matrix, we need to determine the infected compartments.

Now suppose z. be the vector of the infected states [31]. In system (3.1), the vector z. is given by

E;

Te =
I;
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By taking the first derivative of z., we have

E; ﬁZ(EZ + Ii)S — (O’i + /J)Ei
€Tr. = =
I oiEi — (vi + p)1;

a~

Thus, x|, can be written as

i(Ei + 1;)S — (00 + p)E;
o = Bi( )S = (o + ) _r_v
o — (vi + p) i

where I refers to the transmission matrix and V refers to the transitional matrix.

Accordingly,
(B + 1;)S
o [BE IS\
0
and
(0i + p)E;

V pum—
—0iBi + (i + )1

Solving the Jacobian of F' and V evaluated at the disease-free equilibrium point Ey, = (%, 0,0, O) , we

get
L OF|  _(BS BS) (% o
9z | g, 0 0 0 0
Eo,
oV o + 0
V = — = M
07 | g, —0i  Yitp
where
1
Vfl _ oi+u 0

g; 1
(oitu)(vitp)  vitp

Now, the next-generation matrix is given by

Biw  Biw 1 0
Fv—1= Iz H oitp
0 0 % L

(oitp)(vitp)  vitp

Computing the product, we obtain

Biw + Biwoi Biw
Fy—1l = [ (oitmp  (eitm)(itwp  (itpn
0 0

To solve for the characteristic polynomial of FV !, we compute

Biw Biwa; . Biw
det(FV_1 — ) = @itn T G n) s A (it |

0 -2
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Expanding the determinant, we get

_)\< Bi + Piwas —)\>:0.

(it (oi +p)(vi + p)p

By solving det(FV 1 — AI3) = 0, we obtain the eigenvalues
Biw Biwos _

(i +wp (i +p)(vi + p)p

Since the basic reproduction number is the dominant eigenvalue of the matrix F'V !, we conclude
Biw Biwo;

(ot (o + )0+

Thus, we have established the following result. The first term of this quantity represents the number of

M =0, l=

Ry, =

new infections generated by individuals in the exposed class E;. It is the product of the average rate of

the exposed class, ;=—.. The second term accounts for new infections generated by individuals in the

infected class I;. Thls term is derived from the product of the average rate of new infections generated
ﬂz

in the I; class,

s

the average duratlon in the /; class, — Jm : O
Now, we show the existence and uniqueness of the endemic equilibrium point for the influenza

model (3.1) in terms of the reproduction number.

Theorem 5.3. The influenza model (3.1) has a unique endemic equilibrium point if and only if Ry, > 1.

Proof: Suppose that the point €1, = (S*, E}, I, R}) is the endemic equilibrium point of the influenza

model (3.1). Hence, it also satisfies the equations (5.1) to (5.4). Let A} = ;(E; + I¥). Then equations
(5.1) to (5.4) become

w=Bi(Ei +1;)S — pS =0 (5.1)
Bi(Ei + I;)S — (0i + p)Ei = 0 (5.2)
0B — (yi + )l =0 (5.3)

Yili — pRi =0 (5.4)

Now, from (5.1):
w— Bi(E; + I;)S —pS =0

w—=AS"—uS*=0
L w
AN

*

(5.8)
Using (5.2):

Bi(E;+ 1)S — (i + n)E; =0
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AS*— (o +p)Ef =0
WAS
o — (o Ef=0
WY
f = L 5.9
0+ W T 1) 59
From (5.3):
UZ'Ei — ("}/7; + ,UJ)IZ' =0
WO \!
e — (it wly =0
CETITEnERE
WO AS
S = v » (5.10)
(o + p) (v + 1) (A} + )
Finally, from (5.4):
Yili — pR; =0
waerZ)‘;k *
* - :u’Rz =0
(i + ) (vi + ) (AF + )

(i + ) (i + ) (] + )
By substituting equations (5.9) and (5.10) into the expression for \}, we get

A= BB+ IT)
(i + )N+ 1) (o0 + 1) (i + 1) (A + )

Simplifying further using simple algebra, we obtain

yo g N (1+27)
T (i) (A + )
BiwA} (i + 1) + 03)

(i 4 ) (vi + ) (A] + 1)

A=
Rearranging, we get
Ai (0 4 ) (i + ) (A + ) = Biwi (i + ) + 07)
Assuming A\ # 0, we obtain
(i + ) (vi + ) (A + 1) = Biw ((vi + p) + 04)

Solving for A7, we get

v+ = Pw (it p) +0i) = (0i + ) (i + pp
Z (i + ) (i + 1)

= M(Roi - 1).




Asia Pac. J. Math. 2025 12:97 20 of 38

This implies that the endemic equilibrium point is positive if and only if Ry, > 1. O

6. LocAL StaBILITY ANALYSIS

In this section, we will determine the local stability of the equilibrium points for the influenza model
(3.1) in terms of the reproduction number.
Theorem 6.1. The influenza model (3.1) is locally asymptotically stable at the disease-free equilibrium point £,
if Ro, < 1, and unstable if Ry, > 1.

Proof: First, we compute the Jacobian matrix .J of the system (3.3), given by:

ofi 0fi 90fi Oh

oS oF; ol; OR;
Ofs Ofs Ofs Ofe
g_ |9 oE o om
Ofs Ofs Ofs Ofs
oS oF; ol; OR;
Ofs Ofs Ofs Ofa
oS OF; ol; OR;

which simplifies to:

BB+ L)~ S 8BS 0

I Bi(E; + 1) BiS — (oi + ) BiS 0
0 o} —(vi+mp) O

0 0 Vi —H

Now, evaluating at the disease-free equilibrium point ¢, = (%, 0,0, O) , we get the Jacobian matrix:

_ _whi _whi
K n n 0
0 L (ot s 0
ey, =
0 o —(vitmpm) O
0 0 Vi —p

Defining parameters:

Wi
Ay =p, A= 51’ As=oi+p, Ag=o0i As=7v+p As=m,

we rewrite Jg, as:

Solving the characteristic polynomial of J;, , given by det(J, — Al4), using cofactor expansion, we

obtain:
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—A; — )\ —A, —As 0
0 Ay — As — ) A 0
det(Jey — My) = 2 ?
! 0 Ay —As — 0
0 0 Ag —A1— A
Ay — Ag — ) A, 0
= (—A; -\ Ay —As — )\ 0
0 Ag —A; — )\

Ay — A3 — A As

=(—A1 =N (=41 —))
Ay —As — A

= (*Al — )\)(*Al — )\) ()\2 + (A5 + Ag — Ag))\ + A3A5 — A2A5 — A2A4) .

Now, substituting the parameter values:

“ﬂ At (00 + 1) + 1) —

wBi(vitp) wﬁmz’>
[t no)

By setting det(J.,, — Al4) = 0 and solving for A, we extract the following eigenvalues:

= (= N2 (4 [0 + o) -

A = —p, (with multiplicity of 2)

and the solution of the polynomial equation:

P(\) = A? + a1\ + ao, 6.1)
where:
ap = (o7 + p)(vi + p) — whilvi+p) wﬁioi,
K 1%
a1 = (vi+ p) + (o5 + 1) — wfi,
Note that:

wBi(yi +p)  wphioi
7 7
whi wpioi >
oi + e (o0 + ) (i + p)p

= (o7 + p)(vi + 1) (1 — Ro,).

ap = (o + p) (i + 1) —

— (o5 4 1) + 1) (1— :

Thus, ag > 0if Ry, < 1. Moreover, it follows that

Subsequently,

alz(%+u)+(m+u)—wfi
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:4%+MH%%+W<1_wﬁ%m)'

As aresult, a; > 0if Ry, < 1. Therefore, by the Routh-Hurwitz criteria [17], the roots of the
polynomial (3.15) have negative real parts when Ry, < 1. Since all eigenvalues are negative, the
disease-free equilibrium point of the influenza model (3.1) is locally asymptotically stable if Ry, < 1. [
Theorem 6.2 The influenza model (3.1) is locally asymptotically stable at the endemic equilibrium point €., if
Ry, > 1.

Proof: Note that the Jacobian matrix corresponding to the system (3.1) is given by:

—Bi(Ei + ;) — —BiS -BiS 0
J_ Bi(E; + 1;) BiS — (oi + ) BiS 0
0 Ti —(vitp) 0

0 0 Vi —H

Evaluating at the Endemic Equilibrium Point ¢1,, the Jacobian matrix at the endemic equilibrium point

€1, is given by:

—Bi(Ef +I]) — —BiS* —BiS* 0

Je Bi(E} +1I7) BiS* —(oi+p)  BiS* 0
0 Ti —(yi+mpm) O

0 0 Vi —

Substituting equilibrium values, we obtain:

—wpi —wpi
—(A] + ) ,\;fww /\jujr,u 0
J = )‘;‘k A?f—iiu o (Ui + M) A})lj—iu 0
0 0; —(vi+mp) O
0 0 Vi —H
_ —wpi —wpi
pho, 1R, 1Ro; 0
R TCRI SRR S
0 o; —(vi+p) O
0 0 Vi —p
Defining constants:
o=
1= , Co=o0i+p, Cy=o0; Ci=v+p Cs=
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The Jacobian can be rewritten as:

~uRo,  —g- s O

g | o —1) I
0 C;  —Cy O
0 0 05 — K

Now, the characteristic polynomial of the Jacobian matrix J(ey,) is given by:

—pRo; — A — — 0
Ry, —1) £L—Co—X S 0
det(J(er,) — M) = | (Bo, = 1) 7, —C2 Ro,
0 Cs —Cy— A 0
0 0 05 - — A
Factoring out (—x — \), we obtain:
C c
—uRy, — A —Roli —Roli
(== A) |u(Ro, — 1) I%i —C2—A 1%1'
0 C3 —Cy— A

Solving for the determinant, the characteristic polynomial simplifies to:

P(A) = (= — N)(A® + 5107 + ba + b3)

where:
C
by = Cy+ Cs+ pnRo, — !
Ry,
Ci(C3+C
by = C2Cy + CopRy, + CapRo, — 1 ; ()
0;
Ciu(C3 + C.
by = CyCypRo, — 1'U(R3+4)
0;
Subsequently, the eigenvalues of the characteristic polynomial are A\; = —u and the solutions of the
equation:
AN 4 b1 A2 + oA + b3 = 0. (6.2)

By the Routh-Hurwitz criteria [17], the eigenvalues of the cubic polynomial have negative real parts if

the following conditions are satisfied:

(1) b1,b2, and b3 are all positive.

(2) byby > bs.
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For stability, we need to check that the conditions b; > 0, bo > 0, and b3 > 0 are satisfied.
From the expression for b;:

C
b1202+04+HR0i—71.
Ry

i

For b; > 0, we require:

C
Ca + Cyq + pRy, - > 0.
Ry,

This inequality holds if the terms involving C; and Ry, are balanced with the other coefficients, partic-
ularly when Ry, is sufficiently large (depending on the values of C, C, Cy, and p).
From the expression for bs:

C1(C5+ Cy +
by = C2Cy + CopRo, + CapRo, — 1 ( 3R0 4 ,LL).

For by > 0, we need:

Cl(Cg + Cy + M)
Ro.

3

> 0.

CoCy + CopRo, + CypRo, —

This inequality suggests that for stability, the terms involving Ry, and C should be such that the sum

of the terms

C2Cy + CopuRy, + CapRo,

outweighs the fraction
1 <C3 + Cy + u)
Ry, '

K3

From the expression for bs:

Ciu(C3 + C
b3 = CoCypRo, — IM(R?)O4)'

7

For b3 > 0, we require:

C1(C3 + Cy)
Ry,

k3

CQC4MRQZ- — > 0.

This holds if the term involving CoCy Ry, is large enough to compensate for the term involving C and
Ry,. Specifically, it requires that:

CoCupRy, > W.
0.

7

Multiplying both sides by Ry,, we obtain:
CoCapRG, > Crpu(Cs + Cy).
In addition to the sign conditions, we must also satisfy the determinant condition for stability, which is:

b1by > bs3.
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We begin by multiplying by and bs:

1

01(03 +Cy + ,U«)

C
b1 by = <C2 + Cy + 1Ry, — R) X <0204 + CouRo, + CypRo, —
0;

Expanding the terms:

&
Ro,

7

by - by = (Ca+ Cy + puRy, — )C2Cy

C
+ (Co + Cy + pRy, — i)CQMRoi

K3

C
+ (Cy + Cy + pRoy, — ﬁ)CwRoi
C
—«b+6h+uﬁ%—ﬁ})
0

01(03 +Cy + /L)
Ry,

7

Simplifying further:

C1050y
Ry

b1 by = 02204 + CQCE + CQC4,UROi —

CouCy
Ro,

CapCh
Ro,

01(03 + Cy + ,u)

+ O3 1Ry, + CouCyRy, + CQMZR(Q)i -

+ C4CopRy, + CipRo, + Cap® R, —

_01(03+C4+u)0 _

Ry, 2
Ci1(Cs+C

_ GG+ 4+M)#R0i+

Recall the expression for b3:

Now, using the condition b1b3 > b3, we obtain:

C1C,C.
C2Cy + CyC2 + CHCupRy, — 2214

3

B CypuCh _ Ci(C3+ Cy+ )

+ C4CQ,LLROi + CfuRo,- + C4/L2R(2). Cy
¢ Roi R()Z.

C1(C3+ Cy + p) Ci(Cs+ Cy+ 1) C%(C5+ Cy + )

— Cy — Ro.
Ro, ! Ro, o R%i
Ciu(Cs+ C
>cbaWRm_”“éf*‘Q
0;

Rearranging, we get:

C1CyC
C2Cy + CyC3 + CHCupRy, — 221

7

B CauCy _ 01(03 +Cy + /L)
Ry, Ry,

3 2

+ C4CspRo, + C3uRo, + Cyp® R},

Co

+ C3 1Ry, + CouCyRy, + Cz,uQR(Q)Z

+ C2 1Ry, + CouCyRy, + C2M2R%i

Ro,

(3

CouCy
Ry

CouCy
Ry

i

%

).
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_ GG+ Gty GG+ Citp) +C12(C3+C4+M)
Ro, 4 Ro, p0: R,
— | CCypRy, _CW(%;M < 0.

K3

Since all parameters are positive, it follows that:
biby — b3 > 0.

Thus, by the Routh-Hurwitz criteria [17], the solutions of equation (6.2) have negative real parts
when Ry, > 1. Consequently, all eigenvalues of the matrix J., are negative. Therefore, the endemic

equilibrium point of the influenza model (3.1) is locally asymptotically stable if Ry, > 1. O

7. GLOBAL STABILITY ANALYSIS

In this section, we will establish the global stability of the disease-free equilibrium point for the
influenza model (3.1) in terms of the basic reproduction number.
Theorem 7.1. The influenza model (3.1) is globally asymptotically stable at the disease-free equilibrium point
€o; if Ro, < 1.

Proof: Consider the candidate Lyapunov function [15]:

Wi
Li=(vi+wEi+ fzfi,

defined on the region

By Theorem 4.1, the solution of L; exists and is unique, non-negative, and bounded in the feasible
region (2. Note that from the influenza model (3.1), E; and I; have continuous derivatives at any time ¢.
Thus, L; is continuous.
Next, we show that L; is positive definite in the region ), meaning that L; satisfies the following
conditions:

(1) Li(go,) =0, and

(2) Li(x) > 0 for any = # &,, where ¢, is the disease-free equilibrium point of the model.
It is evident that the first condition holds. Since all parameters in the model are positive, L;(x) > 0 if
x # €0, meaning F; > 0 and I; > 0. Hence, the second condition is satisfied, proving that L; is positive
definite.

Next, we show that the time derivative of L;, denoted by dd];" , computed along the solution of the model,

is negative definite. That is,

dL;
dt

dE; N wp; dI
dt wodt’

= (7 +n)



Asia Pac. J. Math. 2025 12:97 27 of 38

Substituting the equations for ddEti and % from the influenza model (3.1), we obtain:

d 3 %
Ci = (vi+ 1) [Bi(Ei + 1;)S — (03 + ) E; | + wf [05E; — (i + )]

We simplify the time derivative of L; as follows:

dL;
dt

wpio;

= B0 ms + L% = ok ik )] B (5= 2) i+

Now, we establish that:

dL;  wBi(vi + wBio;
- < 2(7/1 M)Eﬂr ;ZEz‘—(UmLM)(%JrM)Ei

= (i + ) (vi + p)(Ro, — 1) E;.

Since (o; + 1) (7; + 1) is always positive, we conclude that:

dL;
<0
dt — 7’

if Ry, < 1.

Thus, dd%i is negative definite when Ry, < 1. Furthermore, for Ry, < 1, we have dcﬁi

E1:IZZOOI'S:%

= 0 if and only if

Now, we check whether the solution converges to the disease-free equilibrium point.

Suppose E; = 0 and I; = 0. From the first equation in (3.1), we obtain:

ik wS.
Rearranging gives:
s
E + /.LS =w
Multiplying both sides by e**: (by Theorem 2.5)
d

7 (e”tS) = we.

Integrating both sides over the interval [0, ¢], we obtain:
w w
5= 2 + (500) - 2) .
=7 0=~

Consequently, 5(t) — & as t — oo.

Similarly, from the fourth equation in (5.4), we have:

dR;
= —uR;.
a "
Rearranging gives:
dR;
+ pR; = 0.

dt
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Multiplying both sides by e**: (by Theorem 2.5)
d
a (e'utRi) =0.

Integrating both sides over the interval [0, t], we obtain:
R;(t) = R;(0)e M.

Thus, R;(t) — 0 as t — oo.

Now, suppose S = . From the second equation in (3.1), we obtain:

dE;
dt

W

= Bi(Ei + 1;
Bi(Ei + )M

(0i + ) Es.

Rearranging gives:

4E; + <(0l +u) — wﬁz) E;, = wﬁifi.

dt 7 7
. . . ((O’i—l-,u)—wﬁi )t
Multiplying both sides by e wn (by Theorem 2.5)
i 6((Ui+ﬂ)_w7m)tE. — L/Bie<(0i+,“)_wfi>tfl
dt i 1 i

Integrating both sides over the interval [0, ¢]:

Ei(t) = [E@(O) + wfi /t e((ai—i_“)_uﬁji)thdt] e—((ﬁi-i-u)—%ﬁi)t.
0

Since (o; + p) — WTB’ > 0if Ry, <1, it follows that E; — 0 as t — oc.

From the third equation in (3.1):

dl;
— =0l — (v I;.
5 = oilli— (it n)
Rearranging gives:
dl;
— + (v I; = oi .
o Thituli=o
Multiplying both sides by e(%: /)¢ (by Theorem 2.5)
d
Dttty — (i)t .
7 (e IZ> o;e E;.

Integrating both sides of the equation over the interval [0, ¢]:
t
Iit) = [Ii(o) + Ji/ et g dt] e~ (ritut
0

Thus, I;(t) — 0 as t — oc.
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From the fourth equation in (3.1):

dR;
dt Y 2
Rearranging gives:
dR;
i = Yili.
7 T pRi =~
Multiplying both sides by e**: (by Theorem 2.5)

% (eMtRZ.) = ’}/Z'e'utfi.

Integrating both sides over the interval [0, ¢]:

t
Rl(t) = |:RZ(O) + %/0 e‘utfi dt:| e Mt

Hence, R;(t) — 0ast — oc.

As aresult, as t — oo, the solution converges to

€0, = (”,o,o,o)
I

if and only if
dL;
=0.
dt
Thus, L; is a Lyapunov function on (2, and since ¢y, is the only element of the set

dL;
S = {(S, Eulz;Rz) €0 i = 0},

€0, = (“,o,o,o) .
n

Therefore, by LaSalle’s Invariance Principle [20], every solution of the model (3.1) with initial conditions

the largest compact invariant set in S is

in Q approaches ¢, = (%, 0,0, O) as t — oo whenever Ry, < 1.

Hence, at the disease-free equilibrium point €y, the influenza model is globally asymptotically stable

if Roi < 1. ]

8. SENSITIVITY ANALYSIS

Sensitivity analysis is a technique used to assess the impact of changes in input parameters on the
output of a model or system. In the context of the basic reproduction number Ry,, which measures the
average number of secondary infections produced by a typical infected individual, sensitivity analysis

helps us understand how variations in different factors affect the spread of infectious diseases.
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Using the normalized forward sensitivity index [21] of the basic reproduction number that depends
differentiably on a parameter ¢, we define:
ORy ¢
6 R

From the basic reproduction number of the influenza model Ry,, we evaluate the sensitivity index for

Sy =

the parameter w:

8R0 i W

ow x Roi

Sw =

Substituting the expression for Ry,:

,87,0'7, ) % i
(o3 4 ) (vi + p)p Ry,

3
3

(oi + )1
Bioi ) % w
0’+u (o5 + 1) (v + p)p ( Biw Biwo; )
im0+ a) @tmn T Gt itmn
i\

z+,u +Bzaz>x w
1

Bi(
< (o + p)(vi + p)p 5i(%~+u)+[3¢ai>
(Gitp)(vitn)p
- (@
1.

51 ’Yz‘i‘,ul +Bzaz> % <(Ui+ﬂ)(%+u)ﬂ>

i+ ) (i + p)p Bi(vi + 1) + Bios

The sensitivity index S,, = 1 indicates that the parameter w (the rate of recruitment of susceptible
individuals) has a unitary sensitivity with respect to Ry,. This means that any increase in w will directly
lead to an increase in Ry,, the basic reproduction number for the influenza model. This result aligns
with standard sensitivity analysis principles, such as those discussed in [32] and [33], which explain
how the sensitivity index measures the proportionality of changes between model parameters and
outputs. Since S, > 0, we conclude that w directly influences the transmission dynamics of influenza.
Specifically, increasing the recruitment rate w will lead to a higher value of Ry,, which in turn suggests
an increase in the potential for influenza spread in the population.

For the parameter (3;, the sensitivity index is given by:

~ ORy, " Bi
" 0B Ry,

Sp

Substituting the expression for Ry,:

S = < d —|— CL)O—Z ) X ﬂ
& (i + ) (o5 + p) (i + p)p R,

B < w N wo; ) y Bi
-\ (o; + o; + i+ Biw Biwa;
(o + ) (o + p)(vi + p)u ( Sl (%ﬂw)
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_ ((w(%w)wai ) y ( Bi

oi + ) (i + ) M)

(oitp) (vitu)p

(o)~ (Cataar)

1.

Since Sg;, = 1, the parameter (3; directly influences the transmission dynamics of influenza. Specifically,
any increase in j3; (the transmission rate) will lead to an increase in Ry,, indicating that the disease
will spread more rapidly in the population. Thus, controlling 3;, through measures such as reducing
contact rates or improving infection control, can directly reduce the potential for transmission of the
disease.

For the parameter o;, the sensitivity index is given by:

_ ORy, o i
" 90y T Ry,

So

Substituting the derivative:

Sy = <_ whi n wBi(vi + p)p? > . i
" (o0 + 1) [(oi+ ) (v + w)n? )~ Ro,
Substituting the expression for Ry;:

(i + 1) (i + p) ]2 Biw

_Wﬁz’}/z ’Yz + N) ) % 0

Girmn T (ai+u3(%i+u)u>

(oitp) (vitp)p

) - (i)

_Wﬂz'Yz i + M) % g
(o7 4 ) (i + p)p)? <5iw((%+u)+0i)>

[(oi + ) (v + p)pl?

_ Yioi(vi + p)?
(o + p)u((vi + 1) + 04)”

The sign of S,, provides insight into how the parameter o; influences the basic reproduction number

Ry,. It S,, > 0, this implies that increasing o; (the rate at which infected individuals recover or are
removed from the infectious pool) decreases the basic reproduction number Ry,, thereby slowing the
spread of the disease. On the other hand, if S,, < 0, it would imply that increasing o; leads to an
increase in Ry,, causing a faster spread of the disease. However, this scenario is rare in this context, as
higher recovery rates typically help control outbreaks rather than accelerate them.

For the parameter v;, the sensitivity index is given by:

ORy, o i

S p—
K 0y Ry,

i
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Substituting the derivative:

S, = <_ whioi(oi + p)p > o i
" [(oi + 1) (i + )2 )~ R,
Substituting the expression for Ry,:

(oi+p)p aitp)(vitp)p

= (1

whioi Gﬂru)u " Vi
(mstocmn.)
S

WB’LO-’L o; + ,Ll,) ) % Yi
U’L + ,u ’Y’l + ,U,) ]2 ( Biw + 1 Biwa )

(o + p) (vi + p)u]? ﬁiw((’Yi+N)+Ui)>
(oitm)(vitu)p

e mr) < (Gotta e )

Uz + N % + N) ]2
—%i0;
R

The sensitivity index ., provides insight into how the parameter +; affects the basic reproduction

number Ry,. Since S,, < 0, this indicates that increasing +; (which represents faster recovery or removal
of infected individuals) decreases the basic reproduction number Ry,. A negative value of S, suggests
that increasing the recovery rate reduces the number of secondary infections generated by each infected
individual, thereby slowing the transmission of the disease.

For the parameter 4, the sensitivity index is given by:

ORy,

Sﬂ - a:u' R()i

Substituting the derivative:

g - <_wﬁi(0i+2ﬂ) _ whioi(p(yi + i + 2p) + (03 +M)(%+u))> p
[(oi + p)ul? [(oi + ) (i + )}

Substituting the expression for Ry,:
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Since S, < 0, increasing the natural mortality rate u reduces Ry,, thereby slowing the spread of the

_ <_WB7;(202%- + (24 2y + o) + (34 209)p )
2

disease. This is expected because individuals with higher mortality will spend less time in the infectious

state, reducing opportunities for transmission.
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Conclusion: The recruitment rate w and the effective transmission rate 3; have a strong positive
influence on the propagation of the disease. Conversely, the parameters o;, 7;, and p play a significant
role in reducing the burden of influenza infection in the population. Increasing these parameters leads
to a decrease in the basic reproduction number, which in turn reduces the prevalence of the disease

within the population.

9. NUMERICAL SIMULATIONS

This section presents the numerical simulations done in MarLE software, which will illustrate and
support the established results in the previous sections. The parameter values used in the simulation

are found in Table 2.

Description Parameters Value Unit  Source
Recruitment rate w 3 day~! Assumed
Transmission rate of influenza Bi 0.0011 day_1 Assumed
Progression rate from FE; class to I; class o; 0.5000 day_1 [34]
Recovery rate from influenza Vi 0.1998 day—! [35]
Natural mortality rate v 0.0400 day~! Assumed

TaBLE 2. Parameter Values for the Influenza Model

Some of the parameter values in Table 2 were assumed for modeling purposes to maintain simplicity
while ensuring that the basic reproduction number Ry stays below 1, ensuring the stability of the
disease-free equilibrium. The following explains the rationale behind each assumption:

Recruitment Rate w = 3day ':

The recruitment rate w = 3day ' was assumed to maintain a moderate and realistic inflow of sus-
ceptible individuals into the population. This value was specifically chosen so that the computed
basic reproduction number R}, ~ 0.4713 remains less than 1, which satisfies the condition for the local
asymptotic stability of the disease-free equilibrium. Since R} is directly proportional to w, increasing it
would result in a higher reproductive number, potentially making the disease endemic. Thus, setting
w = 3 strikes a balance between biological realism and the mathematical goal of exploring a stable
disease-free scenario.

Transmission Rate 5; = 0.0011 day_l:

The transmission rate governs how efficiently the disease spreads between susceptible and infected
individuals. The value 5; = 0.0011 day_1 was assumed to reflect typical influenza transmission rates
in a controlled or seasonal setting, resulting in a basic reproduction number Ry that stays below 1. This

ensures that the disease will not spread indefinitely in the population under these conditions.
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Natural Mortality Rate ;1 = 0.0400 day '

This value represents the background death rate in the population, which includes deaths unrelated to
influenza infection, such as those caused by aging, accidents, or other health conditions. The assumption
of 1 = 0.0400day ! (or 5= day ') reflects the normal rate of mortality, ensuring the population size
remains realistic and doesn’t grow indefinitely. It helps simulate the continuous loss of individuals from
the population due to non-disease factors, enabling a more accurate representation of the influenza
dynamics without allowing for unrealistic population growth.

Simulation 1. Consider the parameter values in Table 2 with w = 3. We obtain Ry, = 0.4713302753
and the disease-free equilibrium point is g, = (S, E;, I;, R;) = (%, 0,0, 0) = (75,0,0,0). To support

our result, we take the following initial conditions:

(a) (S, E;, I;, R;) = (100, 50,10, 1) (b) (S, E;, I;, R;) = (200, 60,20, 2)

(¢) (S, E;, I;, R;) = (300,70,30,3) (d) (S, E;, I;, R;) = (500,90, 50, 4)

Dvnamics of dhe Sysoem Drvnamics of e 5y stemn

B4
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Figure 2. (Simulation 1) The Influenza model is locally asymptotically stable at ¢,

when Ry, < 1.



Asia Pac. J. Math. 2025 12:97 35 of 38

Figure 2 shows that for different initial conditions, the lines of the solutions converge to 9, = (75,0, 0, 0).
This implies that the influenza model is locally asymptotically stable at the disease-free equilibrium
point when Ry, < 1.

Simulation 2. Consider the same parameter values as in Simulation 1, except for the increased value of
Bi = 0.0060. As a result, Ry, becomes 2.5708924106, and the disease-free equilibrium point remains
unchanged at =9, = (S, E;, I;, R;) = (g, 0,0, 0) — (75,0,0,0).
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Ficure 3. (Simulation 2) The influenza model is locally asymptotically stable at ¢,

when Ry, > 1.

By using the same initial conditions as in Simulation 1, we observe from Figure 2 that the lines of the
solutions do not converge to g, = (75,0, 0, 0). This indicates that the influenza model is unstable at the
disease-free equilibrium point when Ry, > 1. Moreover, since we have obtained Ry, = 2.570892410
and the endemic equilibrium €;, = (29, 3, 7, 35) now exists, we observe that the lines of the solutions
converge to €1, = (29, 3,7, 35). Therefore, the influenza model is locally asymptotically stable at the

endemic point whenever Ry, > 1.
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