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Abstract. In this article, we study the uniqueness of algebroid functions defined on Annuli while the order,
lower order, Deficiency, Reduced Deficiency and the Pseudo-deficiency are taken into consideration. Our
results are extension to annuli region which extends the results of Pingyuan Zhang and Peichu Hu [11].
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1. Introduction

In the field of value distribution theory, the uniqueness theory of algebroid functions is a fascinating
topic. In 1929, Valiron [1] was the first to study the uniqueness problem of algebroid functions, later
Ullarich [2] extended his support to the value distribution of algebroid functions and later on, various
researchers discovered several uniqueness theorems for algebroid functions in the complex plane
C [3–5,7–10,12, 13, 16].

The Nevanlinna theory for meromorphic functions in multiple connected domains was proposed
by Khrystiyanyn and Kondratyuk in 2005 [18, 19]. Cao and Yi [20] examined the uniqueness of
meromorphic functions that share some values and some sets on annuli in 2009. As a result, it’s worth
considering the uniqueness problem of algebroid functions in multiply connected domains.

In this paper, we focus on the doubly connected domain. We presume that readers are familiar with
the Nevanlinna theory of meromorphic and algebroid functions [4–6, 9, 16, 17]. Each doubly connected
domain is conformally equal to the annulus A(R1, R2) = {z : R1 < |z| < R2}, 0 ≤ R1 < R2 ≤ +∞,
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according to the doubly connected mapping theorem [28]. We just look at two scenarios:

(1) R1 = 0, R2 = +∞

(2) 0 < R1 < R2 < +∞.

In the latter situation, the homothety z → z√
R1R2

reduces the specified domain to the annulus {z : 1
R0

<

|z| < R0}, where R0 =
√

R2
R1

. As a result, in two circumstances, every annulus is invariant with regard
to the inversion z → 1

z .
For our convenience we letM = {Mi : Mi be ν-valued algebroid function defined

on the annulus A
(

1
R0
, R0

)
(1 < R0 < +∞) for i = 1, 2} and a ν−valued algebroid function defined by

an irreducible equation given by

Aν(z)Mν
1 +Aν−1(z)M

ν−1
1 + . . .+A1(z)M1 +A0(z) = 0, (1)

with Aν(z), Aν−1(z), . . . , A1(z), A0(z) as a group of analytic functions defined on the annulus
A
(

1
R0
, R0

)
(1 < R0 < +∞) with no common zeros.

In this article, we use the standard notations of algebroid function theory [6].
Throughout the paper, by denotingM1 = a⇔M2 = a, we mean to say thatM1− a andM2− a have

same zeros (IM), byW = a
M = a, we mean to say thatM1 − a andM2 − a have same zeros (CM),
by Ek)(a,M1) the set of zeros ofM1 − awith multiplicity ≤ k (IM). IfM1 ∈M then

σ(M1) = lim
r→+∞

sup
log T0(r,M1)

log r
,

µ(M1) = lim
r→+∞

inf
log T0(r,M1)

log r
,

δ0(a,M1) = 1− lim
r→R−

0

N0

(
r, 1
M1−a

)
T0(r,M1)

,

Θ(a,M1) = 1− lim
r→R−

0

N0

(
r, 1
M1−a

)
T0(r,M1)

,

δk)(a,M1) = 1− lim
r→∞

Nk)

(
r, 1
M1−a

)
T0(r,M1)

,

represents the order, lower order, deficiency, reduced deficiency and the Pseudo-deficiency ofM1(z)

respectively.
It was 1980 [15], when Ueda considered two entire functions defined on C with finite order and

proved the uniqueness result with deficient values where as in 1985 Y.Z.He [8], obtained the uniqueness
result of algebroid functions defined on C with their deficient values. Recently, in 2015, P. Zhang et
al. [11] considered two algebroid functions defined on C with deficient values to showed that instead
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of considering the deficient values of two algebroid functions, they can be considered in one function
and obtained two uniqueness results, as a glimp, in the first theorem algebroid functions with finite
order has been considered whereas in the second theorem algebroid functions with finite lower order
has been considered along with the deficiencies in both the theorems and they both have been proved
for uniqueness.

With regard to the multiple values in Annuli, in 2000, Zongsheng Gao [21] proved the existence
of the sequence of filling disks and Borel directions dealing with its multiple values, where as in
2017, Ashok Rathod [22] investigated about the multiple values and deficiencies and proved some
uniqueness theorems. Further concerning deficiency in Annuli, in 1993, Lianzhong Yang [23] studied
on the deficiencies of an algebroid function with finite lower order and provided some results. While in
2019, Ashok Rathod [24] studied and obtained the relationship between the deficiency of an algebroid
function on annuli and of their derivatives.

Further, in 2015, Yang Tan et al [25] proposed an extension of Nevanlinna value distribution theory
for algebroid functions on annuli. He obtained Analogs of the Cartan theorem, the first fundamental
theorem, the second fundamental theorem, deficient values, and the uniqueness of algebroid functions
on annuli. Again In 2016, Yang Tan [26] discussed about the uniqueness problem of algebroid functions
on annuli, and gave several uniqueness theorems of algebroid functions on annuli, which extended the
Nevanlinna value distribution theory for algebroid functions on annuli. In 2017, Ashok Rathod [22],
obtained Xiong inequality of algebroid function on annuli and using this result they proved uniqueness
theorem of algebroid functions on annuli concerning to their multiple values and derivative.

Motivated by all these studies, it was natural to ask about the nature or the behavior of algebroid
functions defined on annuli when the order, lower order, deficiency, reduced deficiency and Pseudo-
deficiency are taken into account. As an affirmative answer, we have obtained three results which are
stated and proved in the section 3.

2. Lemmas

We highlight some of the Lemmas required as follows. We consdier ,M1(z),M2(z) as two ν-valued
algebroid functions.

(1) If the set ofM1(0) andM2(0) have no poles, then we have

T0(r,M1/M2) ≤ T0(r,M1) + T0(r,M2) +O(1), (2)

[11].
(2) If σ(M1) as the order ofM1(z) andµ(M2) as the lower order ofM1(z)with σ(M1) < µ(M2) <∞,

then

T0(r,M1) = o(T0(r,M2)) (r →∞), (3)
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[11].
(3) For Algebroid functions Second Fundamental Theorem for aj (j = 1, 2, . . . , q) we have

(q − 2ν)T0(r,M1) <

q∑
j=1

N0

(
r,

1

M1 − aj

)
+ S(r,M1), (4)

[14].

3. Main Results

Theorem: Let M1, M2 ∈ M with finite lower order µ(M1), then write M1
M2

= G and let µ(M1) 6=

µ(G) = σ(G). Presume that M1 = 0 ⇔ M2 = 0. If there exists aj (j = 1, 2, . . . , 2ν + 1) which are
distinct and non-zero such that

E1)(aj ,M1) = E1)(aj ,M2), (5)

and
2ν+1∑
j=1

max{Θ(0,M1),Θ(a,M1), δ(aj ,M1)} > 1, (6)

thenM1 ≡M2.

Proof. For the value of j = 1, 2, . . . , 2ν + 1, following we have

N0

(
r,

1

M1 − aj

)
≤ 1

2
N

1)
0

(
r,

1

M1 − aj

)
+

1

2
N0

(
r,

1

M1 − aj

)
. (7)

Thus,
N0

(
r,

1

M1 − aj

)
≤ 1

2
N

1)
0

(
r,

1

M1 − aj

)
+

1

2
T0(r,M1) +O(1).

Now, by 4, we have

(2ν + 1− 2ν)T0(r,M1) ≤
2ν+1∑
j=1

N0

(
r,

1

M1 − aj

)
+ S(r,M1),

≤ N0

(
r,

1

M1

)
+

2ν+1∑
j=1

1

2
N

1)
0

(
r,

1

M1 − aj

)
+

2ν+1∑
j=1

1

2
N0

(
r,

1

M1 − aj

)
+ S(r,M1),

≤ N0

(
r,

1

M1

)
+

2ν+1∑
j=1

1

2
N

1)
0

(
r,

1

M1 − aj

)
+

(
2ν + 1

2

)
T0 (r,M1) + S(r,M1).

(8)

By 8 and assumptions, we get

T0(r,M1) ≤
(

2

1− 2ν

)
N0

(
r,

1

M1

)
+

(
2

1− 2ν

) 2ν+1∑
j=1

1

2
N

1)
0

(
r,

1

M1 − aj

)
+ S(r,M1),

T0(r,M1) ≤
(

3 + 2ν

1− 2ν

)
T0 (r,M2) + S(r,M1).

(9)

Similarly, we can get

T0(r,M2) ≤
(

3 + 2ν

1− 2ν

)
T0 (r,M1) + S(r,M2). (10)
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This yields

µ(M2) ≤
(

3 + 2ν

1− 2ν

)
µ(M1) + S(r,M2), (11)

and

µ(M1) ≤
(

3 + 2ν

1− 2ν

)
µ(M2) + S(r,M1). (12)

This implies,

µ(M1) = µ(M2). (13)

By 10, 2 and assumptions, we get

T0(r,G) ≤ T0(r,M1) + T0(r,M2) +O(1),

T0(r,G) ≤ T0(r,M1) +

(
3 + 2ν

1− 2ν

)
T0 (r,M1) + S(r,M1),

T0(r,G) ≤
(

4

1− 2ν

)
T0 (r,M1) + S(r,M1).

(14)

Again, on calculation, we see that µ(G) ≤ µ(M1). However σ(G) = µ(G) 6= µ(M1). Thus we get

σ(G) < µ(M1). (15)

On the contrary, if suppose, M1 6≡ M2. Letting {zn} be all simple zeros of M1 − a1. By hypothesis
E1)(a1,M1) = E1)(a1,M2) which infers that {zn} are simple zeros of M2 − a1. Also by hypothesis
noting that M1

M2
= G, which infers that G 6≡ 1. But G(zn) is 1, therefore we obtain

N
1)
0

(
r,

1

M1 − a1

)
≤ N

(
r,

1

G− 1

)
≤ T0(r,G) +O(1). (16)

By 15 and 16

lim
r→+∞

sup
logN

1)
0

(
r, 1
M1−a1

)
log r

≤ σ(G) < µ(M1).

By 7 and 4, we obtain

(2ν + 1− 2ν)T0(r,M1) ≤ N0

(
r,

1

M1

)
+

2ν+1∑
j=1

N0

(
r,

1

M1 − aj

)
+ S0(r,M1),

T0(r,M1) ≤ N0

(
r,

1

M1

)
+

1

2

2ν+1∑
j=1

N
1)
0

(
r,

1

M1 − aj

)
+

1

2

2ν+1∑
j=1

N0

(
r,

1

M1 − aj

)
.

(17)

which gives

Θ(0,M1) +
1

2
Θ(a,M1) +

1

2

2ν+1∑
j=0

δ(aj ,M1) ≤ 1.

This is contradiction to 6. This infers thatM1 ≡M2. �
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Theorem 3.1. LetM1,M2 ∈ M with finite lower order µ(M1), then write M1
M2

= G and let σ(M1) 6= σ(G).

Presume thatM1 = 0⇔M2 = 0. If there exists aj (j = 1, 2, . . . , 2ν + 1) which are distinct and non-zero such

that

E1)(aj ,M1) = E1)(aj ,M2),

and
2ν+1∑
j=1

max{Θ(0,M1), δ(aj ,M1)} >
1

2
,

thenM1 ≡M2.

Proof. If supposeM1 6≡M2. As proceeded in the above theorem, we can obtain the following

T0(r,G) ≤
(

4

1− 2ν

)
T0 (r,M1) + S(r,M1),

and since σ(G) 6= σ(M1)

σ(G) < σ(M1), (18)

similarly, from 16 we have

N
1)
0

(
r,

1

M1 − a1

)
≤ N

(
r,

1

G− 1

)
≤ T0(r,G) +O(1). (19)

By 17 and 19

T0(r,W ) ≤ N0

(
r,

1

M1

)
+

1

2

2ν+1∑
j=1

T0(r,G) +
1

2

2ν+1∑
j=1

N0

(
r,

1

M1 − aj

)
+ S(r,M1),

≤ (1−Θ(0,M1))T0(r,M1) +
1

2

2ν+1∑
j=1

T0(r,G) +
1

2

2ν+1∑
j=1

(1− δ(aj , w))T0(r,M1) + S(r,M1),

(20)

T0(r,M1)

Θ(0,M1) +
1

2

2ν+1∑
j=1

δ(aj , w) + o(1)

 <
2ν + 1

2
T0(r,G). (21)

3.1 and 21 yield σ(M1) ≤ σ(G), a contradiction to 18, hence we haveM1 ≡M2. �

Theorem 3.2. LetM1,M2 ∈M with finite lower order µ(M1), then write M1
M2

= G and let µ(M1) 6= µ(G) =

σ(G). Presume that M1 = 0 ⇔ M2 = 0. If there exists aj (j = 1, 2, . . . , 2ν + 1) which are distinct and

non-zero such that

E1)(aj ,M1) = E1)(aj ,M2), (22)

and
2ν+1∑
j=1

max{Θ(0,M1), δ1)(aj ,M1), δ(aj ,M1)} > 1, (23)

thenM1 ≡M2.
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Proof. Proof of this theorem is similar to the proof of the theorem ??. By 8 we have

T0(r,M1) ≤ N0

(
r,

1

M1

)
+

1

2

2ν+1∑
j=1

N
1)
0

(
r,

1

M1 − aj

)
+

1

2

2ν+1∑
j=1

N0

(
r,

1

M1 − aj

)
. (24)

Then we can write by using the definition of Pseudo-deficiency

T0(r,M1) ≤ (1−Θ(0,M1))T0(r,M1) +
1

2

2ν+1∑
j=1

(1− δ1)(aj ,M1))T0(r,M1)

+
1

2

2ν+1∑
j=1

(1− δ(aj ,M1))T0(r,M1),

Θ(0,M1) +
1

2

2ν+1∑
j=1

δ1)(aj ,M1) +
1

2

2ν+1∑
j=1

δ(aj ,M1) ≤ 1.

This contradicts (23). Hence,M1 ≡M2 �
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