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AsstrACT. Let S be a set with |S| = n,and let 2 < k < m < n. An (m, k)-unitary collection ¢ is a
collection of m subsets of S satisfying the following conditions:
(i) For every distinct pair A, B € ¢, the intersection |[AN B| = 1;

(i) UaecA = S;and

(iii) Exactly k subsets in ¢ have a common element.
The total number of distinct (m, k)-unitary collections on a set of size n is called the (m, k)-unitary intersec-
tion number of n, denoted by fi(p, 1) (1). This study aims to derive a formula for 1, ) (n) in the specific
cases, where k = m and k = m — 1. Additionally, we establish recurrence relations, explicit formulas, and
exponential generating functions for these two cases to better understand the structural properties of such

collections.
2020 Mathematics Subject Classification. 05A05; 05A10; 05A15; 05A18; 05A19; 11B73.
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1. INTRODUCTION

In many fields of mathematics, such as combinatorics and optimization, understanding the intersec-
tion properties of sets is fundamental to solving real-world problems [1]. Specifically, in Enumerative
Combinatorics which is primarily concerned with counting the elements contained in finite sets [2],
often relies on these properties. Finite sets and intersection properties have been the subject of extensive
study in mathematics over the past several decades. In 1960, a study introduced the Sunflower Lemma
(also known as the A-System Lemma), which demonstrated that a large collection of sets must contain
subfamilies where all pairwise intersections share the same common element called "core". [3]. Around
the same time in 1961, a theorem by [4] established sharp bounds on the size of pairwise intersection

among k-element subsets. In the later 1980s, a study by [5] explored how certain intersection sizes
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(e.g., exactly one common element) could be avoided and what limits this imposes on the collection
size. This field of concept expanded in the twentieth century to include algorithmic and enumerative
techniques contributing to the counting and classification of intersecting and cross-intersecting families,
where two disjoint set families intersect across every pair [6], [7], [8] and [9].

This paper investigates the intersection properties of m distinct subsets from n objects such that each
pair of subsets has only one common element. This study of intersection collections is significant in
numerous mathematical and applied fields. For example, in information theory, unitary intersections
help design error-correcting codes with specific redundancy properties to improve data transmission
reliability. Similarly, in network theory, understanding these collections helps in constructing efficient
and resilient networks with controlled redundancy and minimal conflicts [10], [11], [12], [13]. By
establishing fundamental properties, deriving formulas or bounds, and characterizing these collections
under various conditions, this research contributes to the broader understanding of combinatorial

structures and their applications in real-world problems.

2. PRELIMINARIES

This section presents the definitions and theorems in Combinatorics and Discrete Mathematics
that are necessary for this paper. These concepts were taken from [14], [15], [16], [17], [18], and [19].
Theorem 2.1 [14] (Binomial Combination) Given r,n € Z with 0 < r < n. Let A be a set of n distinct

objects. An r-combination of A, denoted by (:f) or C)', is the number of r-element subsets of A defined

by:

r

(n) B T,(%lr), fo<r<n

0 ifr>norr<0
This will count the number of ways to select r elements from n distinct elements, where the order does
not matter.
Theorem 2.2 [14] (Permutation)
Let A = {ai,az,...,a,} be a given set of n distinct objects. For any r,n € Z with 0 < r < n, an
r-permutation, denoted by P(n, ), is the number of ways of arranging any r of the objects of A. This is

called a permutation of A4, and is defined by:

n!
P(n,r) = C=
By convention,0! = 1. Note that P(n,0) = 1 and P(n,n) = nl.
This will count the number of ways to select r elements from n distinct elements, where the order
matters.

Theorem 2.3 [15] (Recurrence Relation on Stirling Numbers)

The stirling number of the second kind S(n,m) is the number of partitions of n elements into m
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nonempty subsets. It is positive if 0 < m < n, and zero for other values of m. It satisfies the recurrence
relation:

S(n,m)=m-Sn—-1,m)+Sn—1,m—1)
This will compute Stirling number of the second kind S(n, m) using the preceding number S(n — 1, m).
Theorem 2.4 [16] (Exponential Generating Function of the Stirling Number)
The exponential generating function of the Stirling numbers of the second kind is given by:

Gon(z) = Z S(n,m)x™ _ (e —1)™

n! m)!

This will express and infinitely manipulate combinatorial sequences of Stirling numbers.
Theorem 2.5 [17] (Explicit Formula on Stirling Number)

The Stirling numbers of the second kind can also be computed using the explicit formula:

S(n,m) = n];!g)(_l)m_j <T>]n

This will Count all functions from an n-element ordered set to a m-element as codomain that use all m
values by dividing by m/!.

Theorem 2.6 [18] (Stirling Expansion of z™)

Let 0 < k < n, then;

min{z,n}
"= > S(n,k)P(z,k)
k=0
Where S(n, k) is the number of ways to partition an n-element ordered set into non-empty & unordered
subsets, and P(x, k) is the number of ordered arrangement in assigning non-empty & unordered subset
to  number of partitions.
Theorem 2.7 [19] (Exponential Function) The exponential function e” is defined for all real or complex

numbers z by the infinite series:
o .k
x
r PR
€= Z k!
k=0
This series converges absolutely for all z € R (and C), and defines an analytic function on the entire

real (or complex) line.

3. MAaIN Resutts

This section defines a new concept of counting the number of collections of m subsets from n-element
set S with the condition that the pairwise intersection of m subsets has only one element and the union
of all sets is equal to S. Analogously, this can be done by counting the number of ways of forming
subsets from n distinct objects into m distinct boxes, provided that each box has one common element

with the other boxes. This number is known as (m, k)- Unitary Intersection Number, where £ is the
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maximum number of boxes that have exactly one common object. Additionally, k may vary depending
on m. Consequently, k can be m, m — 1 up until two only, since we cannot partition n objects into less
than two box. In this paper, we focus on (m, m)- Unitary Intersection Number and (m, m — 1)- Unitary
Intersection Number.

Now, we will formally define (m, k)- Unitary Intersection Number in partitioning n distinct elements
into m subsets, with k as the maximum number of subsets that have one common element with the
others.

Definition 3.1: Let 1 < m <n, S = {1,2,...,n},and let ( = {A; : A; C Sand 1 < i < m}. The
collection ( is called a Unitary Intersectionin Sif S = J"; A;,and [A;NA;| =1foralll <i< j <m.
The index of (, denoted by ¢((), is defined by:

t(¢) =max < |{']: ¢ € ¢and ﬂA =1

Aec’
Let 2 < k < m < n. The (m, k)-unitary intersection number in S = {1,2,...,n}, denoted by

(k) (S) OF fi(m, 1y (1), is defined by:
(m.k)(n) = [{¢ : ( is a unitary collection in S, [(| = m, and ¢(¢) = k}|.
Remark 1: Suppose ( is a unitary intersection collection in S. Then

2 <u(¢) < [¢]-

3.1. (m,m)-Unitary Intersection Collection.
This section establishes a formula for the (m, m)-Unitary intersection Number. Moreover, a recur-
rence relation, exponential generating function, and an explicit formula for this number are obtained.

Theorem 3.1.1: Let 2 < m < n. Then,
fimmy(n) =n[S(n—1,m)+ S(n—1,m—1)],

where S(n, m) denotes the Stirling number of the second kind.
Proof: Suppose S = {1,2,...,n}and ( = {A4; : A; C Sand 1 < ¢ < m} is a unitary intersection in S.
Then:

S=|JA and [4;NAj|=1foralll<i<j<m.
i=1
Note that |(| = m and ¢(¢) = m. By definition:

u¢) =max{ || ¢ C¢and | () A =1p =m.
Aed’

This implies that (' = ¢, and therefore |[A; N Ay N--- N A, | = 1.
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Now, let;
Br=A1—Ay— A3 — - — Ay,
By =Ay— A1 — A3 —---— A,
By 1=An1—-A1—Ay—---—Ap,
Bm:Am_Al_A2_"'_Amfl-

Now, consider the following cases:

Case 1: B; # () for all i, where 1 <i <m

Note that the index of ¢ is the common intersection A1 N AsN---N A,, and it contains a fixed element
from S. Since |S| = n, there are n choices for this common element. The remaining n — 1 elements of S
must be distributed among m pairwise disjoint subsets By, B, ..., By, of S, (see Table 1). This can be

done in S(n — 1,m) ways (where S(n — 1, m) denotes the Stirling number of the second kind).

Sets Discussion Choices

AiNAsnN---NA, If we select and assign one fixed element n choices
from set S with n elements in this set, then

there are n ways to do this.

By
By
The remaining n—1 elements of set S must S(n—1,m)
be distributed to m number of sets, this
Bin—1 case satisfies the condition that the pair-
B wise intersection of sets in the collection
m

has only one element. This can be done in

S(n — 1, m) ways.

TasLE 1. The number of choices when B; # ()

Thus, there are n - S(n — 1, m) number of unitary intersections in this case.
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Case 2: There exists 7 such that B; = ()
Suppose i is unique, then the common element is again chosen from S (still n ways), but the

remaining n — 1 elements are assigned to only m — 1 subsets. Thus, there are S(n — 1, m — 1)ways. (see
Table 2)

Sets Discussion Choices

AiNAsnN---NA, If we select and assign one fixed element n choices
from set S with n elements in this set,

then there are n ways to do this.

The remaining n — 1 elements of set

B, S must be distributed to m — 1 number
of sets, since B,, is not assigned. This S(n—1,m-—1)
By case also satisfies the condition that

the pairwise intersection of sets in the
collection has only one element. This can
B be done in S(n — 1, m — 1) ways.

(B, is not assigned)

TabLE 2. The number of choices when there exists ¢ such that B; =

Hence, this case have n - S(n — 1, m — 1) unitary intersections.

However, if there are two empty collections B; and B;, where i # j then A; = A;. This contradicts
the requirement that subsets in a unitary intersection collection must be distinct and it has one common

element.

Therefore,
Hommy(m) = [+ §(n = 1,m)] - [n - S(n — 1,m — 1))
=n[S(n—1,m)+S(n—1,m—1)]
g

In the next theorem, we derive a recurrence relation for fi(,, ,,)(n). This is necessary for constructing

a sequence of (m, m)-unitary intersection numbers.
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Theorem 3.1.2: Let 2 < m < n. Then the recurrence relation for the (m, m)-unitary intersection number
is given by:

m(n + 1) fi(m,m)(n) + n(n +1)S(n —1,m — 2)

Proof: By Theorem 3.1.1, p(y, ) (n+1) = (n+1) [S(n,m) + S(n,m — 1)], where S(n, m) and S(n, m—
1) are stirling numbers of the second kind, then it satisfies the recurrence relationship.

Hence, by Theorem 2.3,

tmmy(n+1) = (n+1)[m-S(n—1,m)+S(n—1,m—1)
+(m—1)-Sn—1,m—1)+S(n—1,m — 2)]
(Applying Distributive Proprty over subtraction)
=n+1)m-Sn—1,m)+Sn—-1,m—-1)+m-Sn—1,m-—1)
—S(n—1,m—-1)+Sn—-1,m—2)] (Combining like terms)
=Mn+1)[m-Sn—1,m)+m-Sn—-1,m—-1)+Sn—-1,m—2)]
(Distributing n + 1)
=m+1m-Snh—1,m)+(n+1)m-Sn—1,m—-1)+ (n+1)S(n—1,m —2)

(Grouping and factoring out (n + 1) - m and dividing n)

= (n—l—nl)m . u(m,m)(n) +(n+1)Sn—1,m-—2)
m(n + Dfignamy (0) + (0 + DS(n = Lm —2)

n

O
In the next result, we derive an exponential generating function for ji(,, ,,)(n). This is necessary for
creating an entire sequence of (m, m)-unitary intersection number into a more formal and analytic

power series.

Theorem 3.1.3. Let 2 < m < n. Then the exponential generating function for the (m,m)-unitary

intersection number is given by:

- :umm) . (em—i-m— 1) (ex — 1)m_1
Z m)!
Proof: By Theorem 2.4, we have,
X Hm " K n[S(n—1,m)+Sn—1,m—1)]a"
G mm) Z B n!

n=m n=m
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Expanding the function, we get

i M(mm)(n)iﬂn ~ m[S(m—1,m)+ S(m—1,m—1)]z™

n! m!
n=m

(m + 1) [S(m,m) + S(m,m — 1)] z™ !

(m+1)!
+ (m+2)[S(m+1,m)+ S(m+1,m — 1)] 2™*+?2
(m +2)!
+ (m+3) [S(m+2,m)—|—5(m+2’m_1)]xm+3 L
(m+ 3)!

(simplifying terms by factoring the denominator)
[S(m—1,m)+S(m—1,m—1)]z™
N (m—1)!
[S(m,m) + S(m,m — 1)] a™*!
* m!
[S(m+1,m)+ S(m+1,m — 1)] 2™*2
+
(m+1)!
[S(m +2,m)+ S(m+2,m—1)] ™3
(m+2)!

(separating terms)

2™S(m—1,m)+z™S(m—1,m—1)

(m—1)!
™S (m,m) + 2™ LS (m,m — 1)
+ m!

™28 (m +1,m) + 2" 2S(m+1,m — 1)
(m+1)!

™38 (m +2,m) + 23S (m +2,m — 1)

+

(m+2)!

(factoring out « from each term)

S(m,m)x™  S(m +1,m)a™*!
m! (m+1)!
S(m—1,m—1z™ S(m,m—1z™ S(m+1,m—1)zm"!
+a + + T
(m—1)! m! (m+1)!

(Recognizing generating functions of stirling numbers by Theorem 2.4)

> nm—l
—ﬂfZ D T
e’ —1 ex—lm_l
( m!) + '((m—)l)!
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Factoring out x - %

- H(m,m) (n)xn (ex - l)mil et —1

=x- 1
7;1 n! v (m—1) m *
(e* —1) e’ +m—1
= -
(m—1)! m
Therefore,
- :u(mm)( )1: (em"’_m_l)(e _1)

U
Now, we derive an explicit formula for fi(,, ;) (n). This is necessary for computing directly (1, m)-
unitary intersection number for large value of n.
Theorem 3.1.4: Let 2 < m < n. Then,
B I
=0
Proof: By, Theorem 3.1, ji(,, ) (n) = n[S(n — 1,m) + S(n — 1,m — 1)]. Moreover, applying the explicit

stirling number formula in Theorem 2.5 to both S(n —1,m) and S(n—1,m — 1),then;
fmm) (1) = n[S(n —1,m) + S(n — 1,m —1)]

S () £ ()

J

m Tl(*].)m_J(T)jn_l n(*l)m_j_l(mjl)jn_l
| |

+
= m! (m—1)!

(Combining into a single rational expression by factoring

_ n - m—i (?)jn_l m—1\ , 4
“mer (- (7))

J

(m—l)!)

(By Theorem 2.1, and multipying both numerator and denominator by m)
- m—j m'(l_m+j)> -n—1
72 (-1 Ol I
'FO = (i
Thus, by Theorem 2.1;

= g (5) (2222

j=0
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3.2. (m,m — 1)-Unitary Intersection Collection.
In this section, we derive a formula for (m, m — 1)-Unitary intersection number and obtain some
properties.

Theorem 3.2.1: Let 2 < m < n. Then,

(1) M(m,m—l)(n) =n,ifn=m

(ii) ,u(mm,l)(n) = n(;‘l__ll) nilnS(n —m,i) - P(m,1), if [%1 < 2.

(ili) pomm—1)(n) = n(g;ll) i_n:lS(n —m,i) - P(m,i),if [ 2] > 2.
Proof: Note that +(¢) = ma;_{K’\ : (' € ¢and [N ge Al = 1} = m — 1. This implies that (' C ¢,
ie,|(AiNAsN---NAn_1)\ An| = 1and it contains a fixed element from S.
(i) Suppose n = m. Since |S| = n, then there are n choices to select a fixed element in S. Note
that the disjoint collections |A; N Ay,| = [A2 N Apy|...|Am—1 N A | = 1. Consequently, we are
distributing n — 1 elements to m — 1 sets, thatis, S(n — 1,m — 1) = 1. (See Table 3.).

Sets Discussion Choices

(A1NAsn---NAn_1)\4n If we assigned one fixed element from S in n

this set, then there are n number of ways to

do this.
A1 0 A The remaining n — 1 elements must be S(n—1,n—1)
Az N A, assigned to m — 1 number pairwise intersec-
tion to satisfy the condition that there must
Am—1N A, be one common element. Thus, there are

S(n —1,m — 1) ways to do this. Since n = m

then there must be S(n — 1,n — 1) = 1 way.

TasLE 3. The number of choices when n = m
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Thus,
H(m,m—1) (n) =n
(ii) Suppose [2] < 2,iem < n < 2m. Now consider the table,
Sets Discussion Choices
(AiNAsn--NAn_1)\ An If we assigned one fixed element from S in n
this set, then there are n number of ways to
do this.
A1 Am The remaining n — 1 elements must be (™)
A2 Am assigned to m — 1 number of pairewise
intersection to satisfy the condition that there
Am—10Am must be one common element. Thus there are
(7~} to do this.
A1\ (A2 UA3U---UA,)
A\ (A4 UA3U---UA)
Since there are already a total m number of (See next Table)

Am_1\ (A1 UAsU---UAp)
ATrL\(AIUAQU"'UAm—l)

elements assigned in the above sets, then there
are still remaining n — m elements to be as-

signed into m sets.

TasLE 4. Distribution of n — m elements into m subsets when [ 2] < 2

n
m
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Now, in distributing n — m elements to m number of sets, consider the following table,

Number of sets Discussion Choices

to be assigned

1 If n — m elements are assigned to only one set, then S(n—m,1) - P(m,1)
this can be done in S(n—m, 1) ways. Meanwhile, since
there are m pairwise disjoint sets, the n — m elements
can also be assigned to one of them in P(m, 1) ways.

Hence, this case has S(n — m, 1) - P(m, 1) choices.

2 If n — m elements are split and assigned to two sets, S(n—m,2)- P(m,2)
then this can be done in S(n — m, 2) ways. Since there
are m disjoint sets, we can choose 2 from them in
P(m,2) ways. So this case has S(n — m,2) - P(m,2)

choices.

n—m If n — m elements are split and assigned to n — m sets, | S(n—m,n—m)-P(m,n—m)
then this can be done in S(n — m,n — m) ways. The
sets can be chosen from m disjoint sets in P(m,n —m)
ways. Hence, this case has S(n—m,n—m)-P(m,n—m)

choices.

TasLE 5. Distribution of n — m elements into n — m subsets

Column three shows the different cases when selecting the number of sets to be assigned with
n—m
n—m remaining elements. This suggests that thereare ) S(n—m,i)-P(m, i) number of ways.
i=1

By summaring all the choices in the two tables, thus;

n—1Y\ "~ . rn
m’U/(m7m71)(n) :n(m_ 1) ; S(n_my'é) 'P(m,l),lf ’7%—‘ S 2

(iii) Suppose [Z] > 2,ien > 2m. Now considering back Table 4, we are still left with n — m

m

elements, but in this case, it will be distributed to m number of sets (see Table 6).
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Number of sets Discussion Choices

to be assigned

1 If n — m elements are assigned to only one set, then S(n—m,1)- P(m,1)
this can be done in S(n—m, 1) ways. Meanwhile, since
there are m pairwise disjoint sets, the n — m elements
can also be assigned to one of them in P(m, 1) ways.

Hence, this case has S(n —m, 1) - P(m, 1) choices.

2 If n — m elements are split and assigned to two sets, S(n—m,2) - P(m,2)
then this can be done in S(n — m,2) ways. Since
there are m disjoint sets, we can choose the two sets
in P(m,2) ways. So this case has S(n —m,2) - P(m,2)

choices.

m If n — m elements are split and assigned to m sets, | S(n—m,n—m)-P(m,n—m)
then this can be done in S(n — m, m) ways. The sets
to be assigned can be chosen from m disjoint sets in

P(m,m) ways. Hence, this case has S(n — m,m) -

P(m,m) choices.

TaBLE 6. Distribution of n — m elements into m subsets when [ w > 2

n
m

Column three shows the different cases when selecting the number of sets to be assigned with

n — m remaining elements. This suggests that the number of ways is > S(n —m,i) - P(m,1).

i=1
Therefore, considering back Table 4,
n—1Y) «— ' o rn
’Ul(mvmfl)(n) = n<m _ 1> ;S(n —m, 7/) . P(m,Z),lf [E-‘ > 2

O
Now, we proceed by deriving an explicit formula for s, ,,—1)(n).This is necessary for computing
directly (m, m — 1)-unitary intersection number for large value of n.
Theorem 3.2.2: Let n > m. Then forall2 < m < n,

nlmn—m

(n—m)!(m —1)!

H(m,m—1) (n) =

Proof: Suppose n = m. Then, by Theorem 3.2.1 (i),
nlmn=m

(n—m)l(m —1)!

H(m,m—1) (n) =
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Note that 2 < m < n, which means that m must be at least 2 and n > 2. This implies that either
[n/m] <2or [n/m] > 2.
Suppose that [n/m] < 2, by Theorem 3.2.1 (ii),

ey (1) = (”1)35?5 )P(m, 1)

since [n/m] < 2, then n < 2m. Consequenlty, n —m < m. This further implies that min{n —m,m} =
n —m.

By Theorem 2.6,

n—1 n—m
H(m,m—1) (n) =n m—1 m :
Suppose that [n/m] > 2. by Theorem 3.2.1 (iii),

() = (”‘1)235 P(m, )

Since [n/m] > 2, then n > 2m. Consequenlty, n — m > m, so min{n — m, m} = m. Hence, without

loss of generality, by Theorem 2.6,

n—1 —m
H(m,m—1) (n) = 7’L< )mn :

m—1
Now, simplifying:
_ (n — 1)' n—m
Homan-—1) () =1 S =1 ™
nlmn="m

C (n—m)!(m— 1)

O
Here, we derive a recurrence relation for zi(,,, ,—1)(n). This is necessary for constructing a sequence
of (m, m — 1)-unitary intersection number.

Theorem 3.2.3: Let 2 < m < n. Then,

m(n + 1)
M(m,m—l)(n +1) = n—mo1 M(m,m—1)<”>-
Proof: By Theorem 3.2.2, we have:
n!m"=™m

M(m,m—l)(n) = (n — m)'(m _ 1)[
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Thus,

(n + 1)!mn—m+t
n—m+1)(m—1)!
mm™ ™ (n + 1)n!

(n—m+1)(n—m)!(m—1)!

B m(n+1)m" "n!

C(n—m+1)(n—m)(m-1)

m(n +1) y m"~"nl

n—m+1 (n—m)l(m-—1)!
m(n+1

- n—(m—i—)l s

M(m,m—l)(n + 1) = (

(m,m—1) (n)

O

Lastly, we derive an exponential generating function for fi(,, ,,—1)(n). This is necessary for creating

an entire sequence of (m,m — 1)-unitary intersection numbers into a more formal and analytic power
series.

Theorem 3.2.4: Let 2 < m < n. Then,

[e.e]

Hm,m—1 (n)xn x™m
G -~ — ) — mx
(m,m 1)(33) — n! (m — 1)!6
Proof: By Theorem 2.4, we have
= n! = (n—m)!(m—1)!
1 i m" "My
(m—1)! =~ (n—m)!
Now, let K = n — m. So, we have:
> Pmm—1(n)z™ 1 > mbkgmtk
= n! (m—1)! — k!
1 = mbam gk
" (m—1)! D !
k=0
xm mFak
~ (m—1) !
(m —1)! — k!
o i (ma)k
~ (m—1)! k!
k=0
(By Theorem 2.7)
xm mx

= -1
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Therefore,

> (n)z"™ x
Gm,mfl(w) _ Z Hm,m—1 _ ema:

n=m

3.3. (m,2)-Unitary Intersection Collection.
In this section, we derive a formula for (m, 2)-Unitary intersection number and obtain some proper-
ties.

Theorem 3.3.1: Let 2 < m < n. Then,

(i) H(m,2) (n) =0,ifn < (TQn)
(ii) H(m,2) (n) = 1y, ifn = ("21)

(i) sy 1) = ZEL LSS 50— (3),8) - P )i = (3) <m

() ony () = PP S (3),)- POm. )] i = (3) > m.

Proof: Note that () = Ir:ax{|g’] 1 ¢ C Cand |(e Al = 1} = 2. This implies that ¢ C ¢,
ie, |41 NAy| =|42N Ayl = ... = [An_1 N Ap| = 1. Hence there are ('}') number of distinct pairs,
A; N Aj thatis,

Bl:(AlﬂAQ)\(A3UA4U"'UAm)

BQZ(AlﬁAg)\(AQUA4U"'UAm)

By—1 = (AlﬂAm)\(AQUAgJ,U"'UAmfl)
Bm+1:(AgmAg)\(A1UA4U"'UAm)

Bm+2:(AQﬂA4)\(A1UA5U-"UAm)
Bop o = (AQﬁAm)\(AlLJAgU"'UAm_l)

B(m)_2 = (Am,Q N Amfl) \ (A1 UAyU---U Am)

2

B(m)_l = (Am_g N Am) \ (Al UAsU---U Am_1)

2

B(m) = (Am_1 N Am) \ (Al UAsU---U Am_z)

2

Each of these sets must be assigned with one element from S to form a unitary collection in S.

m

(i) Suppose n < (2) and there exists unitary collection ( = {A4;,As,---A,,}. Note that

there are (")) number of distinct pairs A; N A;. Now, n < (%), hence, there exists i and j
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such that A; N A; = (. This contradicts to the condition that for all i and j, |4; N 4;| = 1.

Thus, in the case, there is no unitary collection that can be formed. Therefore, 1i(;,, 2y(n) = 0. [

(ii) Suppose n = (). Now, consider the table below,

Sets Discussion Choices
B Now we assign one fixed element from S in n
this set, and there are n number of ways to do
this.
B The remaining n — 1 elements must be (n—1)
Bs assigned to (}) — 1 a number of disjoint (n—2)
pairwise intersections. Since, n = (') then
B () each of the remaining distinct pairs has exactly 2
one element. 1

TasLE 7. The number of choices when n = ()

Since (¢ is an unordered collection of subsets in S and |{| = m, then there are m! collections

| . . . .
treated as one. Thus, there are .*; number of unitary collections in this case.

Therefore,

n!

Hm,2)(n) = poor
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(iii) Suppose n > ('y). This implies that either n — ('y) < morn — (%y) > m. Now, suppose we

have n — (")) < m. Consider the next table.

Sets Discussion Choices
B, When we assign one fixed element from S in n
this set, then there are n number of ways to
do this.
B2 The remaining n — 1 elements must be P(n%(,g)fl)
Bs assigned to () — 1 a number of disjoint
pairwise intersections. Since, n > (') then,
B(m there are P(n — 1, (') — 1) ways to do this.
Note that there are m! number of identical
collections. Hence,P(n — 1, ('}') — 1) must be
divided by m!.
A1\ (AU AzU---UA,) Since there are already (7)) number of
A\ (A UA3U---UA) elements assigned in the above sets, then (See Table 9 and 10)
there are still remaining n — (") elements to
A i\ (A UAsU---UA,) be assigned into n — (') sets.
An\ (A1 UAU---UA;, 1)

TasLe 8. The number of choices when n — (%) < m
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Number of sets Discussion Choices

to be assigned

1 If n — ('}) elements are assigned to only one set, then Stn—(3),1)- P(m,1)

m

this can be done in S(n — (7

), 1) ways. Meanwhile,
since there are m pairwise disjoint sets, the n — () el-
ements can also be assigned to one of them in P(m, 1)

ways. Hence, this case has S(n — (%),1) - P(m,1)

choices.

2 If n — m elements are split and assigned to two sets, Stn—(3),2) - P(m,2)

m

then this can be done in S(n — (7}

),2) ways. Since
there are m disjoint sets, we can choose the two sets in
P(m, 2) ways. So this case has S(n — (%), 2) - P(m,2)

choices.

n— () If n — (") elements are split and assigned ton — (%) | S(n — (), m) - P(m,n — (7))
sets, then this can be done in S(n— (), n— (")) ways.
The sets to be assigned can be chosen from m disjoint

setsin P(m,n— (}')) ways. Hence, this case has S(n —

(3).n— (%)) - P(m,n — (3)) choices.

TasLE 9. Distribution of n — (') elements into n — (') subsets whenn — ('}') <m

Column three shows the different cases when selecting the number of sets to be assigned

with n — (")) remaining elements. This suggests that the number of ways is nz(2 Stn— ("), k)-
P(m, k). =
Therefore,
P—1,(7) -1 "& m
H(m2)(n) =T oy : 2 S(n — <2>,k) P(m, k)
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(iv) Suppose n — (3') > m. Now considering back Table 8, we are still left with n — (7}') elements,

but in this case, it will be distributed to m number of sets.(see Table 10).

Number of sets Discussion Choices

to be assigned

1 If n — (") elements are assigned to only one set, then Stn—(3),1) - P(m,1)

m

this can be done in S(n — (2

), 1) ways. Meanwhile,
since there are m pairwise disjoint sets, the n — () el-
ements can also be assigned to one of them in P(m, 1)
ways. Hence, this case has S(n — (7),1) - P(m,1)

choices.

2 If n — m elements are split and assigned to two sets, S(n—(%),2) P(m,2)
then this can be done in S(n — ('),2) ways. Since
there are m disjoint sets, we can choose the two sets in
P(m, 2) ways. So this case has S(n — (%), 2) - P(m,2)

choices.

m If n — (") elements are split and assigned to m sets, S(n— (%), m)- P(m,m)
then this can be done in S(n — ('), m) ways. The sets
to be assigned can be chosen from m disjoint sets in

P(m,m) ways. Hence, this case has S(n — (Z"), m) -

P(m,m) choices.

TasLE 10. Distribution of n — (') elements into m subsets when n — (%) > m

Column three shows the different cases when selecting the number of sets to be assigned with
n— (%) remaining elements. This suggests that the number of waysis Y. S(n— ('), k)-P(m, k).
k=1
Therefore,
Pn—1,(") -1) & m
H(m,2)(n) = 1 m(,Q) -ZS(n— <2>,k)-P(m,k:)

=1

k
— @)k) - P(m, k)

_ P(n, ('2)) ZS(”
k=

m
1
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Now, we proceed by deriving an explicit formula for p(,, 2)(n).This is necessary for computing
directly (m, 2)-unitary intersection number for large value of n.

Theorem 3.3.2: Let n > m. Then forall2 < m <n,

nl(m"~ L)
H(m,2)(n) m'(n _ m(n;fl) )‘
Proof: Suppose n = (). Then, by Theorem 3.3.2 (ii),
m(m—1)
nl(m"™ " 2
H(m,2)(n) - m'(n m(n;fl))‘
n!m”_(?)
mi(n— (7))
TEEAY
n!
T ml

Suppose that n > ('}'). This implies that either n — (") < morn — ('}) > m. Now, letn — ('}) < m, by
Theorem 3.3.1 (ii),

n m nf(gl) m
#(mz)(n):L(z))' > 5("—< >,kf)-P(m,k)

k
since n — ('y) < m, this implies that min{n — ('), m} =n — (7).

By Theorem 2.6,

H(m,2)(n) = m

Suppose that n — (}') > m. by Theorem 3.3.1 (iv),

H(m.,2)(n) = P(L(.Q)) Y Sn— (?) k) - P(m, k)
k=

m!
1
Since n — (")) > m, then min{n — ("), m} = m. Hence, without loss of generality, by Theorem 2.6,

Hm,2) () = wm”_(m))-

Now, simplifying:
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Here, we derive a recurrence relation for fi(,, 2)(n). This is necessary for constructing a sequence of
(m, 2)-unitary intersection number.

Theorem 3.3.3: Let 2 < m < n. Then,

2m(n +1)

Hm,2) (1 + 1) = oo mim —1) +2 1) (n).

Proof: By Theorem 3.2.2, we have:

nl(m"~ S
H(m,2)\1t) =
( ’2)( ) m!(n — m(rg_l))!

Thus,

(n -+ DY =F4)

mi(n — = 4 1))

~ m(m=1)

(n+ nm(m"™ 2 )
m!(n — W +1)(n — W)'

fi(m,2)(n+ 1) =

_m(m=1)

mn+1)m"~ " 2 nl

(n— ™=l 1) (p — 2Ly
_ m(n+1) m =5 )
n—w—l—l (n—%)!m!
2m(n+1)

T 2n— m(m —1)+2 Him.2) (1)
U
Lastly, we derive an exponential generating function for ji,,, 2)(n). This is necessary for creating an
entire sequence of (m, 2)-unitary intersection numbers into a more formal and analytic power series.

Theorem 3.3.4: Let 2 < m < n. Then,

n m(m—1)

N Mmzy(n)a™ e
G(m,?)(x) = Z n = €
=(%)

m)!
n

Proof: By Theorem 2.4, we have

Now, letk =n —

|
M2 3
=5

i :u'(m,Q)(n)xn . i

< n! m)!
n:(z) k=0
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1 — mkx@)xk
- EZ k!
k=0

m! k!
k=0
m(m—1) o k
o x 2 (mx)
 oml Z k!
k=0
(By Theorem 2.7)
m(m—1)
_ x mx
 oml €
Therefore,
[o%) m(m—1)
H(m,2 (n)z" T 2
Gnz(a) = Y. = 7)1! =
n=(%)

g
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