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Abstract. A new and flexible family of continuous probability distributions, Power Exponential–G family
is presented in this paper. The proposed family exploits an additional shape parameter to improve the
flexibility of modeling input data structures in practice and extends the basic distribution with a power
exponential transform. This formulation offers a unified approach for developing new models that can
accommodate a wide range of distributional forms, such as skewness, heavy tails and different hazard
rate shapes. The general mathematical properties of the Power Exponential–G family are investigated in
details, such as cumulative and probability density functions, moments, quantile function and reliability
measures. To demonstrate the application of the developed framework a particular family member, namely,
the Power Exponential Weibull distribution is derived and studied. Maximum-likelihood estimates of the
parameters and statistical performance are assessed both theoretically and bymeans of Monte Carlo studies
for a variety of parameter settings and sample sizes. To demonstrate practical applicability, the Power
Exponential Weibull distribution is fitted to several real lifetime and reliability datasets and compared with
well-known competing models. The comparative results, based on information criteria and goodness-of-fit
statistics, reveal that the new model provides a more accurate and adaptable representation of empirical
data.
2020 Mathematics Subject Classification. 62E10, 62N05, 60E05.
Key words and phrases. power exponential Weibull distribution; maximum likelihood estimation; Monte
Carlo simulation; reliability analysis; Weibull distribution.

1. Introduction

Modeling real data often calls for using more flexible probability distributions capable of accom-
modating various features such as asymmetry, heavy or light tails and different shapes of hazard
functions. Classical distributions such as the exponential, Weibull or normal are popular choices for
distributional assumptions but their intrinsic shapes seriously restricts the fitting of empirical data with
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different structure. In order to address this shortfall, generated families of probability distributions
have been developed, with baseline distributions created by the introduction of more parameters.
These approaches have become an active area of statistical research, particularly because of their wide
applicability in survival analysis, actuarial science, hydrology, economics, and reliability theory.

An early work in this direction is the Beta-generated family proposed by Eugene et al. [1] which
elevates the CDF of any base distribution by the Beta distribution. This concept received much attention
in printed literature. The Kumaraswamy-generated family was introduced by Kumaraswamy [2], which
provides the simpler quantile functions and numerical advantages of computational implementation
over those of the Beta-generated models. A more important generalization is the Marshall–Olkin
extended family [3] which added a shape parameter to determine the tilt of the hazard rate, bringing
an increased level of flexibility in modeling lifetime data.

alhussaini2018, After these first families, a number of other generators have also been proposed. For
example, the Exponentiated-G family [4] introduces a power parameter to model tail behavior adequate
for growth mixtures models, and the Transmuted-G family [5] alhussaini2018, uses the quadratic rank
transmutation mapping function to obtain more flexibility. The more general T-X family [6], bring
wealthy structured language to devise new families of distributions by utilizing transformations on a
baseline model. More recently, Cordeiro and Castro [7] introduced a general family that includes most
of these previous proposals. Many others have been proposed recently, to name just a few [8–10].

Although these families of generations have been found to be useful, they are often highly mathe-
matical in nature, which makes it difficult to derive statistical properties and characterized by complex
mathematical structures, such as special functions. In applications this can be a drawback for calculating
closed-form expressions of moments, moments generating function and simple parameter estimation.
Furthermore, they tend to be computationally intensive, particularly when dealing with large data sets
or in simulation studies; indeed many of these generator families are related to heavy computational
algorithmic techniques. Thus, families of distributions such ones which trade-off flexibility, tractability
and applicability are still sought after.

In this paper, we introduce a new family of continuous probability distributions within the class of
CDFG(x, ψ) and PDF g(x, ψ), that includes an extra shape parameter θ > 0 in any baseline distribution
with known parameters ψ. The new family in terms of its cumulative distribution function.

F (x;ψ, θ) =
(θ + 1)G(x;ψ) +G(x;ψ)− 1

θ + 1
, (1)

and the probability density function

f(x;ψ, θ) =
g(x;ψ)

θ + 1

[
(θ + 1)G(x;ψ) ln(θ + 1) + 1

]
. (2)

This is a previously unknown family with several intriguing properties.(1) The CDF and PDF can be
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expressed as relatively simple closed forms; namely, it appears that both the analytic and numerical
solutions are easier than those of many existing families. Secondly, the additional parameter θ can be
used to modulate distributions by an extra weight without imposing any substantial mathematical
complexity. Finally, as θ → 0, the proposed family reduces to the baseline distribution, and it is still
interpretable and related with the standard models.

The main objectives of this paper are: (i) to formulate and establish characteristics of the new family,
e.g., moments, quantiles, reliability measures in a rigorous manner; (ii) to provide estimation methods
with some reference towards maximum likelihood estimation; and (iii) to demonstrate its potential
applicability via simulation experiments and empirical studies when compared with other generator
families.

The rest of the paper is organised as follows. In Section 2, we exhibit the new family and establish
that it is indeed a probability distribution. Section 3 investigates some of its mathematical properties.
In Section 4, the new family was used with the two-parameter Weibull distribution to generate the new
Power Exponential Weibull distribution. Section 5 discusses estimation methods. The result of a Monte
Carlo simulation study is presented in Section 6. Section 7 provides real data applications. Section 8
offers final comments and future research directions.

2. Definition of the PE-G Family and Some of Its Properties

In this section, we formally define the proposed family of probability distributions, which we shall
refer to as the Power Exponential – G (PE-G) family.

2.1. Validity as a Probability Distribution. We verify that F (x;ψ, θ) defined in (1) is a valid CDF.

(1) Monotonicity: Since G(x, ψ) is non-decreasing in x, and (θ + 1)G(x,ψ) is an increasing function
in G(x, ψ), it follows that F (x;ψ, θ) is a non-decreasing function in x.

(2) Boundary conditions:

lim
x→−∞

F (x;ψ, θ) =
(θ + 1)0 + 0− 1

θ + 1
= 0,

lim
x→∞

F (x;ψ, θ) =
(θ + 1)1 + 1− 1

θ + 1
= 1.

Hence, F (x;ψ, θ) satisfies the boundary conditions of a valid CDF.
(3) Normalization: Integrating the PDF in (2),∫ ∞

−∞
f(x;ψ, θ) dx =

1

θ + 1

∫ ∞
−∞

[
(θ + 1)G(x,ψ)g(x, ψ) ln(θ + 1) + g(x, ψ)

]
dx.

With the change of variable u = G(x, ψ), du = g(x, ψ)dx, we obtain∫ ∞
−∞

f(x;ψ, θ) dx =
1

θ + 1

∫ 1

0

[
(θ + 1)u ln(θ + 1) + 1

]
du.
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Evaluating the integral,∫ 1

0
(θ + 1)u ln(θ + 1) du = (θ + 1)1 − (θ + 1)0 = θ,

and ∫ 1

0
1 du = 1.

Hence, ∫ ∞
−∞

f(x;ψ, θ) dx =
θ + 1

θ + 1
= 1.

Thus, f(x;ψ, θ) integrates to unity, confirming that it is a valid PDF.
Therefore, the functions (1) and (2) define CDF and PDF of the PE-G family respectively, a legitimate

family of probability distributions for θ > 0.

2.1.1. Special Cases and Limiting Behavior. The PE-G family includes the baseline distribution as a limiting
case. As θ → 0: Using the fact that limθ→0(θ + 1)G(x,ψ) = 1, we obtain

F (x;ψ, 0) = G(x, ψ), f(x;ψ, 0) = g(x, ψ).

Hence, the family reduces to the baseline distribution.

3. Some Statistical Properties of the PE-G Family

Here, we present some of the useful statistical properties of PE-G family which have been derived
here. These properties are quantile, moments, moment generating function, entropy survival and
hazard functions.

3.1. Quantile Function. Let U ∼ Uniform(0, 1). The quantile function Q(u) therefore satisfies, by (1),

u =
(θ + 1)G(x,ψ) +G(x, ψ)− 1

θ + 1
. (3)

Let us denote y = G(x, ψ) and we have:

(θ + 1)y + y = (θ + 1)u+ 1. (4)

So, the quantile function of PE-G family is

Q(u) = G−1(y), (5)

where y is the solution to (4).

3.2. Survival and Hazard Functions. The (survival) reliability function is definedas follows

S(x;ψ, θ) = 1− F (x;ψ, θ) =
θ − (θ + 1)G(x,ψ) −G(x, ψ) + 2

θ + 1
. (6)
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The hazard rate function is

h(x;ψ, θ) =
f(x;ψ, θ)

S(x;ψ, θ)
=

(θ + 1)G(x,ψ)g(x, ψ) ln(θ + 1) + g(x, ψ)

θ − (θ + 1)G(x,ψ) −G(x, ψ) + 2
. (7)

The reverse hazard function is

r(x;ψ, θ) =
f(x;ψ, θ)

F (x;ψ, θ)
=

(θ + 1)G(x,ψ)g(x, ψ) ln(θ + 1) + g(x, ψ)

(θ + 1)G(x,ψ) +G(x, ψ)− 1
. (8)

The cumulative hazard function is

H(x;ψ, θ) = − lnS(x;ψ, θ) = − ln

(
θ − (θ + 1)G(x,ψ) −G(x, ψ) + 2

θ + 1

)
. (9)

3.3. Moments. The r-th raw moment µ′r of the PE-G family is

µ′r = E[xr] =

∫ ∞
−∞

xr
(θ + 1)G(x,ψ)g(x, ψ) ln(θ + 1) + g(x, ψ)

θ + 1
dx,

=
E0[x

r]

θ + 1
+

ln(θ + 1)

θ + 1

∫ ∞
−∞

xr(θ + 1)G(x,ψ)g(x, ψ)dx. (10)

Where E0[x
r] is the r-th raw moment of the baseline distribution. To solve the last integral, we use the

expansion of the exponential function, which is a convergent series over real numbers, as follows:

(θ + 1)G(x,ψ) = eG(x,ψ) ln (θ+1) =
∞∑
k=0

ln(θ + 1)k

k!
(G(x, ψ))k. (11)

The integral in (10) can be expressed as follows:∫ ∞
−∞

xr(θ + 1)G(x,ψ)g(x, ψ)dx =

∞∑
k=0

ln(θ + 1)k

k!

∫ ∞
0

xr(G(x, ψ))kg(x, ψ)dx,

=

∞∑
k=0

ln(θ + 1)k

k!
E(xr(G(x, ψ))k)

=

∞∑
k=0

ln(θ + 1)k

k!
B(r,k).

(12)

Where B(r,k) is the probability-weighted moment of order (r, k) of the baseline distribution.
So, the r-th raw moment µ′r of the PE-G family is

µ′r =
E0[x

r]

θ + 1
+

ln(θ + 1)

θ + 1

( ∞∑
k=0

ln(θ + 1)k

k!
B(r,k)

)
. (13)

3.4. Moment Generating Function. The moment generating function (MGF)MX(t) of the (PE-G)
random variable X , is can derived as

MX(t) = E
(
etx
)

=

∫ ∞
0

etx
(θ + 1)G(x,ψ)g(x, ψ) ln(θ + 1) + g(x, ψ)

θ + 1
dx, (14)

Taking the Taylor series for the value etx, as following
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etx =
∞∑
r=0

trxr

r!
. (15)

By substituting Equation (15) into (14), then

MX(t) = E(etx) =
∞∑
r=0

tr

r!
µ′r. (16)

Where µ′r is the r-th raw moment µ′r of the PE-G family in (13).

3.5. Shannon Entropy. The Shannon entropy is defined as

H(x) = −E[ln f(x; θ)]. (17)

Substituting the PDF, we obtain

H(x) = −E[ln g(x, ψ)] + ln(θ + 1)− E
[
ln
(

1 + (θ + 1)G(x,ψ) ln(θ + 1)
)]
. (18)

3.6. Remarks.

• The PE-G family provides flexible hazard shapes (increasing, decreasing, bathtub, or upside-
down bathtub), depending on the parameter θ and the baseline distribution.
• Moments and MGFs can be expressed in terms of baseline moments and quantile functions,
which simplifies their derivation in practice.
• The entropy expression shows that the new parameter θ perturbs the baseline entropy by an
additive correction term.
• Simulation from the PE-G family can be carried out via inversion using the quantile function
(5).

4. The Power Exponential Weibull (PEW) Distribution

In this section, we demonstrate the flexibility of the Power Exponential-G (PE-G) family by applying
it to two-parameter baseline Weibull distribution [11] to obtain a two-parameter new distribution. The
newly formulated distribution is designated as the Power Exponential Weibull (PEW) Distribution.
We derive the cumulative distribution function (CDF), the probability density function (PDF), the
survival function, and the hazard function, and provide simplified expressions for moments and the
moment generation function (MGF).

Consider the Weibull distribution with rate parameter λ > 0, β > 0. The baseline CDF and PDF are

G(x;λ, β) = 1− e−(x/λ)β . (19)

g(x;λ, β) =
β

λ

(x
λ

)β−1
e−(x/λ)

β
, x ≥ 0. (20)

Therefore, through the combination of the CDF for the Weibull distribution and the CDF of the



Asia Pac. J. Math. 2026 13:1 7 of 25

Power Exponential-G (PE-G) Family in Eq (1), we obtain the CDF for the Power Exponential Weibull
(PEW) Distribution as follows.

FPEW(x;λ, β, θ) =
(θ + 1)1−e

−(x/λ)β − e−(x/λ)β

θ + 1
, x ≥ 0. (21)

The corresponding PDF is derived by differentiating Eq (21) with respect to x, resulting in:

fPEW(x;λ, β, θ) =
β

λ(θ + 1)

(x
λ

)β−1
e−(x/λ)

β

[
(θ + 1)1−e

−(x/λ)β

ln(θ + 1) + 1

]
, x ≥ 0. (22)

The Survival and Hazard Functions for the Power Exponential Weibull (PEW) Distribution are as
follows. By definition SPEW(x) = 1− FPEW(x), hence

SPEW(x;λ, β, θ) =
θ − (θ + 1)1−e

−(x/λ)β

+ e−(x/λ)
β

+ 1

θ + 1
. (23)

Thus, the hazard function is

hPEW(x;λ, β, θ) =

β
λ(θ+1)

(
x
λ

)β−1
e−(x/λ)

β
[
(θ + 1)1−e

−(x/λ)β

ln(θ + 1) + 1
]

θ − (θ + 1)1−e
−(x/λ)β

+ e−(x/λ)β + 1
. (24)

The subsequent figures illustrate the graphical representations of various parameter values selected
for the Probability Density Function (PDF) and the Cumulative Distribution Function (CDF) of the
new PEW distribution.

Figure 1. Plots of the PDF of the PEW distribution for different values of λ, β and θ.
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Figure 2. Plots of the CDF of the PEW distribution for different values of λ, β and θ.

4.1. Moments of the PEW Distribution. Here, we will discuss the moment of the order r about the
origin for PEW distribution, by using the general formula 13.

Let X be a random variable has a PEW distribution, and let r be a nonnegative intege, and let k be a
nonnegative integer. The probability weighted moment of order (r, k) for Weibull distribution,

βr,k = E
[
xr (G(x;λ, β))k

]
=

∫ ∞
0

xr
(
G(x;λ, β)

)k
g(x;λ, β) dx,

=

∫ ∞
0

xr
(
1− e−( xλ)

β)k β
λ

(x
λ

)β−1
e−( xλ)

β

dx.

(25)

Using the substitution t = (x/λ)β (so x = λt1/β , dx = λ 1
β t

1/β−1dt) one obtains the convenient
reduction

βr,k = λr
∫ ∞
0

t
r
β e−t(1− e−t)kdt. (26)

Here k is a nonnegative integer (k ∈ {0, 1, 2, . . .}) then expand (1− e−t)k by the binomial theorem:

(1− e−t)k =
s∑
j=0

(−1)j
(
k

j

)
e−jt.

which is a convergent series. Hence,∫ ∞
0

t
r
β e−t(1− e−t)kdt =

k∑
j=0

(−1)j
(
k

j

)∫ ∞
0

t
r
β e−(j+1)tdt,

= Γ(
r

β
+ 1)

k∑
j=0

(−1)j
(
k

j

)
(j + 1)

−( r
β
+1)

.

(27)

So for integer k,
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βr,k = λrΓ

(
1 +

r

β

) k∑
j=0

(−1)j
(
k

j

)
(j + 1)

−(1+ r
β
)
. (28)

And the moment of the order r about the origin for Weibull distribution is E0[x
r] = λrΓ

(
1 + r

β

)
,

then by Eq. (13), the r-th moment of PEW distribution is

µ′r =
λrΓ

(
1 + r

β

)
θ + 1

+
ln(θ + 1)

θ + 1

 ∞∑
k=0

 ln(θ + 1)k

k!
λrΓ

(
1 +

r

β

) k∑
j=0

(−1)j
(
k

j

)
(j + 1)

−(1+ r
β
)

 . (29)

4.2. Moment Generating Function of the PEWDistribution. LetX ∼ PEW(λ, β, θ) with PDF fPEW(x)

as defined in Eq. (22). The moment generating function is

MX(t) = E
[
etx
]

=

∫ ∞
0

etx fPEW(x) dx.

Introduce the change of variable

u = exp
(
−
(
x
λ

)β) ∈ (0, 1), x = λ(− lnu)1/β, dx = −λ
β

(− lnu)
1
β
−1du

u
.

With this transform, the PEW density simplifies so that fPEW(x) dx reduces to

fPEW(x) dx = − 1

θ + 1

(
(θ + 1) 1−u ln(θ + 1) + 1

)
du. (30)

Hence
MX(t) =

1

θ + 1

∫ 1

0
exp
{
tλ(− lnu)1/β

}(
(θ + 1) 1−u ln(θ + 1) + 1

)
du. (31)

Equivalently, with u = e−z (so z ∈ (0,∞) and du = −e−zdz), we obtain the more convenient form

MX(t) =

∫ ∞
0

e−z e tλz
1/β

[
ln(θ + 1) e−e

−z ln(θ+1) +
1

θ + 1

]
dz. (32)

Series representation. Expanding e tλz
1/β

=
∑∞

r=0
(tλ)r

r! zr/β and e−e
−z ln(θ+1) =∑∞

m=0
(− ln(θ+1))m

m! e−mz , the integrals in (32) yield∫ ∞
0

e−(m+1)z zr/β dz =
Γ
(
1 + r

β

)
(m+ 1) 1+r/β

.

Therefore,

MX(t) =
∞∑
r=0

Γ
(
1 + r

β

)
r!

(tλ)r

[
1

θ + 1
+ ln(θ + 1)

∞∑
m=0

(− ln(θ + 1))m

m! (m+ 1) 1+r/β

]
. (33)

The double series in (33) converges absolutely for all t in the domain whereMX(t) exists (see the
discussion below). Equation (33) is convenient for numerical evaluation: truncating at moderate r,m
provides accurate approximations.

Existence domain. Because the PEW tail is Weibull-type (i.e., behaves like exp{−(x/λ)β} up to a
bounded factor), the existence ofMX(t) for t > 0 follows the usual Weibull conditions:
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β > 1 : MX(t) exists for all t ∈ R,

β = 1 : MX(t) exists for t < 1/λ,

0 < β < 1 : MX(t) exists for t ≤ 0 (Laplace transform region).

In all cases,MX(0) = 1.

5. Maximum Likelihood Estimations of PEW Distribution Parameters

Let X1, X2, . . . , Xn be a random sample from the Power Exponential Weibull (PEW) distribution
with cumulative distribution function (CDF) and probability density function (PDF) given by

fPEW(x;λ, β, θ) =
β

λ(θ + 1)

(x
λ

)β−1
exp

[
−
(x
λ

)β] [
(θ + 1)1−exp[−(x/λ)

β ] ln(θ + 1) + 1
]
, x ≥ 0,

(34)
where λ > 0, β > 0, and θ > 0 are the scale and shape parameters, respectively.

Log-likelihood Function. Given a random sample {x1, x2, . . . , xn}, the likelihood function of the PEW
distribution is

L(λ, β, θ) =

n∏
i=1

fPEW(xi;λ, β, θ), (35)

and the corresponding log-likelihood function is expressed as

`(λ, β, θ) = n(lnβ − lnλ− ln(θ + 1)) + (β − 1)
n∑
i=1

ln
(xi
λ

)
−

n∑
i=1

(xi
λ

)β
+

n∑
i=1

ln
[
(θ + 1)1−exp[−(xi/λ)

β ] ln(θ + 1) + 1
]
. (36)

Maximum Likelihood Estimation. The maximum likelihood estimates (MLEs) (λ̂, β̂, θ̂) are obtained
by solving the system of nonlinear equations

∂`

∂λ
= 0,

∂`

∂β
= 0,

∂`

∂θ
= 0,

where each score function is given by differentiating `(λ, β, θ) with respect to the corresponding
parameter.

Since these equations do not admit closed-form analytical solutions, numerical optimization pro-
cedures such as the Newton–Raphson or BFGS algorithms are employed to obtain the MLEs. The
observed Fisher information matrix I(λ̂, β̂, θ̂) is computed as the negative of the Hessian matrix of `
evaluated at the MLEs. The asymptotic variance–covariance matrix of the estimators is then given by
I−1(λ̂, β̂, θ̂), and the corresponding standard errors are obtained from its diagonal entries.
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Statistical Properties. Under standard regularity conditions, the MLEs of the parameters of the PEW
distribution are consistent, asymptotically efficient, and asymptotically normally distributed. That is,

√
n



λ̂

β̂

θ̂

−

λ

β

θ


 d−→ N3

(
0, I−1(λ, β, θ)

)
,

where I(λ, β, θ) is the Fisher information matrix per observation. All numerical estimations and
optimizations reported in this paper were implemented in MATLAB R2022b.

6. Simulation Study

In this section, we implement a Monte Carlo simulation to evaluate the performance of the maximum
likelihood estimators (MLEs) for parameters of PEW distribution. In the simulation we can study the
bias, mean squared error (MSE) and efficiency of estimators when changing parameter settings and
sample sizes.

6.1. Simulation Design. The simulation experiment is performed as follows:

(1) Specify the replication size N of samples and sample size n.
(2) Setting the values of parameters (λ, β, θ) for all Scenario j.
(3) Generate N samples of size n from the PEW distribution using the inversion method through

(5).
(4) Calculate the MLEs (λ̂, β̂, θ̂) with a numerical optimizer for every sample.
(5) Add the estimates by all replications.

6.2. Performance Measures. The following performance measures are computed over N replications:
Mean Estimate.

λj =
1

N

N∑
i=1

λ̂
(i)
j , βj =

1

N

N∑
i=1

β̂
(i)
j , θj =

1

N

N∑
i=1

θ̂
(i)
j .

Bias.

Bias(λ̂j) = λj − λj , Bias(β̂j) = βj − βj , Bias(θ̂j) = θj − θj .

Mean Squared Error (MSE).

MSE(λ̂j) =
1

N

N∑
i=1

(
λ̂
(i)
j − λj

)2
, MSE(β̂j) =

1

N

N∑
i=1

(
β̂
(i)
j − βj

)2
, MSE(θ̂j) =

1

N

N∑
i=1

(
θ̂
(i)
j − θj

)2
.

6.3. Selecting parameter values and simulation results. Consider the four scenarios, Scenario 1:
(λ, β, θ) = (2, 3, 1.5), Scenario 2: (λ, β, θ) = (0.8, 2, 0.9), Scenario 3:(λ, β, θ) = (3, 1.2, 2.2) and Scenario
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4: (λ, β, θ) = (1.5, 4, 1.1). For n = 30, 50, 80, 100, 150, 200, 300, 500, 800, 1000, andN = 1000 replications,
we compute the mean estimates, biases, and MSEs for λ̂, β̂ and θ̂.

The results can be summarized in the following Tables 1, 2, 3 and 4, also in the Figures 3 and 4.

Table 1. Monte Carlo (Scenario 1): true (λ, β, θ) = (2, 3, 1.5).
n Mean λ Bias λ MSE λ Mean β Bias β MSE β Mean θ Bias θ MSE θ
30 1.9556 -0.0444 0.0529 3.0399 0.0399 0.3532 5.6318 4.1318 205.5931
50 1.9541 -0.0459 0.0474 2.989 -0.011 0.2386 5.2159 3.7159 180.6107
80 1.9391 -0.0609 0.0505 2.9552 -0.0448 0.2225 6.1441 4.6441 224.193
100 1.9548 -0.0452 0.0433 2.9635 -0.0365 0.1798 5.2312 3.7312 184.3133
150 1.9454 -0.0546 0.0396 2.925 -0.075 0.1458 4.4371 2.9371 89.4549
200 1.9483 -0.0517 0.0364 2.9376 -0.0624 0.1375 4.3296 2.8296 78.0594
300 1.9663 -0.0337 0.0293 2.9392 -0.0608 0.1093 3.4614 1.9614 48.3654
500 1.9636 -0.0364 0.0259 2.9301 -0.0699 0.0924 3.1777 1.6777 27.907
800 1.9733 -0.0267 0.0176 2.95 -0.05 0.0631 2.5408 1.0408 14.6998
1000 1.9917 -0.0083 0.0138 2.9855 -0.0145 0.0476 2.0691 0.5691 9.1757

Table 2. Monte Carlo (Scenario 2): true (λ, β, θ) = (0.8, 2, 0.9).
n Mean λ Bias λ MSE λ Mean β Bias β MSE β Mean θ Bias θ MSE θ
30 0.7646 -0.0354 0.016 2.0209 0.0209 0.1326 3.6444 2.7444 71.2195
50 0.7557 -0.0443 0.0159 1.9476 -0.0524 0.0972 5.1931 4.2931 185.9215
80 0.7492 -0.0508 0.0156 1.9145 -0.0855 0.0797 4.6827 3.7827 124.3122
100 0.7619 -0.0381 0.0123 1.9495 -0.0505 0.061 3.6863 2.7863 84.2532
150 0.7571 -0.0429 0.0128 1.9303 -0.0697 0.0659 3.7847 2.8847 81.3677
200 0.763 -0.037 0.0115 1.935 -0.065 0.0578 3.5059 2.6059 71.2822
300 0.7713 -0.0287 0.0087 1.9479 -0.0521 0.0406 2.5668 1.6668 29.388
500 0.7672 -0.0328 0.0092 1.941 -0.059 0.0401 2.9513 2.0513 46.9663
800 0.776 -0.024 0.0057 1.9526 -0.0474 0.0251 2.0023 1.1023 17.7805
1000 0.7878 -0.0122 0.0043 1.975 -0.025 0.0182 1.5201 0.6201 9.7176

Table 3. Monte Carlo (Scenario 3): true (λ, β, θ) = (3, 1.2, 2.2).
n Mean λ Bias λ MSE λ Mean β Bias β MSE β Mean θ Bias θ MSE θ
30 3.0952 0.0952 0.6797 1.2626 0.0626 0.0652 5.9499 3.7499 250.8881
50 2.9349 -0.0651 0.6078 1.209 0.009 0.0455 7.479 5.279 315.606
80 2.9505 -0.0495 0.5708 1.191 -0.009 0.0326 6.8743 4.6743 247.2792
100 2.9549 -0.0451 0.5868 1.1915 -0.0085 0.0341 7.1246 4.9246 285.655
150 2.9186 -0.0814 0.5262 1.1827 -0.0173 0.0288 6.2801 4.0801 169.206
200 2.9806 -0.0194 0.436 1.1906 -0.0094 0.0229 5.0988 2.8988 104.1694
300 2.9311 -0.0689 0.3837 1.1808 -0.0192 0.0195 4.6795 2.4795 65.8516
500 2.9546 -0.0454 0.2925 1.1833 -0.0167 0.0142 3.7562 1.5562 28.4988
800 3.0067 0.0067 0.2433 1.1944 -0.0056 0.011 3.1221 0.9221 17.2785
1000 3.0102 0.0102 0.2118 1.1964 -0.0036 0.0098 2.9609 0.7609 14.1479
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Table 4. Monte Carlo (Scenario 4): true (λ, β, θ) = (1.5, 4, 1.1).
n Mean λ Bias λ MSE λ Mean β Bias β MSE β Mean θ Bias θ MSE θ
30 1.4663 -0.0337 0.018 4.0828 0.0828 0.6739 4.2043 3.1043 111.445
50 1.4589 -0.0411 0.0166 3.928 -0.072 0.3956 4.7547 3.6547 135.5318
80 1.4571 -0.0429 0.0165 3.9043 -0.0957 0.3218 5.1677 4.0677 162.7011
100 1.4647 -0.0353 0.0146 3.9104 -0.0896 0.3059 4.3249 3.2249 120.8009
150 1.4623 -0.0377 0.0136 3.8738 -0.1262 0.2493 4.4439 3.3439 125.8317
200 1.4728 -0.0272 0.0106 3.9136 -0.0864 0.1985 3.2032 2.1032 55.4906
300 1.4635 -0.0365 0.0114 3.868 -0.132 0.2108 3.6812 2.5812 61.7893
500 1.4701 -0.0299 0.009 3.886 -0.114 0.1581 2.933 1.833 33.9569
800 1.4835 -0.0165 0.0053 3.9359 -0.0641 0.0983 2.0744 0.9744 18.3269
1000 1.4856 -0.0144 0.0045 3.9425 -0.0575 0.0815 1.8175 0.7175 10.0112

Figure 3. Bias of the estimators as a function of sample size.
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Figure 4. MSE of the estimators as a function of sample size.

6.4. Discussion of Simulation Results. The Monte Carlo results give a summary of the finite-sample
performance of the MLEs of PEW distribution parameters. The overall behavior of the estimators
follows the predicted asymptotic properties, but with apparent improvement as sample size grows.

Throughout all scenarios, the biases of λ̂,β̂, and θ̂ decrease monotonically for larger n until they
become insignificant for moderate to large sample sizes. Although the estimator of θ exhibits more bias
in smaller samples, it appears to quickly dissipate as n becomes larger, an observation that is consistent
with Figure 3.

The MSEs of estimators also decrease as the sample size grows (Figure 4), which indicates an
improvement in efficiency. These are used below for Monte Carlo simulations (Tables 1,2), which show
that the estimators of λ and β stabilize rather rapidly, while the MSE of θ̂ declines at a slower pace but
reaches vanishing values as n→∞.

Differences among the four situations appear mostly in small sample sizes, specially when true
parameters are larger that increases variability, as expected. Nevertheless, such dissimilarities decrease
as n increases which indicate that the MLEs are fairly robust under different parameter settings.

To conclude, the simulation results confirm that the MLEs for PEW distribution parameters are
consistent and asymptotically unbiased, and also more efficient as sample sizes increase, while being
well-suited for statistical applications.
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7. Applications to Real Datasets

In this section, we empirically show the flexibility of our PEW distribution by analyzing three real-
world datasets. Namely, wewant to contrast the PEWdistributionwith the competingmodels below and
their PDFs (definitions) and CDFs. Themodel selection is based on a full set of statistical tests including
information theoretic criterions as well as goodness-of-fit tests. The difference is formalised in terms of
the so-calledAkaike InformationCriterion (AIC) [12], AIC = 2k−2 ln(L), whichmeasures theKullback-
Leibler divergence between a true model and its approximations. The Bayesian Information Criterion
(BIC) [13], BIC = k ln(n)−2 ln(L), yields consistentmodel selectionwith a greater degree of complexity
penalty. Additional refinements include theConsistentAIC (CAIC) [14], CAIC = −2 ln(L)+k[ln(n)+1],
and the Hannan-Quinn Criterion (HQC) [15], HQC = −2 ln(L) + 2k ln(ln(n)), which bridge AIC and
BIC properties. For distributional adequacy assessment, the Kolmogorov-Smirnov statistiC [16],
Dn = supx |Fn(x)−F (x)|, measures maximum CDF discrepancy, while the Anderson-Darling test [17],
A2
n = −n − 1

n

∑n
i=1(2i − 1)[lnF (Xi) + ln(1 − F (Xn−i+1))], provides enhanced tail sensitivity. The

Cramér-von Mises statistic [18], W 2 = 1
12n +

∑n
i=1

[
F (Xi)− 2i−1

2n

]2, offers balanced fit assessment
across the distribution support. Parameter uncertainty is quantified via standard errors derived from
the observed Fisher information matrix [19] SE(θ̂i) =

√
[I−1(θ̂)]ii, ensuring comprehensive model

evaluation from both information-theoretic and goodness-of-fit perspectives. The numerical results in
this section were obtained using MATLAB R2022b. The models for comparison are as follows:

• Weibull Distribution (W): The probability density function (PDF) and cumulative distribution
function (CDF) of the Weibull distribution are given by [11]:

f(x) =
β

λ

(x
λ

)β−1
exp

[
−
(x
λ

)β]
, x > 0. (37)

F (x) = 1− exp

[
−
(x
λ

)β]
, (38)

where λ > 0 is the scale parameter and β > 0 is the shape parameter.
• Exponentiated Weibull Distribution (EW): The exponentiated Weibull distribution has the
following PDF and CDF [4]:

f(x) = θ
β

λ

(x
λ

)β−1
exp

[
−
(x
λ

)β]{
1− exp

[
−
(x
λ

)β]}θ−1
, x > 0. (39)

F (x) =

{
1− exp

[
−
(x
λ

)β]}θ
, (40)

where λ > 0 is the scale parameter, β > 0 is the shape parameter, and θ > 0 is the exponentiation
parameter.
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• Kumaraswamy Weibull Distribution (KW): The Kumaraswamy-Weibull distribution is defined
by the following PDF and CDF [20]:

f(x) = a θ
β

λ

(x
λ

)β−1
exp

[
−
(x
λ

)β]{
1− exp

[
−
(x
λ

)β]}θ−1
×

[
1−

{
1− exp

[
−
(x
λ

)β]}θ]a−1
, x > 0. (41)

F (x) = 1−

[
1−

{
1− exp

[
−
(x
λ

)β]}θ]a
, (42)

where λ > 0, β > 0, θ > 0, and a > 0 are parameters.
• TransmutedWeibull Distribution (TW): The transmutedWeibull distribution has the following
PDF and CDF [21]:

f(x) =
β

λ

(x
λ

)β−1
exp

[
−
(x
λ

)β]
[(1 + θ)− 2θFWeibull(x)] , x > 0. (43)

F (x) = (1 + θ)FWeibull(x)− θ[FWeibull(x)]2, (44)

where FWeibull(x) = 1− exp
[
−
(
x
λ

)β] and λ > 0, β > 0, −1 ≤ θ ≤ 1.
• Modified Weibull Distribution (MW): The modified Weibull distribution is characterized by
the following PDF and CDF [22]:

f(x) = (θβxβ−1 + λ) exp
(
−θxβ − λx

)
, x > 0. (45)

F (x) = 1− exp
(
−θxβ − λx

)
, (46)

where λ > 0, β > 0, and θ > 0 are parameters.

7.1. First Dataset. The first dataset details the fatigue fracture lifespan of Kevlar 373/epoxy under a
constant pressure at a 90% stress level until complete failure occurred. This data was sourced from
Abdul-Moniem and Seham (2015) [23]. The first dataset is; 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451,
0.4763, 0.565, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113,
0.912, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.257, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.488,
1.5728, 1.5733, 1.7083, 1.7263, 1.746, 1.763, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316,
1.9558,2.0048, 2.0408, 2.0903, 2.1093, 2.133, 2.21, 2.246, 2.2878, 2.3203, 2.347, 2.3513, 2.4951, 2.526, 2.9911,
3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.096.

Table 5 presents the maximum likelihood estimates of the parameters, along with their standard
errors in parentheses, and Table 6 provides the criteria for comparison. Figure 5 represent the empirical
density and the cumulative density of the data considered. Figures 6 and 7 represent the P-P plot and
the Q-Q plot, respectively, for all distributions used for comparison at the first dataset.
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Table 5. Parameter estimates with standard errors (The first dataset).
Model λ β θ a

W 2.1328 (0.1945) 1.3256 (0.1138)
EW 1.6409 (0.5871) 1.1013 (0.2629) 1.4426 (0.6436)
KW 5.27 (15.4796) 0.7919 (0.9041) 2.0021 (2.4976) 6.4133 (29.8024)
TW 2.9417 (0.5143) 1.4311 (0.1277) 0.7114 (0.3017)
MW 0.0000 (0.3207) 1.3256 (0.2635) 0.3664 (0.3305)
PEW 0.6952 (0.2699) 0.7818 (0.1390) 111.6686 (182.96)

Table 6. Model comparison (The first dataset).
Model logLik AIC BIC CAIC HQC KS pKS AD pAD W 2

W -122.5247 249.0494 253.7108 255.7108 250.9123 0.1099 0.2953 0.7889 0.0408 0.1354
EW -122.1636 250.3272 257.3194 260.3194 253.1216 0.0988 0.4217 0.6563 0.0867 0.1093
KW -122.0635 252.1270 261.4499 265.4499 255.8528 0.0973 0.4409 0.6360 0.0974 0.1055
TW -121.7353 249.4706 256.4628 259.4628 252.2650 0.0958 0.4600 0.6028 0.1176 0.1000
MW -122.5247 251.0494 258.0416 261.0416 253.8438 0.1099 0.2953 0.7889 0.0408 0.1354
PEW -120.6149 247.2298 254.2220 257.2220 250.0242 0.0879 0.5698 0.4003 0.3619 0.0672

Figure 5. Fitted PEW and competing models to the first dataset
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Figure 6. Comparison of P–P Plots for distributions in Modelling First Dataset

Figure 7. Comparison of Q-Q Plots for distributions in Modelling First Dataset

7.2. Second Dataset. The second dataset consists of 63 observations on the strength of 1.5 cm
glass fibres, collected by staff at the UK National Physical Laboratory. The second dataset is [24]:
0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48,
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1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63,

1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89,

2.00, 2.01, 2.24.
Table 7 presents the maximum likelihood estimates of the parameters, along with their standard

errors in parentheses, and Table 8 provides the criteria for comparison. Figure 8 represent the empirical
density and the cumulative density of the data considered. Figures 9 and 10 represent the P-P plot and
the Q-Q plot, respectively, for all distributions used for comparison at the second dataset.

Table 7. Parameter estimates with standard errors (The second dataset).
Model λ β θ a

W 1.6281 (0.0371) 5.7807 (0.5761)
EW 1.7181 (0.0861) 7.2846 (1.7069) 0.6712 (0.2489)
KW 1.3665 (0.0544) 6.6178 (0.2069) 0.6468 (0.0609) 0.2569 (0.0699)
TW 1.5484 (0.0565) 5.1501 (0.6683) -0.5011 (0.2745)
MW 0.0311 (0.0437) 6.3808 (0.9753) 0.0407 (0.0249)
PEW 1.4298 (0.0875) 4.4461 (0.7215) 14.4444 (15.3454)

Table 8. Model comparison (The second dataset).
Model logLik AIC BIC CAIC HQC KS pKS AD pAD W 2

W -15.2068 34.4137 38.7000 40.7000 36.0995 0.1522 0.0969 1.2408 0.0031 0.2151
EW -14.6755 35.3510 41.7804 44.7804 37.8798 0.1462 0.1221 1.0866 0.0075 0.1976
KW -14.0788 36.1576 44.7301 48.7301 39.5292 0.1307 0.2129 0.9773 0.0140 0.1707
TW -14.3360 34.6720 41.1014 44.1014 37.2007 0.1374 0.1689 1.0359 0.0101 0.1691
MW -14.8947 35.7893 42.2187 45.2187 38.3181 0.1331 0.1959 0.8350 0.0314 0.1540
PEW -13.2400 32.4800 38.9094 41.9094 35.0087 0.1202 0.2980 0.8136 0.0355 0.1253

Figure 8. Fitted PEW and competing models to the second dataset
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Figure 9. Comparison of P–P Plots for distributions in Modelling Second Dataset

Figure 10. Comparison of Q-Q Plots for distributions in Modelling Second Dataset

7.3. Third Dataset. The third Dataset is the survival times (in days) of 72 guinea pigs that had been
infected with virulent tubercle bacilli. The observations are recorded and presented. For previous
studies of this dataset we refer you to [25]. The third Dataset is presented as: 10, 33, 44, 56, 59, 72, 74,
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77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112, 113, 115, 116, 120, 121, 122, 122, 124,
130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 163, 168, 171, 172, 176, 183, 195, 196, 197, 202, 213, 215,
216, 222, 230, 231, 240, 245, 251, 253, 254, 254, 278, 293, 327, 342, 347, 361, 402, 432, 458, 555.

Table 9 presents the maximum likelihood estimates of the parameters, along with their standard
errors in parentheses, and Table 10 provides the criteria for comparison. Figure 11 represent the
empirical density and the cumulative density of the data considered. Figures 12 and 13 represent the
P-P plot and the Q-Q plot, respectively, for all distributions used for comparison at the third dataset.

Table 9. Parameter estimates with standard errors (Third Dataset).
Model λ β θ a

W 199.6021 (13.6302) 1.8254 (0.1587)
EW 112.8998 (46.3016) 1.1604 (0.3090) 2.6537 (1.5361)
KW 130.4724 (119.5130) 0.9912 (1.0443) 3.1103 (3.8684) 1.7319 (5.5274)
TW 244.7427 (29.2898) 1.9791 (0.1732) 0.6412 (0.2951)
MW 0.0057 (0.0007) 0.3051 (0.0000) 0.0000 (0.0000)
PEW 78.1176 (15.9400) 1.0065 (0.1284) 199.9998 (231.8206)

Table 10. Model comparison (Third Dataset).
Model logLik AIC BIC CAIC HQC KS pKS AD pAD W 2

W -427.3621 858.7241 863.2775 865.2775 860.5368 0.1048 0.3814 1.0072 0.0118 0.1680
EW -425.6561 857.3122 864.1422 867.1422 860.0312 0.0891 0.5854 0.5382 0.1678 0.0863
KW -425.6379 859.2757 868.3824 872.3824 862.9011 0.0890 0.5876 0.5354 0.1705 0.0858
TW -426.3163 858.6325 865.4625 868.4625 861.3516 0.0978 0.4678 0.7752 0.0441 0.1265
MW -444.6132 895.2264 902.0564 905.0564 897.9455 0.2946 0.0000 7.2686 0.0000 1.4050
PEW -425.0133 856.0265 862.8565 865.8565 858.7456 0.0830 0.6724 0.5442 0.1621 0.0890

Figure 11. Fitted PEW and competing models to the third dataset
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Figure 12. Comparison of P–P Plots for distributions in Modelling Third Dataset

Figure 13. Comparison of Q-Q Plots for distributions in Modelling Third Dataset

7.4. Conclusions of Applications. The empirical analysis study with three real life data provides a
better fit of Proposed Power Exponential Weibull (PEW) distribution. The PEW model generally
showed the smallest values of information criteria (AIC, BIC, CAIC and HQC) and goodness-of-fit
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measures (Kolmogorov-Smirnov, Anderson-Darling, Cram’er-von Mises) over a number of competing
models. The results provide evidence that the PEW distribution is more flexible and a better fit,
especially at tails, thus it would be an excellent choice and reliable tool for lifetime reliability modeling.

8. Conclusions

In this article, we proposed a new and very flexible family of continuous probability distributions
namely the Power Exponential–G (PE-G) family. The proposed family extends any baseline distribution
by introducing a shape parameter θ via the power-exponential transformation and can therefore better
fit different structures of data. We established several statistical properties such as moments, moment
generating function, quantile function, entropy and some reliability measures.

One particular case of this family is studied in details, that is the Power Exponential Weibull (PEW)
distribution, to illustrate how our model can work. It is observed that the relative risk model peak
gives more flexible and enriched forms of hazard functions for lifetime data and reliability study,
with greater adaptability than the classical Weibull models. The parameters were consistently and
efficiently estimated using the maximum likelihood approach, and the accuracy and robustness of
these estimators were confirmed through simulation studies.

Applications to three real data sets further confirmed that the PEW distribution offers superior
performance over several well-known competing models, as evidenced by lower values of AIC, BIC,
and other goodness-of-fit statistics. These results highlight the practical importance and modeling
versatility of the proposed distribution family.

Future research directions may include Bayesian estimation procedures, multivariate extensions,
regression-type modelling under the PE-G framework, and applications in other fields such as finance,
climatology, and biostatistics. Overall, the Power Exponential–G family provides a valuable addition to
the toolbox of modern statistical modelling.
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