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1. INTRODUCTION

In this paper, we consider the following linear age-size-dependent population dynamics system:

O+ Ogu + 05 (g(s)u) — Au+ pu = f —uv  in Q,

u(x,t,0,8) = f fo (a,p, s)u(x,t,a,s)dpda in Qrg,

u(z,t,a,0) = f fo (a,p, s)u(z,t,a,s)dpds in Q. a, (1)
u(x,0,a,s) =up(x,a,s) inQas

u(x,t,a,8) =0 on X

where @ = (0,7) x (0, 4) x (0,5) x (0,5) xQ, X =00 x (0,T) x (0,A) and Qxy = (0, X) x (0,Y) x
; X,Y > 0. We denote by 7" a positive real number, A represents the maximum life of an individual,
and S the maximum size that this individual can reach during their lifetime. The mortality process
is controlled by the age-size-dependent mortality modulus y(a, s) and the reproductive process is
controlled by the fertility modulus 5(a, p, s). We denote by u(z,t, a, s) the density of individuals at
time ¢, of age a and size s present at position x. In the model (2), size is viewed as a continuum
variable s specific to individuals, such as mass, volume, length, maturity, bacterial or viral load, or

other physiologic or demographic property. It is assumed that size increases in the same way for all
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individuals in the population, as controlled by a growth modulus g(s). The interpretation of the growth

is the time required for an individual to increase size from a to b where 0 <a < b < S.

modulus is that

In the sequel we study the following optimal control problem:

Find v* € U such that J(v*) = max J(v) (2)
vE

where
J(v):/w(x,t,a,s)v(x,t,a,s)u(m,t,a,s)dwdtdads
Q

and the set of controllers is
U={veL*Q): Gzt a,s) <v(z,tas) <zt as)ae (z,t,a,5) €Q}

for some Clv CQ € LOO(Q)v 0< Cl(x7 t,a, S) < CQ(:E7 t,a, S) a.e. in Q
It is clear that i/ is a closed convex subset of L?(Q). Asin ( [1]) and ( [13]), the normal cone to U at

any point v of U is

NU(y) = {Z € Lz(Q)v z(w,t,a,s) < 0 for y($7t7av S) = Cl(xvta a, S) < <2<$,t, a, 5)7

and z(z,t,a,s) > 0fory(z,t,a,s) = ((x,t,a,s) > (i(x,t,a,8)}.

An element z € L?(Q) belongs to Ny(y) if and only if
/ z(z,t,a,s)(v(z,t,a,s) —y(x,t,a,s))drdadsdt <0, forany v € U. (3)
Q

From a biological point of view w(z, t,a, s) > 0 is a weight (the price of an individual of age « at time ¢
and location z) and ug(z, a, s) > 0 is the initial distribution of population.

The same type of problem has been studied by Ainseba and al in [2] and Anita in [1]. In these two
works, the author considers population dynamics that do not depend on size. However, he takes into
account much more general mortality and fertility rates. In [3], the author studies the same problem
on a population dynamic structured by size but not by age. In [4], the authors study the problem of
optimal harvesting for a periodic population dynamic dependent on age. The harvesting problem for
the age-structured population of linear initial value has been previously studied in [5], [6], [7], [8], [?].

In this article, we consider the optimization problem (2) on a population dynamics structured by
age and size with non-local initial conditions in age and size.

We assume the following hypotheses:

(H1) The fertility rate 5 and A satisfy

B € L>([0, A)* x [0,5]), B(a,p,s) > 0ae. (a,p,s) € [0,4)* x [0, 5]
A€ L>([0,A) x [0,9)?), Ma,p,s) >0ae. (a,p,s) € [0,A) x [0,S5)?
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(H2) The mortality rate satisfies

pe L2 (Qx[0,T]x[0,4) x 0,9]), u(z,t,a,s) > pola,t,s) > 0ae. (z,t,a,2) € Q,

where o € L2 ([0,7] x [0, A) x ([0,S] ) and

loc
A

/uo(t—l—a—A,a,s)da:+oo, ae. te€ (0,7), s€(0,9)
0

(H3) up € L? (Qa5) ,uo(r,a,s) > 0ae. (z,a,5) € Q x (0,4) x (0,9).
(H4) f € L?(Q),w € L>®(Q), f(z,t,a,s),w(z,t,a,5) > 0a.e. (x,t,a,s) € Q.
(H5) g : [0, S] — [0, 00) is continuously differentiable and |0sg(s)| < L4 for some constant
Ly>0,9(s) >0if s € [0,5) and ¢ (S) = 0.
In Section 2, we will prove the existence and uniqueness of solutions to the model (1) using Banach'’s
fixed point theorem. The Section 3 is devoted to the existence of solutions to the problem (2). We will

conclude in Section 4 with the characterization of the control.

2. EXISTENCE, UNIQUENESS OF SOLUTION

Let us consider here the following auxiliary model.

;

O+ Ogu + 05 (g(s)u) — Au+ pu = f in Q,

u(x,t,0,8) = f fo (a,p, s)u(x,t,a,s)dpda in Qrg,

u(x,t,a,0) = f fo (a,p, s)u(x,t,a,s)dpds in Qr,a, (4)
u(x,0,a,s) = (a:, a,s) inQas

u(x,t,a,s) = on X

\

Theorem 2.1. Under the hypotheses (H1) - (H5), there exists a unique positive solution u € L>=(0,T; L*(Q4.s)

to (4) and we have

lu(., 2, -, ‘)H%Q(QAS) <Cr (HUOH%Q(QAQ + Hf”%Q(Q)) , tel0,T]. (5)

Proof of theorem 2.1
We write the equation (4) following the characteristic curves 7 — (7 + ¢1,7 + c2, G71(7 + G(c3))
where ¢, ¢z and c3 are constants at our disposal and j—j = ¢(s). To do this, we set m(7) = u(T + ¢1, 7 +

c2, G714+ G(c3))), then m satisfied the following ordinary differential equation

{ T | Am(r) = F(u)(r), teR (6)

m(0) = u(cy, ca, c3)

where F(u)(t) = —¢ (G771 + G(c3)u(z, 7 + c1,7 + o0, GH7 + G(c3))) — (7 + co, G™H7 +
Glea))u(z, 7 + 1,7 + o, G H7 + G(e3))) + f(z,7 + c1,7 + 2, G7HT + G(3))) + f(w,7 4+ c1,7 +



Asia Pac. ]J. Math. 2026 13:2 4o0f 14

ca, G_l(T + G(c3))).
Thus,

m(t) = +/0 T(r —o)F(u)(o)do, (7)

where {T'(t),t > 0} is the semigroup of A in L?*(Q) (see [10]). By choosing appropriate values for the

constants 7, ¢j, ¢z, and ¢z in (7), we obtain

T(t)u(0,a —t,G"HG(s) — 1)) + [T T(t — o) F(u)(0) ae. a>t
u(z,t,a;8) = ¢ T(a)u(t —a,0,G1(G(s ) —a))+ [y T(a—o0)F(u)(o) ae a<t
T(G(s))u(t — G(s),a )+ fG(S T(G(s) —o)F(u)(o(o) a.e. a > G(s), t > G(s).
(8)
We know that:

t rS A S
||U(.,t,.,.)||%2(Q) :/ / /|u(:v,t,a,s)|2d:vdsda+/ / /]u(x,t,a,s)|2d1‘dsda
0o Jo Ja t Jo Ja

. Using Young’s inequality, we get

S
/ / / lu(x, t,a, s)|*dedsda < C (K1 4+ Ky + K3 + K4 + K5 + Kg)
0 Q

where C'is a positive constant; K, K», K3, K4 and K are defined as follows:

A S
K, = / / / Tz, 0,0 — t,G-1(G(s) — )| dedsda < Crluo 220, o),
t 0 Q

A S t 2
ng/t /O /Q</OT(t—a)g (GYG(s) — t)ulz,0,0 +a—1t,G (a+G(s)—t))lda> dudsda

t
T)/O ||u('ag7'7')H%Z(QA,s)da-’

Ky = ///</|Tta (a—t, G (G(s) — O)ulz, 0,0 +a—t,G" (J+G(s)t))|da>2da:dsda

T)/O ||’LL(.,U, ) ')H%z(QA,S)dU’

Ky = /tA /OS/Q (/Ot|T(t o) /Q Iz = y)uly, 0,0 +a—1t, G (o + G(s) - t))dyda) dedsda

t
04(T,Q)/0 a0, )72 (@040

K, :/tA /OS/Q </Ot|T(t—a)u(a:,a,o+a—t,G1(0+G(s)—t))da>2dxdsda

t
T) / s, )22 20
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and
Ko = [|£1Z2(0)-

So, we have

A S t
[béAﬁwm%$WMMKCQMﬁmMﬁWN%@+A!WJMMﬁm@W> (©)

We show similarly that

t S .
[ [ [ atetasPassin < € (151 + [ Ity de) - 0

Combining (9) and (10), we then have that

lu(., 2, ., -)H%Z‘(QAQ < C(HUOH%Z’(QAS) + 1172 + /Ot lu(., 0, ., ')H%Q(QA’S)dU)' (11)
Using Gronwall’s lemma, we obtain from (11) the following inequality
ety Mg < € (0132 gy + 1132 ) xp{CH}, ¢ € 0,7 (12)
Thus, starting from (12), the estimate (5) of theorem 2.1 can be easily derived.
We now consider the following norm :

HpH'y = ess sup e_thp(wta ')HLQ(QA,S)
te(0,T)

in L> (0,T; L*(Qa,s)) for v > 0.
Let’s define the application ® : LY (0,7 L*(Qa,s)) — L (0, T5L*(Qa,s)) ,u — ®(u)
where
(Hu(0,a —t,G7H(G(s) — 1)) + fg T(t—o0)F(u)(o) ae.a>t
(a)u(t —a,0,G7HG(s) —a)) + [y T(a—o)F(u)(c) ae a<t
T(G(s))u(t — G(s),a — G(s),0) + [T T(G(s) — 0)F(u)(0(a) ae. a>G(s), t > G(s).

T
O(u)(x,t,a;8) =< T

Let p1,p2 € L%(Q), by linearity, ®(p;) — ®(p2) satisfies (8) with up = 0 and f = 0. Hence by (11), we

have

t
||q)(P1)(, t, .y ) - (I)(pQ)() tu ) ')H%Q(QA,S) < CT/(; ||p1(7 ag,., ) - p2(‘7 ag, ., ‘)H%Q(QAﬁ)do-
where C'r is a positve constante. Thus,,
12(p1) = 2(P2)lly < e R (P1) (o) = PPt (g )

t C
— — T
< Cre 2%/0 217 =270 lp1(-, o) —pz(-,a)H%z(Q) dt < Z |lp1 —p2||,2y
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Therefore, for sufficiently large v, ® is a contraction in LS (0, T; L*(Qa,s))-

The comparison result in Garroni et al [11] and in Langlais [ 12] implies that the solution u" satisfies
0 <u'(z,t,a,) <u(z,t,a,s)aein Q, (13)
where u € L(Q) is the solution of (4) corresponding to u = 0 and 8 = || 8[| ()

and \ = H)\HLoo(Q) O

Corollary 2.1. The model (1) has a unique positive solution in L* (0, T; L*(Qa,s))

Proof of corollary 2.1
It suffit to apply the theorem (2.1) taking into account (4) the mortality = p + v O

In the rest of our work, we will take g(s) =1, a.e s € (0,.5).

3. EXISTENCE OF AN OPTIMAL CONTROL

The following proposition guarantees that the solution of the model (1) depends continuously on

the control v, i.e., a small change in the control v does not cause a large change in the solution
Proposition 3.1. The mapping v — u(v) is lipschitzian of U in L*(0,T; L*(Qa.s))

Proof of proposition 3.1

Let for any v; and v; in U, let u; and uy be the corresponding solution of (1). Let y = y1 — y2 with

A

y; = e oty and §; = e Moty; for i € {1,2}, where )\ is positive parameter that will be choose later.

Then y satisfies the following system

Oy + Oay + 05y — Ay + (n+ o)y = ¥ [0y + y2(71 — B2)] in Q,

y(z,t,0,5) = fOA fosﬂ(a,p, s)y(x,t,a, s)dpda in Qr.s,

y(x,t,a,0) = fOS fOA Ma,p, s)y(x,t,a,s)dpds in Qr,4, (14)
y(x,0,a,s) =0 inQas

y(x,t,a,8) =0 on Y

Multiplying the (14) by y and integrating over ) and using the Cauchy-Schwarz’s inequality,we obtain:
1 T 2 1 A 2 1 S 2 1 2
5”3/( )HL?(QAYS) + 5”3/( )HL2(QT’S) + §||y( )||L2(QT7A) - §Hy(., 50, -)”L?(QT,S)
1
- §Hy(-, . ‘70)"%2(QT’A) FIVYlTeig) + 1V e+ Aoyl (15)
< G2l @ 19l 2y + 1972y + @l e (g)llor — B2llZ2(q)
On the one hand, we have the estimates

ly(., -0, -)H%Q(QT75) < AS?|B 7 191720 (16)
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and

19 O) 20y 0y < SA2 A e 19132 - (17)

Combining (15), (16 and (17) and choose A such that
Ao = 1A52||BHLOO(Q %SAQH)\HQOO(Q) + |Gl po(@ + 1, we have

ly1 = yoll7zig) < @l 7oo 181 = B2l 72(0) (18)

Theorem 3.1. The problem (2) admits at least one optimal pair (u*, v*).

Proof of theorem 3.1

Define ¥ : i/ — R by
U(v) = /Qw(x, t,a,s)v(z,t,a, s)u’(z,t,a, s)drdtdads
and put d = sup,¢;; ¥(v). By (5), we have that
[ Gt ) p2q) < € (3.1)
for some constant C' > 0 independent of v € U/. Hence we have
0 < d < [Jwl[goo@)lIG2ll oo (@)1’ I 2 (@) < oo

Let {uy} C U be a sequence satisfying d — + < ¥ (vy) < d. By (3.1), [u”ll12(g,) is bounded in v and
hence there exists a subsequence denoted again by {vy} such that u"~ converges weakly to some u* in

L?(Q). Using Mazur’s theorem ( [1]), there exists a sequence {uy} in L? (Q) satisfying

kn
un(z,t,a,s) = Z MVuvi(z,t,a,s), AN >0, Z AV =1(ky >N+1),
i=N+1 i=N+1

iy — u*  strongly in L? (Q).

Define now the sequence {vy} by

ZfN ANv;(z,t,a,5)uv (z,t,a,s)
N 9 f Zz N+1 z (l'atyaas) 7& Oa

k
215N+1 /\fVu %(x,t,a,s)

Gz, t,a,s), if Zl N4l Z u'i(z,t,a,s) =0.

un(z,t,a,8) =

Recalling tha v; € U, then Uy € U. Since {Ux } is bounded in L? (Q), there exists a subsequence denoted
again by {0 } which converges weakly to some v* in L? (). We shall show that this v* gives an optimal
control to the optimal harvesting problem (2). Note that by linearity, uy is a solution to (1) with vy

instead of v.
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Since u"* satisfies
Opui 4+ Ogui 4 05 (g(s)u¥') — Au’i + pu’ = f —uViv; in Q,
u'i(x,t,0,s) = f fo (a,p, s)u'i(x,t,a, s)dpda in Qrs,
u'i(z,t,a,0) = f fo (a,p, s)u¥i(x,t,a,s)dpds in Qr,a, (19)
Uvi(l',o,a, 5) ZUO(‘Taa’ S) inQA,S
u(z,t,a,8) =0 on Y
Thus, by linearity, ux satisfies
3tﬂN+8ﬂN+8(()~ )—AaN+uﬂN:f—ﬂN5N in @,
un(z,t,0,s) fO fO (a,p, s)un(z,t,a,s)dpda inQrs
un(x,t,a,0) fo fO (a,p,s)un(z,t,a,s)dpds in Qr 4, (20)
un(z,0,a,s) =ug(z,a,s) inQas
un(z,t,a,s) onXY

Since uy converges strongly to u* in L?(Qr) and uy € L* (0,7;L*(Q)), we find that u* €

L>(0,T; L*(Q)).
Thus,

I T e
//)\ap, s)un(x,t,p, s dsdpé/ / Ma,p, s)u*(z,t,p, s)dsdp

and

Therefore, by taking the limit in (20), u* satisfies

¢

atu*—i—@u*—l—a(()*)—Au*—i—,u,u*:f—u*v* in Q,

u*(z,t,0,8) = f fo (a,p, s)u*(z,t,a,s)dpda in Qrg,

u*(z,t,a,0) = f fo (a,p, s)u*(z,t,a,s)dpds in Qr 4, (21)
u*(x,0,a,s) = (a:,a, s) inQas

u*(x,t,a,s) = on X

Then u* is a solution of (1) for v = v*. By uniqueness of solutions, we conclude that u* = «¥" and

/ w(z,t,a,s)on(z,t,a,s)un(x,t, a, s)drdtdads
Q

— / w(z,t,a,s)v*(x,t,a, s)u*(x,t,a, s)dedtdads = U (v*)
Q

as N — oco. On the other hand,

fQ w(z,t,a,s)on(z,t,a,s)un(z, t,a,s)drdtdads

= E KNI AN fQ x,t,a,8)vi(x, t,a,s)u’(z,t,a, s)drdtdads = Z SN MV (v;) = d
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as N — oo. Thus we obtain d = ¥ (v*) and we conclude that (v*,u*) is an optimal solution to the
problem (2). O
4. NECESSARY OPTIMAL CONDITIONS

Let’s (u*,v*) is an optimal pair for (2) and consider the following system

(

~0hq — Daq — sq — Dq + g — q(x,1,0,5) [ B(a, p, s)dp

—q(z,t,a,0) fOA Ma,p, s)dp = —v*(w + q)(z,t,a,s) in @,

q(z,t, A, 8) =0 in Qrs, (22)
q(x,t,a,5) =0 in Qr 4,

q(x,T,a,s) =0 inQas

a—g = 0. on X

Proposition 4.1. The system (22) admits an unique solution in L*(0,T; L*(Qa.s))

Proof of proposition 4.1

Let’s make the following variable changes: t =t — T, a = A — a and s = S — s and adopting always

the same notations, the system (22) can be written

g + Dagq + 0sq — Aq + pgq — gz, 1, A, 5) [ Bla,p, s)dp
—q(z,t,a,S) fOA Aa,p, 8)dp = —v*(w + q)(z,t,a, s) in Q,
z,t,0,s) =0 in ,
q( ) Qr,s (23)
q(z,t,a,0) =0 in Qr,4,
q(z,0,a,s) = in Qas
94 _ . on X
1
Let us introduce the following auxiliary system:
Oy + 0y + 05y — Ay + (Mo + 1)y — y(w,t, A, 5) [ Bla, p, s)dp
—y(@,t,a,8) [{ Na,p, s)dp = —v7 (@ + y)(x,1, 0, 5) inQ,
) t? 07 = 0 ln )
y(z,t,0,s) Qr,s (24)
y(:v,t,a, 0) =0 in QT,Aa
y(z,0,a,5) =0 in Qas
g—g =0. on X

ott @ = e Mw and )¢ a positive parameter.

Let us show that (24) has an unique solution. For that, consider now the following system
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Oy + Oay + Osy — Ay + (No + )y — (., 5) [y Bla,p, s)dp

—0(z,t,a fo (a,p, s)dp = —v* (0 + y)(z,t,a,s) in Q,

y(x,t,0,8) = in Qrs, (25)
y(x,t,a,0) =0 in Qr,4,
y(x,0,a,8) =0 inQas

g—g =0. on X

o € L=(0,T; L(Qs)) et 0 € L(0,T; L*(Q.4))
The system (25) is linear and has bounded coefficients, so it is easy to show that the system (25) has a
unique solution y in L>(0,T; L?(Q4.)).

Let us note 5 : (0, T3 L2(Qs)) x L=(0,T; L2(Q4)) — L=(0,T; L3(Qs)) x L=(0,T; L(Q.)),
(p,0)— (y(,,A),y(.,. ., S)) where y is a solution of (25).
We will show that for some values of A, 7 it is strictly contracting.
Let ¢1; 2 be elements of L>°(0,T; L?(Qg)) and 01 ; 62 bein L>(0,T; L2(Q 4)) and 1, y2 be the solutions
of (25) corresponding to (¢1,61) and (2, 02), respectively. LetY = y; —y2, ® = 1 —p2and © = 6; — 0y,

then © and @ verify
DY +0,Y +0.Y — AY + (o + )Y — ®(a,t,5) ;7 Ba, p, s)dp
—0O(x,t,a) fOA Xa,p,s)dp = —v*Y (z,t,a,s) in Q,
z,t,0,s) =0 in ,
y( ) Q1,5 (26)
y(:E?tva?O) = inQT,Av
y(x7 07 a, 5) = in QA,S
8—% =0 on X%

Multiplying the first equation of (26) by Y and using Cauchy’s inequality with € > 0, we show that

there exists a positive constant C' independent of e and positive constants C (e) and Cs(e) such that
1
2 2
S 1Y G, )+ 5 11V oo A e @en + 5 ”Y oo 20 r2a + MY IZ2(g)
< (a3 + el )+ C@IVI
S e L2(0,T3L*(Qs)) L2(0,T3L2(Q4)) L(Q)

By choosing e = 2C and A > <9, one get:

1
]l < B (H¢1 - ¢2H%2(O,T;L2(QS)) + (161 = HQH%Q(O,T;LQ(QA))) :

And therefore 7 is a contraction. O

We can now give necessary conditions of optimality:
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Theorem 4.1. If (u*,v*) is an optimal pair for (2) and if q is the solution of (22) then we have

Gz, t,a,s)  if (w+q)(z,t,a,s) <0
v*(x,t,a,s) =

Gz, t,a,s) if (w+q)(z,t,a,s) >0

For the proof theorem 4.1, we need the followings lemmas.

Lemma 4.1. The following convergence holds
u”*+5”(:v, t,a,s) — u?” (z,t,a,s)in L™ (0, T, LQ(QA,S))
asd — 07,

Proof of lemma 4.1

Let hs = u¥ % — 4" then hys satisfy

Oths + Oghs + Oshs — Ahg + ( +v*)hs = —du¥ % in Q,

hs(x,t,0,s) fo fo (a,p, s)hs(x,t,a,s)dpda in Qr,s
hs(x,t,a,0) fo fO (a,p,s h(;(x,t,a, s)dpds in Qr 4,
hs(z,0,a,s) =0 inQa,s

Ohg
8—”—0 on X

Multiplying (27) by hs and integrating over ); and using Young’s inequality, we obtain :

s a3 [ 4 gyt
+2/0 /0 ‘h5(77,5)”%2(9)dadt—2/0 /0 ||h5(7)07)”%2(9)d8dt

1 T A
/ / 15 (.o s O[22y dadt + [V hsl[22 ) + v/ + v7hsl 32 )

// / /CN a,t,s)i(z,a,l,s) |hs((z,a,l,s))| dedsdadl

Using again Young's inequality, the estimation (28) implies that

hs(8)2 (g, o) < C / I8 () cm) + 9 GBlorts2)8 (o1, 2) o
T

where C'is a positive constant.

Using Gronwall’s inequality, estimate (29) implies
P62 (g, 5) < K0 exp{Ct}.
Passing to the limit in the last inequality we get

hs =0 inL® (0,T;L*(Qas))

(27)

(28)

(29)

(30)
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Let
zs @ in Q.

)

Then the function 2° is a solution of

/

Orzs + Oy z5+825—Az5+u25:

I
I3 It

z5(x,0,a,8) =0

Oz _
877_0

z5(z,t,0,5) =

zs(z,t,a,0) =

Lemma 4.2. The following convergence holds

0

z(x,t,0,s) (a,p,s

=I5 s 8
=Jo Ji'

z(x,0,a,8) =0

oz __
2% — 0

z(x,t,a,0) (a,p,s

Proof of lemma 4.2

Let ws = z5 — 2z, so wg satisfies

ws(z,t,0,8) =

I
I3 It

ws(x,0,a,8) =0

(a,p,s

ws(z,t,a,0) = (a,p,s

Qws
317_0

Multiplying (33) by ws; and integrating over Q; = Q x

—v¥zs —u
CL p7 (l’,t,a,
a p7 (‘r7 t’ a)

Oz + Ogz 4+ 05z — ANz 4+ pz = —v*z —u¥ v
)z(x,t,a, s)dpda
)z(x,t, a, s)dpds

Orws + Oqws + Osws — Awgs + pws =

(0,t) x

s)dpda
s)dpds

v*+5v,U

in @,

in Qr,s,
in Qr,a, (31)
inQa,s

on Y

2° — zin L™(Q) as 6 — 0, where z is the solution of

inQ,
in Qr,s;

in Qr,a;

(32)

in Qa,s;

on .

—v*ws — vhg

Yws(x, t, a, s)dpda
s)ws(z,t,a, s)dpds

(0,A) x

in Q;

in Qr,s;
in Qr,4;
in Qa,s;

on Y.

(33)

(0,.5), we obtain

Jasa(n ) < (€D [ Tsa(q, o)

t
il [ oDl (q, )

Using Bellman'’s inequality, this last inequality implies that

ls(t)2 (g ) < ICI (g exp{(C + 1)t} /0 5@ (g, )

So,

2
lwsll e (07222 (@0.5))

2
< 1Rsll e 07222 (@0 5))

(34)
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where (' is a positive constant that depends on T'. Taking the limit in (34) as § — 0", we obtain that

ws — 0 in L®(0,T;L*(Qas))

O
Proof of theorem 4.1
Let’s (u*, v*) is an optimal pair for (2).
For all v € L*>®(Q) such that v* + dv € U and V6 > 0,
1 . v*4dv v
= (\Il(u” +ovy _ ‘If(v*)) = /v*(z,t,a)w(z,t,a)u (2,t,0) —u” (2,t,a) dxdtda
J 0 o
+/ v(x,t,a)g(z, t, a)u’ o (z,t, a)dzdtda (35)
Q

Using lemma 4.1 and lemma 4.2, and passing the limit in (35), we get
d¥(v*)(v) = / v*(z,t,a)w(z, t,a)z(x, t, a)dedtda + / v(z, t, a)w(z, t,a)u’ (z,t,a)dzdtda  (36)
Q Q
Multiplying (22) by z and integrating over () we get

/ (012 4 Oz + 05z — DNz + pz) gdrdadsdt —i—/ / / (x,t,0,8)z(x,t,0, s)drdsdt

/// (z,t,a,0)z xtadedadt—////(xt@s/ﬂaza’ dp)d:cdadsdt
_/o /0 /0 /Q<q(m,t,0, 3)/0 Aa, p, S)dp) drdadsdt = —/Qv*z(erq)(x,t, a, s)drdadsdt. (37)

Recalling that z satisfies the system (32), after some calculation the equality (37) becomes

—/(v*zq)(x,t,a,s)d:vdadsdt—/(vu”*q)(x,t,a,s)dwdadsdt: —/ v*z(w + q)(x, t,a, s)drdadsdt.
Q Q

Q
(38)
We then deduce the following equality from (38):
/ (v'wz) (z,t, a)dzdtda = / (uu”*q) (2,t, a)dzdtda (39)
Q Q

So from (36) and (39) we have,
AU (v*)(v) = /Q vu? (w + q)(z, t, a, s)drdsdadt
Recalls that v* is an opimal solution of problem (2), then
d¥(v*)(v) <0, Yve L™(Q).

According to (3), this implies that V" (g + q) € Ny (v*), where Ny, (v*) is the normal cone at U/ in v* in
12(Q).
For any (z,t,a,s) € @ such that u’" (z,t,a,s) # 0, we conclude
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Gzt a,s) if (g4 q)(x,t,a,8) <0
v*(z,t,a,8) =

Co(x,t,a,s) if (9+q)(x,t,a,8) >0
O
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