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1. Introduction

In this paper, we consider the following linear age-size-dependent population dynamics system:

∂tu+ ∂au+ ∂s (g(s)u)−∆u+ µu = f − uv in Q,
u(x, t, 0, s) =

∫ A
0

∫ S
0 β(a, p, s)u(x, t, a, s)dpda in QT,S ,

u(x, t, a, 0) =
∫ S

0

∫ A
0 λ(a, p, s)u(x, t, a, s)dpds in QT,A,

u(x, 0, a, s) = u0(x, a, s) in QA,S
u(x, t, a, s) = 0 on Σ

(1)

where Q = (0, T )× (0, A)× (0, S)× (0, S)×Ω, Σ = ∂Ω× (0, T )× (0, A) and QX,Y = (0, X)× (0, Y )×

Ω; X,Y > 0. We denote by T a positive real number, A represents the maximum life of an individual,
and S the maximum size that this individual can reach during their lifetime. The mortality process
is controlled by the age-size-dependent mortality modulus µ(a, s) and the reproductive process is
controlled by the fertility modulus β(a, p, s). We denote by u(x, t, a, s) the density of individuals at
time t, of age a and size s present at position x. In the model (2), size is viewed as a continuum
variable s specific to individuals, such as mass, volume, length, maturity, bacterial or viral load, or
other physiologic or demographic property. It is assumed that size increases in the same way for all
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individuals in the population, as controlled by a growth modulus g(s). The interpretation of the growth
modulus is that ∫ b

a

1

g(s)
ds

is the time required for an individual to increase size from a to bwhere 0 6 a < b 6 S.

In the sequel we study the following optimal control problem:

Find v∗ ∈ U such that J(v∗) = max
v∈U

J(v) (2)

where
J(v) =

∫
Q
w(x, t, a, s)v(x, t, a, s)u(x, t, a, s)dxdtdads

and the set of controllers is

U =
{
v ∈ L2(Q) : ζ1(x, t, a, s) ≤ v(x, t, a, s) ≤ ζ2(x, t, a, s) a.e. (x, t, a, s) ∈ Q

}
for some ζ1, ζ2 ∈ L∞(Q), 0 ≤ ζ1(x, t, a, s) ≤ ζ2(x, t, a, s) a.e. in Q.
It is clear that U is a closed convex subset of L2(Q). As in ( [1]) and ( [13]), the normal cone to U at
any point v of U is

NU (y) =
{
z ∈ L2(Ω); z(x, t, a, s) ≤ 0 for y(x, t, a, s) = ζ1(x, t, a, s) < ζ2(x, t, a, s),

and z(x, t, a, s) ≥ 0 for y(x, t, a, s) = ζ2(x, t, a, s) > ζ1(x, t, a, s)} .

An element z ∈ L2(Q) belongs to NU (y) if and only if∫
Q
z(x, t, a, s)(v(x, t, a, s)− y(x, t, a, s))dxdadsdt ≤ 0, for any v ∈ U . (3)

From a biological point of view w(x, t, a, s) ≥ 0 is a weight (the price of an individual of age a at time t
and location x) and u0(x, a, s) ≥ 0 is the initial distribution of population.

The same type of problem has been studied by Ainseba and al in [2] and Anita in [1]. In these two
works, the author considers population dynamics that do not depend on size. However, he takes into
account much more general mortality and fertility rates. In [3], the author studies the same problem
on a population dynamic structured by size but not by age. In [4], the authors study the problem of
optimal harvesting for a periodic population dynamic dependent on age. The harvesting problem for
the age-structured population of linear initial value has been previously studied in [5], [6], [7], [8], [9].

In this article, we consider the optimization problem (2) on a population dynamics structured by
age and size with non-local initial conditions in age and size.

We assume the following hypotheses:
(H1) The fertility rate β and λ satisfy

β ∈ L∞([0, A)2 × [0, S]), β(a, p, s) ≥ 0 a.e. (a, p, s) ∈ [0, A)2 × [0, S]

λ ∈ L∞([0, A)× [0, S)2), λ(a, p, s) ≥ 0 a.e. (a, p, s) ∈ [0, A)× [0, S)2
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(H2) The mortality rate satisfies

µ ∈ L∞loc
(
Ω̄× [0, T ]× [0, A)× [0, S]

), µ(x, t, a, s) ≥ µ0(a, t, s) ≥ 0 a.e. (x, t, a, x) ∈ Q,
where µ0 ∈ L∞loc ([0, T ]× [0, A)× ([0, S] ) and∫ A

0
µ0 (t+ a−A, a, s) da = +∞, a.e. t ∈ (0, T ), s ∈ (0, S)

(H3) u0 ∈ L2 (QA,S) , u0(x, a, s) ≥ 0 a.e. (x, a, s) ∈ Ω× (0, A)× (0, S).
(H4) f ∈ L2(Q), w ∈ L∞(Q), f(x, t, a, s), w(x, t, a, s) ≥ 0 a.e. (x, t, a, s) ∈ Q.
(H5) g : [0, S]→ [0,∞) is continuously differentiable and |∂sg(s)| ≤ Lg for some constant

Lg > 0, g(s) > 0 if s ∈ [0, S) and g (S) = 0.
In Section 2, we will prove the existence and uniqueness of solutions to the model (1) using Banach’s

fixed point theorem. The Section 3 is devoted to the existence of solutions to the problem (2). We will
conclude in Section 4 with the characterization of the control.

2. Existence, uniqueness of solution

Let us consider here the following auxiliary model.

∂tu+ ∂au+ ∂s (g(s)u)−∆u+ µu = f in Q,
u(x, t, 0, s) =

∫ A
0

∫ S
0 β(a, p, s)u(x, t, a, s)dpda in QT,S ,

u(x, t, a, 0) =
∫ S

0

∫ A
0 λ(a, p, s)u(x, t, a, s)dpds in QT,A,

u(x, 0, a, s) = u0(x, a, s) in QA,S
u(x, t, a, s) = 0 on Σ

(4)

Theorem 2.1. Under the hypotheses (H1) - (H5), there exists a unique positive solution u ∈ L∞(0, T ;L2(QA,S)

to (4) and we have

‖u(., t, ., .)‖2L2(QA,S) 6 CT
(
‖u0‖2L2(QA,S) + ‖f‖2L2(Q)

)
, t ∈ [0, T ]. (5)

Proof of theorem 2.1
We write the equation (4) following the characteristic curves τ → (τ + c1, τ + c2, G

−1(τ + G(c3))

where c1, c2 and c3 are constants at our disposal and ds
dτ = g(s). To do this, we setm(τ) = u(τ + c1, τ +

c2, G
−1(τ +G(c3))), thenm satisfied the following ordinary differential equation

dm(τ)
dτ +4m(τ) = F (u)(τ), t ∈ R

m(0) = u(c1, c2, c3)
(6)

where F (u)(τ) = −g′(G−1(τ + G(c3)))u(x, τ + c1, τ + c2, G
−1(τ + G(c3))) − µ(τ + c2, G

−1(τ +

G(c3)))u(x, τ + c1, τ + c2, G
−1(τ + G(c3))) + f(x, τ + c1, τ + c2, G

−1(τ + G(c3))) + f(x, τ + c1, τ +



Asia Pac. J. Math. 2026 13:2 4 of 14

c2, G
−1(τ +G(c3))).

Thus,

m(τ) = T (τ)m(0) +

∫ τ

0
T (τ − σ)F (u)(σ)dσ, (7)

where {T (t), t > 0} is the semigroup of ∆ in L2(Ω) (see [10]). By choosing appropriate values for the
constants τ , c1, c2, and c3 in (7), we obtain

u(x, t, a; s) =


T (t)u(0, a− t, G−1(G(s)− t)) +

∫ t

0
T (t− σ)F (u)(σ) a.e. a > t

T (a)u(t− a, 0, G−1(G(s)− a)) +
∫ a

0
T (a− σ)F (u)(σ) a.e. a < t

T (G(s))u(t−G(s), a−G(s), 0) +
∫ G(s)

0
T (G(s)− σ)F (u)(σ(σ) a.e. a > G(s), t > G(s).

(8)
We know that:

‖u(., t, ., .)‖2L2(Q) =

∫ t

0

∫ S

0

∫
Ω
|u(x, t, a, s)|2dxdsda+

∫ A

t

∫ S

0

∫
Ω
|u(x, t, a, s)|2dxdsda

. Using Young’s inequality, we get∫ A

t

∫ S

0

∫
Ω
|u(x, t, a, s)|2dxdsda 6 C (K1 +K2 +K3 +K4 +K5 +K6)

where C is a positive constant;K1,K2,K3,K4 andK5 are defined as follows:

K1 =

∫ A

t

∫ S

0

∫
Ω

∣∣T (t)u(x, 0, a− t, G−1(G(s)− t))
∣∣2 dxdsda 6 C1‖u0‖2L2(QA,S),

K2 =

∫ A

t

∫ S

0

∫
Ω

(∫ t

0

|T (t− σ)g′(G−1(G(s)− t))u(x, σ, σ + a− t, G−1(σ +G(s)− t))|dσ

)2

dxdsda

6 C2(T )

∫ t

0

‖u(., σ, ., .)‖2L2(QA,S)dσ,

K3 =

∫ A

t

∫ S

0

∫
Ω

(∫ t

0

|T (t− σ)µ(a− t, G−1(G(s)− t))u(x, σ, σ + a− t, G−1(σ +G(s)− t))|dσ

)2

dxdsda

6 C3(T )

∫ t

0

‖u(., σ, ., .)‖2L2(QA,S)dσ,

K4 =

∫ A

t

∫ S

0

∫
Ω

(∫ t

0

|T (t− σ)|
∫

Ω

J(x− y)u(y, σ, σ + a− t, G−1(σ +G(s)− t))dydσ

)2

dxdsda

6 C4(T,Ω)

∫ t

0

‖u(., σ, ., .)‖2L2(QA,S)dσ,

K5 =

∫ A

t

∫ S

0

∫
Ω

(∫ t

0

|T (t− σ)u(x, σ, σ + a− t, G−1(σ +G(s)− t))dσ

)2

dxdsda

6 C5(T )

∫ t

0

‖u(., σ, ., .)‖2L2(QA,S)dσ
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and

K6 = ‖f‖2L2(Q).

So, we have∫ A

t

∫ S

0

∫
Ω
|u(x, t, a, s)|2dxdsda 6 C

(
‖u0‖2L2(QA,S) + ‖f‖2L2(Q) +

∫ t

0
‖u(., σ, ., .)‖2L2(QA,S)dσ

)
. (9)

We show similarly that∫ t

0

∫ S

0

∫
Ω
|u(x, t, a, s)|2dxdsda 6 C

(
‖f‖2L2(Q) +

∫ t

0
‖u(., σ, ., .)‖2L2(QA,S)dσ

)
. (10)

Combining (9) and (10), we then have that

‖u(., t, ., .)‖2L2(QA,S) 6 C

(
‖u0‖2L2(QA,S) + ‖f‖2L2(Q) +

∫ t

0
‖u(., σ, ., .)‖2L2(QA,S)dσ

)
. (11)

Using Gronwall’s lemma, we obtain from (11) the following inequality

‖u(., t, ., .)‖2L2(QA,S) 6 C
(
‖u0‖2L2(QA,S) + ‖f‖2L2(Q)

)
exp{Ct}, t ∈ [0, T ]. (12)

Thus, starting from (12), the estimate (5) of theorem 2.1 can be easily derived.
We now consider the following norm :

‖p‖γ := ess sup
t∈(0,T )

e−γt‖p(·, t, ·)‖L2(QA,S)

in L∞ (0, T ;L2(QA,S)
) for γ > 0.

Let’s define the application Φ : L∞+
(
0, T ;L2(QA,S)

)
−→ L∞+

(
0, T ;L2(QA,S)

)
, u −→ Φ(u)

where

Φ(u)(x, t, a; s) =


T (t)u(0, a− t, G−1(G(s)− t)) +

∫ t
0 T (t− σ)F (u)(σ) a.e. a > t

T (a)u(t− a, 0, G−1(G(s)− a)) +
∫ a

0 T (a− σ)F (u)(σ) a.e. a < t

T (G(s))u(t−G(s), a−G(s), 0) +
∫ G(s)

0 T (G(s)− σ)F (u)(σ(σ) a.e. a > G(s), t > G(s).

Let p1, p2 ∈ L2(Q), by linearity, Φ(p1)− Φ(p2) satisfies (8) with u0 ≡ 0 and f ≡ 0 . Hence by (11), we
have

‖Φ(p1)(., t, ., .)− Φ(p2)(., t, ., .)‖2L2(QA,S) 6 CT

∫ t

0
‖p1(., σ, ., .)− p2(., σ, ., .)‖2L2(QA,S)dσ

where CT is a positve constante. Thus„

‖Φ(p1)− Φ(p2)‖γ 6 e−2γt ‖Φ(p1)(·, t, ., .)− Φ(p1)(·, t, ., .)‖2L2(QA,S)

≤ CT e−2γt

∫ t

0
e2γσe−2γσ ‖p1(·, σ)− p2(·, σ)‖2L2(Q) dt ≤

CT
2γ
‖p1 − p2‖2γ
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Therefore, for sufficiently large γ, Φ is a contraction in L∞+
(
0, T ;L2(QA,S)

).
The comparison result in Garroni et al [11] and in Langlais [12] implies that the solution uv satisfies

0 6 uv(x, t, a, ) 6 u(x, t, a, s) a.e in Q, (13)

where u ∈ L∞+ (Q) is the solution of (4) corresponding to µ ≡ 0 and β ≡ ‖β‖L∞(Q)

and λ ≡ ‖λ‖L∞(Q) �

Corollary 2.1. The model (1) has a unique positive solution in L∞
(
0, T ;L2(QA,S)

)
Proof of corollary 2.1

It suffit to apply the theorem (2.1) taking into account (4) the mortality µ = µ+ v �

In the rest of our work, we will take g(s) = 1, a.e s ∈ (0, S).

3. Existence of an optimal control

The following proposition guarantees that the solution of the model (1) depends continuously on
the control v, i.e., a small change in the control v does not cause a large change in the solution

Proposition 3.1. The mapping v −→ u(v) is lipschitzian of U in L2(0, T ;L2(QA,S))

Proof of proposition 3.1
Let for any v1 and v2 in U , let ui and u2 be the corresponding solution of (1). Let y = y1 − y2 with

yi = e−λ0tui and ṽi = e−λ0tvi for i ∈ {1, 2}, where λ0 is positive parameter that will be choose later.
Then y satisfies the following system

∂ty + ∂ay + ∂sy −∆y + (µ+ λ0)y = eλ0t [ṽ1y + y2(ṽ1 − ṽ2)] in Q,
y(x, t, 0, s) =

∫ A
0

∫ S
0 β(a, p, s)y(x, t, a, s)dpda in QT,S ,

y(x, t, a, 0) =
∫ S

0

∫ A
0 λ(a, p, s)y(x, t, a, s)dpds in QT,A,

y(x, 0, a, s) = 0 in QA,S
y(x, t, a, s) = 0 on Σ

(14)

Multiplying the (14) by y and integrating over Q and using the Cauchy-Schwarz’s inequality,we obtain:
1

2
‖y(T )‖2L2(QA,S) +

1

2
‖y(A)‖2L2(QT,S) +

1

2
‖y(S)‖2L2(QT,A) −

1

2
‖y(., ., 0, .)‖2L2(QT,S)

− 1

2
‖y(., ., ., 0)‖2L2(QT,A) + ‖∇y‖2L2(Q) + ‖

√
µ+ λ0y‖2L2(Q) (15)

6 ‖ζ2‖L∞(Q)‖y‖2L2(Q) + ‖y‖2L2(Q) + ‖u‖2L∞(Q)‖ṽ1 − ṽ2‖2L2(Q)

On the one hand, we have the estimates

‖y(., ., 0, .)‖2L2(QT,S) 6 AS
2‖β‖2L∞(Q)‖y‖

2
L2(Q) (16)
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and

‖y(., ., ., 0)‖2L2(QT,A) 6 SA
2‖λ‖2L∞(Q)‖y‖

2
L2(Q). (17)

Combining (15), (16 and (17) and choose λ0 such that
λ0 = 1

2AS
2‖β‖2L∞(Q) + 1

2SA
2‖λ‖2L∞(Q) + ‖ζ2‖L∞(Q) + 1, we have

‖y1 − y2‖2L2(Q) 6 ‖u‖
2
L∞(Q)‖ṽ1 − ṽ2‖2L2(Q) (18)

�

Theorem 3.1. The problem (2) admits at least one optimal pair (u∗, v∗).

Proof of theorem 3.1
Define Ψ : U → R+ by

Ψ(v) =

∫
Q
w(x, t, a, s)v(x, t, a, s)uv(x, t, a, s)dxdtdads

and put d = supv∈U Ψ(v). By (5), we have that

‖uv(·, t·, ·)‖L2(Q) ≤ C (3.1)

for some constant C > 0 independent of v ∈ U . Hence we have

0 ≤ d 6 ‖w‖L∞(Q)‖ζ2‖L∞(Q)‖uv‖L2(Q) <∞.

Let {vN} ⊂ U be a sequence satisfying d− 1
N < Ψ (vN ) ≤ d. By (3.1), ‖uv‖L2(QT ) is bounded in v and

hence there exists a subsequence denoted again by {vN} such that uvN converges weakly to some u∗ in
L2 (Q). Using Mazur’s theorem ( [1]), there exists a sequence {ũN} in L2 (Q) satisfying

ũN (x, t, a, s) =

kN∑
i=N+1

λNi u
vi(x, t, a, s), λNi ≥ 0,

kN∑
i=N+1

λNi = 1 (kN ≥ N + 1) ,

ũN → u∗ strongly in L2 (Q) .

Define now the sequence {ṽN} by

ṽN (x, t, a, s) =


∑kN
i=N+1 λ

N
i vi(x,t,a,s)u

vi (x,t,a,s)∑kN
i=N+1 λ

N
i u

vi (x,t,a,s)
, if ∑kN

i=N+1 λ
N
i u

vi(x, t, a, s) 6= 0,

ζ1(x, t, a, s), if ∑kN
i=N+1 λ

N
i u

vi(x, t, a, s) = 0.

Recalling tha vi ∈ U , then ṽN ∈ U . Since {ṽN} is bounded in L2 (Q), there exists a subsequence denoted
again by {ṽN}which converges weakly to some v∗ in L2 (Q). We shall show that this v∗ gives an optimal
control to the optimal harvesting problem (2). Note that by linearity, ũN is a solution to (1) with ṽN
instead of v.
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Since uvi satisfies

∂tu
vi + ∂au

vi + ∂s (g(s)uvi)−∆uvi + µuvi = f − uvivi in Q,
uvi(x, t, 0, s) =

∫ A
0

∫ S
0 β(a, p, s)uvi(x, t, a, s)dpda in QT,S ,

uvi(x, t, a, 0) =
∫ S

0

∫ A
0 λ(a, p, s)uvi(x, t, a, s)dpds in QT,A,

uvi(x, 0, a, s) = u0(x, a, s) in QA,S
uvi(x, t, a, s) = 0 on Σ

(19)

Thus, by linearity, ũN satisfies

∂tũN + ∂aũN + ∂s (g(s)ũN )−∆ũN + µũN = f − ũN ṽN in Q,
ũN (x, t, 0, s) =

∫ A
0

∫ S
0 β(a, p, s)ũN (x, t, a, s)dpda in QT,S

ũN (x, t, a, 0) =
∫ S

0

∫ A
0 λ(a, p, s)ũN (x, t, a, s)dpds in QT,A,

ũN (x, 0, a, s) = u0(x, a, s) in QA,S
ũN (x, t, a, s) = 0 on Σ

(20)

Since ũN converges strongly to u∗ in L2 (QT ) and ũN ∈ L∞
(
0, T ;L2(Q)

), we find that u∗ ∈
L∞

(
0, T ;L2(Q)

).
Thus, ∫ S

0

∫ A

0
β(a, p, s)ũN (x, t, a, p)dadp ⇀

∫ S

0

∫ A

0
β(a, p, s)u∗(x, t, a, p)dadp

and ∫ A

0

∫ S

0
λ(a, p, s)ũN (x, t, p, s)dsdp ⇀

∫ A

0

∫ S

0
λ(a, p, s)u∗(x, t, p, s)dsdp

.
Therefore, by taking the limit in (20), u∗ satisfies

∂tu
∗ + ∂au

∗ + ∂s (g(s)u∗)−∆u∗ + µu∗ = f − u∗v∗ in Q,
u∗(x, t, 0, s) =

∫ A
0

∫ S
0 β(a, p, s)u∗(x, t, a, s)dpda in QT,S ,

u∗(x, t, a, 0) =
∫ S

0

∫ A
0 λ(a, p, s)u∗(x, t, a, s)dpds in QT,A,

u∗(x, 0, a, s) = u0(x, a, s) in QA,S
u∗(x, t, a, s) = 0. on Σ

(21)

Then u∗ is a solution of (1) for v = v∗. By uniqueness of solutions, we conclude that u∗ = uv
∗ and∫

Q
w(x, t, a, s)ṽN (x, t, a, s)ũN (x, t, a, s)dxdtdads

→
∫
Q
w(x, t, a, s)v∗(x, t, a, s)u∗(x, t, a, s)dxdtdads = Ψ (v∗)

as N →∞. On the other hand,∫
Q w(x, t, a, s)ṽN (x, t, a, s)ũN (x, t, a, s)dxdtdads

=
∑kN

i=N+1 λ
N
i

∫
Qw(x, t, a, s)vi(x, t, a, s)u

vi(x, t, a, s)dxdtdads =
∑kN

i=N+1 λ
N
i Ψ (vi)→ d
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as N → ∞. Thus we obtain d = Ψ (v∗) and we conclude that (v∗, u∗) is an optimal solution to the
problem (2). �

4. Necessary optimal conditions

Let’s (u∗, v∗) is an optimal pair for (2) and consider the following system


−∂tq − ∂aq − ∂sq −∆q + µq − q(x, t, 0, s)
∫ S

0 β(a, p, s)dp

−q(x, t, a, 0)
∫ A

0 λ(a, p, s)dp = −v∗(w + q)(x, t, a, s) in Q,
q(x, t, A, s) = 0 in QT,S ,
q(x, t, a, S) = 0 in QT,A,
q(x, T, a, s) = 0 in QA,S
∂q
∂η = 0. on Σ

(22)

Proposition 4.1. The system (22) admits an unique solution in L2(0, T ;L2(QA,S))

Proof of proposition 4.1
Let’s make the following variable changes: t = t− T , a = A− a and s = S − s and adopting always

the same notations, the system (22) can be written


∂tq + ∂aq + ∂sq −∆q + µq − q(x, t, A, s)
∫ S

0 β(a, p, s)dp

−q(x, t, a, S)
∫ A

0 λ(a, p, s)dp = −v∗(w + q)(x, t, a, s) in Q,
q(x, t, 0, s) = 0 in QT,S ,
q(x, t, a, 0) = 0 in QT,A,
q(x, 0, a, s) = 0 in QA,S
∂q
∂η = 0. on Σ

(23)

Let us introduce the following auxiliary system:


∂ty + ∂ay + ∂sy −∆y + (λ0 + µ)y − y(x, t, A, s)
∫ S

0 β(a, p, s)dp

−y(x, t, a, S)
∫ A

0 λ(a, p, s)dp = −v∗(w̃ + y)(x, t, a, s) in Q,
y(x, t, 0, s) = 0 in QT,S ,
y(x, t, a, 0) = 0 in QT,A,
y(x, 0, a, s) = 0 in QA;S

∂q
∂η = 0. on Σ

(24)

où w̃ = e−λtw and λ0 a positive parameter.
Let us show that (24) has an unique solution. For that, consider now the following system
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

∂ty + ∂ay + ∂sy −∆y + (λ0 + µ)y − ϕ(x, t, s)
∫ S

0 β(a, p, s)dp

−θ(x, t, a)
∫ A

0 λ(a, p, s)dp = −v∗(w̃ + y)(x, t, a, s) in Q,
y(x, t, 0, s) = 0 in QT,S ,
y(x, t, a, 0) = 0 in QT,A,
y(x, 0, a, s) = 0 in QA,S
∂q
∂η = 0. on Σ

(25)

ϕ ∈ L∞(0, T ;L2(QS)) et θ ∈ L∞(0, T ;L2(QA))

The system (25) is linear and has bounded coefficients, so it is easy to show that the system (25) has a
unique solution y in L∞(0, T ;L2(QA,S)).

Let us note η : L∞(0, T ;L2(QS))× L∞(0, T ;L2(QA))→ L∞(0, T ;L2(QS))× L∞(0, T ;L2(QA)),

(ϕ, θ) 7→ (y (., ., A, .) , y (., ., ., S)) where y is a solution of (25).
We will show that for some values of λ, η it is strictly contracting.
Let ϕ1;ϕ2 be elements ofL∞(0, T ;L2(QS)) and θ1 ; θ2 be inL∞(0, T ;L2(QA)) and y1, y2 be the solutions
of (25) corresponding to (ϕ1, θ1) and (ϕ2, θ2), respectively. Let Y = y1−y2,Φ = ϕ1−ϕ2 and Θ = θ1−θ2,
then Θ and Φ verify

∂tY + ∂aY + ∂sY −∆Y + (λ0 + µ)Y − Φ(x, t, s)
∫ S

0 β(a, p, s)dp

−Θ(x, t, a)
∫ A

0 λ(a, p, s)dp = −v∗Y (x, t, a, s) in Q,
y(x, t, 0, s) = 0 in QT,S ,
y(x, t, a, 0) = 0 in QT,A,
y(x, 0, a, s) = 0 in QA,S
∂q
∂η = 0. on Σ

(26)

Multiplying the first equation of (26) by Y and using Cauchy’s inequality with ε > 0, we show that
there exists a positive constant C independent of ε and positive constants C1(ε) and C2(ε) such that

1

2
‖Y (., T, ., .)‖2

L2(QA,S) +
1

2
‖Y (., ., A, .)‖2L2(0,T ;L2(QS)) +

1

2
‖Y (., ., ., S)‖2L2(0,T ;L2(QA)) + λ‖Y ‖2L2(Q)

6
C

ε

(
‖Φ‖2L2(0,T ;L2(QS)) + ‖Θ‖2L2(0,T ;L2(QA))

)
+ C(ε)‖Y ‖2L2(Q)

By choosing ε = 2C and λ > C(ε)
2 , one get:

‖η‖ 6 1

2

(
‖φ1 − φ2‖2L2(0,T ;L2(QS)) + ‖θ1 − θ2‖2L2(0,T ;L2(QA))

)
.

And therefore η is a contraction. �

We can now give necessary conditions of optimality:



Asia Pac. J. Math. 2026 13:2 11 of 14

Theorem 4.1. If (u∗, v∗) is an optimal pair for (2) and if q is the solution of (22) then we have

v∗(x, t, a, s) =

ζ1(x, t, a, s) if (w + q)(x, t, a, s) < 0

ζ2(x, t, a, s) if (w + q)(x, t, a, s) > 0

For the proof theorem 4.1, we need the followings lemmas.

Lemma 4.1. The following convergence holds

uv
∗+δv(x, t, a, s) −→ uv

∗
(x, t, a, s) in L∞

(
0, T ;L2(QA,S)

)
as δ −→ 0+.

Proof of lemma 4.1
Let hδ = uv

∗+δv − uv∗ then hδ satisfy

∂thδ + ∂ahδ + ∂shδ −∆hδ + (µ+ v∗)hδ = −δuv∗+δvv in Q,
hδ(x, t, 0, s) =

∫ A
0

∫ S
0 β(a, p, s)hδ(x, t, a, s)dpda in QT,S

hδ(x, t, a, 0) =
∫ S

0

∫ A
0 δ(a, p, s)hδ(x, t, a, s)dpds in QT,A,

hδ(x, 0, a, s) = 0 in QA,S
∂hδ
∂η = 0 on Σ

(27)

Multiplying (27) by hδ and integrating over Qt and using Young’s inequality, we obtain :
1

2

∫ A

0

∫ S

0
‖hδ(., T, ., .)‖2L2(Ω)dsda+

1

2

∫ T

0

∫ S

0
‖hδ(., ., A, .)‖2L2(Ω)dsdt

+
1

2

∫ T

0

∫ A

0
‖hδ(., ., ., S)‖2L2(Ω)dadt−

1

2

∫ T

0

∫ S

0
‖hδ(., ., 0, .)‖2L2(Ω)dsdt

− 1

2

∫ T

0

∫ A

0
‖hδ(., ., ., 0)‖2L2(Ω)dadt+ ‖∇hδ‖2L2(Q) + ‖

√
µ+ v∗hδ‖2L2(Q) (28)

6 δ
∫ t

0

∫ A

0

∫ S

0

∫
Ω
ζ2(x, a, t, s)ū(x, a, l, s) |hδ((x, a, l, s))| dxdsdadl

Using again Young’s inequality, the estimation (28) implies that

‖hδ(t)‖2L2(QA,S) ≤ C
∫ t

0
‖hδ(t)‖2L2((QA,S)×Ω) + δ2

∫
QT

ζ2
2 (a, t, x)ū2(a, t, x)dxdadt (29)

where C is a positive constant.
Using Gronwall’s inequality, estimate (29) implies

‖hδ(t)‖2L2(QA,S) ≤ Kδ
2 exp{Ct}. (30)

Passing to the limit in the last inequality we get

hδ → 0 in L∞ (0, T ;L2(QA,S)
)

�
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Let
zδ =

hδ
δ

in Q.

Then the function zδ is a solution of

∂tzδ + ∂azδ + ∂szδ −∆zδ + µzδ = −v∗zδ − uv
∗+δvv in Q,

zδ(x, t, 0, s) =
∫ A

0

∫ S
0 β(a, p, s)zδ(x, t, a, s)dpda in QT,S ,

zδ(x, t, a, 0) =
∫ S

0

∫ A
0 λ(a, p, s)zδ(x, t, a, s)dpds in QT,A,

zδ(x, 0, a, s) = 0 in QA,S
∂zδ
∂η = 0 on Σ

(31)

Lemma 4.2. The following convergence holds

zδ → z in L∞(Q) as δ → 0, where z is the solution of



∂tz + ∂az + ∂sz −∆z + µz = −v∗z − uv∗v in Q,

z(x, t, 0, s) =
∫ A

0

∫ S
0 β(a, p, s)z(x, t, a, s)dpda in QT,S ;

z(x, t, a, 0) =
∫ S

0

∫ A
0 λ(a, p, s)z(x, t, a, s)dpds in QT,A;

z(x, 0, a, s) = 0 in QA,S ;

∂z
∂η = 0 on Σ.

(32)

Proof of lemma 4.2
Let wδ = zδ − z, so wδ satisfies

∂twδ + ∂awδ + ∂swδ −∆wδ + µwδ = −v∗wδ − vhδ in Q;

wδ(x, t, 0, s) =
∫ A

0

∫ S
0 β(a, p, s)wδ(x, t, a, s)dpda in QT,S ;

wδ(x, t, a, 0) =
∫ S

0

∫ A
0 λ(a, p, s)wδ(x, t, a, s)dpds in QT,A;

wδ(x, 0, a, s) = 0 in QA,S ;

∂wδ
∂η = 0 on Σ.

(33)

Multiplying (33) by wδ and integrating over Qt = Ω× (0, t)× (0, A)× (0, S), we obtain

‖wδ(t)‖2L2(QA,S) ≤ (C + 1)

∫ t

0
‖wδ(l)‖2L2(QA,S) dl

+ ‖ζ‖2L∞(Q)

∫ t

0
‖hδ(l)‖2L2(QA,S) dl

Using Bellman’s inequality, this last inequality implies that

‖wδ(t)‖2L2(QA,S) ≤ ‖ζ‖
2
L∞(Q) exp{(C + 1)t}

∫ t

0
‖hδ(l)‖2L2(QA,S) dl

So,

‖wδ‖2L∞(0,T ;L2(QA,S)) ≤ C
′ ‖hδ‖2L∞(0,T ;L2(QA,S)) (34)
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where C ′ is a positive constant that depends on T . Taking the limit in (34) as δ → 0+, we obtain that

wδ → 0 in L∞(0, T ;L2 (QA,S))

�

Proof of theorem 4.1
Let’s (u∗, v∗) is an optimal pair for (2).

For all v ∈ L∞(Q) such that v∗ + δv ∈ U and ∀δ > 0,
1

δ

(
Ψ(uv

∗+δv)−Ψ(v∗)
)

=

∫
Q
v∗(x, t, a)w(x, t, a)

uv
∗+δv(x, t, a)− uv∗(x, t, a)

δ
dxdtda

+

∫
Q
v(x, t, a)g(x, t, a)uv

∗+δv(x, t, a)dxdtda (35)

Using lemma 4.1 and lemma 4.2, and passing the limit in (35), we get

dΨ(v∗)(v) =

∫
Q
v∗(x, t, a)w(x, t, a)z(x, t, a)dxdtda+

∫
Q
v(x, t, a)w(x, t, a)uv

∗
(x, t, a)dxdtda (36)

Multiplying (22) by z and integrating over Qwe get∫
Q

(∂tz + ∂az + ∂sz −4z + µz) qdxdadsdt+

∫ T

0

∫ S

0

∫
Ω
q(x, t, 0, s)z(x, t, 0, s)dxdsdt∫ T

0

∫ A

0

∫
Ω
q(x, t, a, 0)z(x, t, a, 0)dxdadt−

∫ T

0

∫ S

0

∫ A

0

∫
Ω

(
q(x, t, 0, s)

∫ S

0
β(a, p, s)dp

)
dxdadsdt

−
∫ T

0

∫ S

0

∫ A

0

∫
Ω

(
q(x, t, 0, s)

∫ a

0
λ(a, p, s)dp

)
dxdadsdt = −

∫
Q
v∗z(w + q)(x, t, a, s)dxdadsdt. (37)

Recalling that z satisfies the system (32), after some calculation the equality (37) becomes

−
∫
Q

(v∗zq)(x, t, a, s)dxdadsdt−
∫
Q

(vuv
∗
q)(x, t, a, s)dxdadsdt = −

∫
Q
v∗z(w + q)(x, t, a, s)dxdadsdt.

(38)

We then deduce the following equality from (38):∫
Q

(v∗wz) (x, t, a)dxdtda =

∫
Q

(
vuv

∗
q
)

(x, t, a)dxdtda (39)

So from (36) and (39) we have ,

dΨ(v∗)(v) =

∫
Q
vuv

∗
(w + q)(x, t, a, s)dxdsdadt

Recalls that v∗ is an opimal solution of problem (2), then

dΨ(v∗)(v) ≤ 0, ∀v ∈ L∞(Q).

According to (3), this implies that uv∗(g + q) ∈ NU (v∗), where NU (v∗) is the normal cone at U in v∗ in
L2(Q).
For any (x, t, a, s) ∈ Q such that uv∗(x, t, a, s) 6= 0, we conclude



Asia Pac. J. Math. 2026 13:2 14 of 14

v∗(x, t, a, s) =

ζ1(x, t, a, s) if (g + q)(x, t, a, s) < 0

ζ2(x, t, a, s) if (g + q)(x, t, a, s) > 0

�
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