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AsstracT. In this paper, we develop and apply the atomic solution method to obtain exact solutions of
a class of non-homogeneous parabolic partial differential equations (PPDEs). The approach is based
on the tensor product theory in Banach spaces together with key properties of atomic operators. By
exploiting these structures, the PDE is decomposed into simpler components, allowing us to construct
exact solutions in terms of atomic functions. Several cases are examined, leading to nine distinct atomic
solutions under different assumptions on the source terms. The method highlights the effectiveness of the
atomic framework in handling non-homogeneous PDEs and demonstrates its potential as a systematic tool
for solving problems that arise in heat flow, diffusion, and related physical processes.
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1. INTRODUCTION

Partial differential equations (PDEs) play a major role in, almost, all scientific domains [5], [6].
They provide a potential window for studying many complex physical facts and phenomena with
spatial behavior that changes in time. Natural processes like heat conduction, fluid motion, quantum
mechanical systems, and general relativity are typical examples of mathematical modeling by PDEs. In
fact PDEs are present everywhere not only physics, but also in all natural domains such as engineering,
chemistry, biology, and social studies. There are many types of PDEs and also, there are many ways at

which they can be classified such as order, linearity, homogeneity, and the coefficients type [17].
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The general form of a second order non-homogeneous PDE with constant coefficients is

" 0%u " u
;;al]m—kgbzaxi—kcu—}—d—F(ml, T, v, Tp), (1.1)
where u = u(z1, x2, ---, p) : R® = R is the unknown function, a;j, b;,c, and d (1 < i < n) are
constants, and F is a given function of z1, 2, - - - , .

When modeling some physical problems in engineering, we usually come across one of the, well
known, three types of second-order PDEs, namely, elliptic, hyperbolic, and parabolic PDEs. Each type
of PDEs has certain characteristics and can represent specific dynamical regime. Parabolic partial
differential equations (PPDEs) model phenomena that describe how physical quantities change slowly
over a small interval of time such as heat flow, diffusion, and fluid flow [&].

One important property of PPDEs is that they have an initial value problem associated with them.
This means that the solution is specified at some initial time. PPDEs also have a maximum principle,
which states that the maximum value of the solution is attained at the given initial time.

In 2010, [13], a new procedure for solving ordinary and fractional differential equations was pre-
sented. This new method utilizes the concept of tensor product of two Banach spaces as well as some
properties of the atoms operators in order to solve differential equations. The obtained solution in this
case is called an atomic solution that is named for atoms operators [1-4,7,10, 18].

In the current paper, our target is to determine the exact atomic solutions of a certain type of PPDEs

that is
Uss(8,t) + 2use (s, 1) + un(s, t) + uls, t) = f(s)g(t),
where f, g : R — R are given functions in s and ¢, respectively. Before we present the detailed procedure

for obtaining the atomic solutions of the above PPDE, we commence with some related definitions and

theorems.

2. Atoms OPERATORS AND TENSOR ProDuUCT OF BANACH SPACES

Definition 2.1. Let V and W be any two Banach spaces where V* is the dual space of V. Assume thatv € V
and w € W. Then the operator A : V* — W defined by

Av* = v*(v)w = (v, V") w,

is said to be an atom and is denoted by v ® w. Moreover, since the range of v ® w is the span of w, the atom v ® w

is a bounded rank-one linear operator.

For example, let V and W be two Banach spaces such that V. = W = ([0, 1], with the norm

| f|l = sup |f(t)| forany f € C'[0,1]. Define V* to be the space of all regular Borel measures on [0, 1] .
t€(0,1]
1 1
So, if € V*, then u(f) = [ f du. Now, let f € V,g € W,and p € V*, then (f ® g) p = pu(f)g = g [ f(¢)
0 0
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du(t). Further, f®gisabounded linear operator. Also, indeed, ||(f ® g) (u)|| = |(f)] lgll < [l || £] 9]l
forall p € V*.
Now, if we assume two atoms, namely, v1 ® w; and vy ® we such that v; ® wi = v ® wy, then for any

v* € V* we have
(v, ") w1 = (vg, V™) wo.

Thus, we can assume w; = w». Similarly, one can prove v; = vs.

Now, let us present the following result about atoms.

Lemma1l. [171]Let vy ®@w; and ve ®wy be two nonzero atoms in V@ W such that vi @ w1 +v2 @wa = v3 @ws.

Then either v1 = v9 = v3 OF W1 = W9 = W3.

Finally, one of the old and notable theorems in the field of applied functional analysis as well as
approximation theory in tensor product [ 12] which guarantees that any continuous function of more

than one variable can be expressed as a sum of products of continuous separable functions.

Theorem 2.1. [9] Let N, M be two compact intervals, and C (N), C (M), and C (N x M) be the spaces of
continuous functions on N, M, and N x M, respectively. Then for every h € C (N x M) we have h(z,y) =
> ¢ (@)1 (y), where ¢; (x) € C(N) and r; (y) € C (M).

i=1

For more details about tensor product theory of Banach space, we refer the readers to [9,14-16].

3. MaIN Resurr

Consider the following PPDEs in two variables

uss(sa t) + 2ust(57 t) + utt(37 t) + U(S, t) = f(S)g(t),

1
u(0,0) = u5(0,0) = 1,(0,0) = 1. (3.1)

where u = u(s,t) : R? — R is the unknown function and f, g : R — R are given functions in s and ¢,
respectively.
A solution to (3.1) is said to be atomic if it has the form u(s,t) = P(s) ® Q(t) where P(s) and Q(t)

are twice differentiable functions. In this section, we are interested in obtaining the atomic solution of

(3.1).

Now, from Theorem (1), we begin our solution procedure with considering that

u(s,t) = P () QD). (32)
Moreover, from the initial conditions in (3.1), we can assume, without loss of generality, that

P(0)=P (0)=1and Q(0) = Q' (0) = 1. (3.3)
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Thus, by substituting (3.2) into the PPDE (3.1) we get

P(s)Q(t) +2P'(s)Q'(t) + P(s)Q"(t) + P(s)Q(t) = f(s)g(t), (34)

Clearly, each term of (3.4) is just a product of two functions one of them is pure in s and the other is

pure in t. Therefore, in tensor product form, (3.4) can be written as
PPoQ+P o2 +PRQ'+PRQ=Ff®g. (3.5)
Equivalently,
P'oQ+P ®2Q+Po[Q"+Q]=f®g. (3.6)
By utilizing Lemma (1), there are three different cases:
(A) P" ® Q+ P’ ®2Q' is an atom,

(B) P"®Q+ P ® (Q"+ Q) is an atom, (3.7)
(C) PP ®2Q + P®(Q" + Q) is an atom.

Case (A): This case reveals that the sum of two atomes is an atom. Thus, again by Lemma (1), this

case gives the following two situations, namely

(Ai) P" = P,

(3.8)
(Aii) Q = 2.
Situation (Ai): For this situation, (3.6) can be reduced as follows
ProlQ+2Q]+Po[Q"+Q]=f®g. (3.9)

This implies, by lemma (1), either

(A, 1) P" =P =,
or (3.10)

(AL, 2) [@+2Q]=[Q"+Q] =g
By considering (Ai, 1) together with appropriate initial conditions from (3.3)we have

P'=P =P=f=¢" (3.11)

Hence, for an atomic solution to exist, f(s) must be equal to e®.

Now, on substituting (3.11) into (3.9), we have

Q"(t) +2Q'(t) +2Q(t) = g(1), (3.12)

which is a non-homogeneous second order ordinary differential equation with constant coefficients.
So, its general solution has the form Q(t) = Qx(t) + Q,(t), where Qp(t) = e~ [2sint + cost] is the

complementary solution that can be obtained by considering the companion homogeneous equation,
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namely, Q" (t) + 2Q’(t) + 2Q(t) = 0 together with @ (0) = 1 and @’ (0) = 1 (3.3). While the particular

solution @, (t) can be obtained by the method of variation of parameters as follows

B tcos(t)g(t)
Qp(t)=e Smt/W [e~tsint 6*tcost] dt
tsin(t)g(t)
*cost Wle 1tsmt e~tcost] dt
=et [sin(t)/et cos(t)g(t)dt — cos(t)/et sin(t)g(t)dt] , (3.13)

where W [ sint, et cos t] is the Wronskian of e *sint and e~ cost. Therefore, the general solution

to (3.12) is given by

Q(t) = Qn(t) +Qp (t)

=e ! [sint (2 +/et cos tg(t)dt> + cost (1 — /et sintg(t)dt>
+ cost (1 - /et sintg(t)dtﬂ : (3.14)

Hence, by assuming (3.2), (3.11), and (3.14) the first atomic solution to (3.1) that is associated with
(Ai,1)is

ua(s,t) = e [sint <2 + /et costg(t)dt) + cost (1 - /et sintg(t)dt>] : (3.15)

Now, we move to (Ai, 2) and consider [Q(t) + 2Q'(t)] = [Q"(t) + Q(¢)] which can be solved by taking
into account the related initial conditions from (3.3) as

1

Q) =5 [¢* +1]. (3.16)

Indeed, we require [Q(t) + 2Q'(t)] = g(t) and [Q"(t) + Q(t)] = g(t) in order to obtain an atomic solution
related to (Ai, 2). Thus,

g(t) = % [5e +1]. (3.17)
Therefore, on substituting both (3.16) and (3.17) into (3.9), we get P”(s) + P(s) = f(s) which is again
a non-homogeneous second order ordinary differential equation with constant coefficients that can be

solved by similar argument as in (3.12). So, by utilizing the related initial conditions from (3.3) we have

P(s) :sins<1+ / f(s)cossds) +Coss(1— / f(s)sinsds). (3.18)

Consequently, the atomic solution that is associated to (Ai, 2), can be formulated by assuming (3.2),

(3.16), and (3.18) as follows:

uaz(s,t) = % (e +1] {sins (1 + /f(s) cos sds> + cos s (1 — /f(s) sin sds)] . (3.19)

Situation (Aii): Here, (3.6) can be reduced as follows:

[P"+P]oQ+PR[Q"+Q]=f®y. (3.20)
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This implies, by lemma (1), either
(Aii,1) P"+ P =P =f,
or (3.21)
(Aii,2) Q= [Q"+ Q] =g

Hence, from (Aii, 1), we have P(s) = f(s) such that P"(s) + P'(s) — P(s) = 0, this argument together

with appropriate initial conditions from (3.3) gives

(3.22)

Therefore, on substituting (3.22) into (3.20), we have Q" (t) + 2Q(t) = g(t) which is a non-homogeneous
second order ordinary differential equation with constant coefficients that can be solved by similar

argument as in (3.12). Thus, by considering the related initial conditions from (3.3) we get

Qt) = Sm(\/\?) (1 + /g(t) cos (\/§t> dt)

+ C"S(\/\fﬂ (f - / g(t) sin (f2t> dt) : (3.23)

Hence, by assuming (3.2), (3.22), and (3.23) an atomic solution of (3.1) exists and given by

B [(3\/5+5> i, <3xf—5> l—ﬁl
ua3(s,t) = 10 e - 10 €’
[Sln(\/\ft) <1 + /g(t) cos (\@t) dt)
+cos(\/\§t) <\[— /g(t) sin (\@t) dt)] . (3.24)

Now, we move to (Aii, 2) and consider both Q(t) = Q" (t) + Q(t) and Q(t) = g(¢). From these two

equations and by taking into account the related initial conditions from (3.3), we get
Qt)=gt)=t+1. (3.25)

Therefore, on substituting (3.25) into (3.20), we get P"(s) + P'(s) + P(s) = f(s). Following similar

argument as in (3.12) together with assuming the related initial conditions from (3.3) we have

P(s) = e 2 sin ({ ) <\f+/f cos (s) ds>
+e—§cos< ) (1—/f sin <3) ds>. (3.26)
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Consequently, an atomic solution of (3.1) that is associated to (Aii, 2) exists and can be formulated by

assuming (3.2), (3.25), and (3.26) as follows

han(12) (80 2 [ (1) )
s () 12 fron () ). -

So far, we have four different atomic solutions to (3.1), namely, ua 1 (3.15), ua2 (3.19), ua 3 (3.24), and

uaa(s,t) =[t+1]

uA,4 (3.27). More atomic solutions can be obtained via considering case (B) and case (C) (3.7).
Case (B): This case reveals that the sum of two atoms is an atom. Thus, by Lemma (1), this case

gives the following two situations, namely

(Bi) P" = P,
(3.28)
(Bii) Q = Q" + Q.
Situation (Bi): When considering this situation, (3.6) can be written as follows
P'®(Q"+2Q)+ P ®2Q' =f®g. (3.29)

This implies, by lemma (1), either
(Bi,1) P" = P' = f,
or (3.30)
(Bi,2) (Q"+2Q) =2Q" =g.

By (Bi, 1) together with the appropriate initial conditions from (3.3)we have
P"(s) = P'(s) = P(s) = f(s) = ¢°. (3.31)

Therefore, on substituting (3.31) into (3.29), we have Q" (t) + 2Q’(t) + 2Q(t) = g(t). Now, by referring
to situation (Ai, 1), one can easily recognize that both situations (Bi, 1) and (Ai, 1) are the same and
hence, they give the same atomic solution. This implies up 1 = u4, (3.15).

Now, we move to (Bi, 2) from which we have, Q" (t) — 2Q'(t) +2Q(t) = 0. Therefore, by (3.3) we get
Q(t) = €' cost. (3.32)

Indeed, we require Q" (t) + 2Q(t) = 2Q'(t) = g(t) in order to obtain an atomic solution related to
situation (Bi, 2). Thus,

g(t) = 2¢' (cost — sint). (3.33)
Now, on substituting both (3.32) and (3.33) into (3.29), we get P”(s) + P'(s) = f(s). This is a non-

homogeneous second order ordinary differential equation with constant coefficients. So, its general
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solution has the form P(s) = P, (s) + P,(s) and can be solved by considering related initial conditions
from (3.3) as

P(s)=(2-¢*)+ (1 —¢7%) /f(s)esds. (3.34)
Consequently, the atomic solution that is associated to (Bi, 2), can be formulated by assuming (3.2),

(3.32), and (3.34) is given by
upa(s,t) =e'cost [(2—e*) + (1 —e™¥) /f(s)esds] . (3.35)
Situation (Bii): Here, (3.6) can be reduced as follows
[P"+PloQ+P 22Q =f®g. (3.36)
This implies, by lemma (1), either

(Bii,1) P + P =P = f,
or (3.37)
(Bii, 2) Q = 2Q' = g.

From (Bii, 1), we have P’(s) = f(s) such that P”(s) — P'(s) + P(s) = 0, this argument together with

appropriate initial conditions from (3.3) gives

(1 (V3 V3 :
P(s) =e2 <\/§ sin (23> + cos <2s>> , where f(s) = P'(s). (3.38)

Therefore, on substituting (3.38) into (3.36), we have 2Q’(t) + Q(t) = g(¢t) which can be solved by
considering both the complementary solution ()1, (t) and the particular solution @), (t) with the related

initial conditions from (3.3) as

Q) = %e*%t / g(t)ebtat. (3.39)
Hence, by assuming (3.2), (3.38), and (3.39) an atomic solution of (3.1) exists and given by
1 1 1 1 \/g \/g
_ = 5 (s—t) =t i v v
up3(s,t) 5¢’ /g(t)e2 dt <\/§sm< 5 s> —I—cos( 5 s)) . (3.40)

Now, we move to (Bii, 2) where Q(t) = 2Q'(t) and Q(t) = g(t). Hence, from (3.3), we get
Q(t) = g(t) = ez, (3.41)

Therefore, on substituting (3.41) into (3.36), we get P”(s) + P'(s) + P(s) = f(s) which can be solved

by considering the related initial conditions from (3.3) as

P(s) = e 2 sin ({ ) <\f+/f cos (s) ds>
+e—§cos< ) (1—/f sin (s) ds>. (3.42)
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Consequently, an atomic solution of (3.1) that is associated to (Bii, 2) exists and can be formulated by

assuming (3.2), (3.41), and (3.42) as follows

upa(s,t) = edt [6_; sin (f ) (\[—i- /f cos (s) ds)
+€e72 cos ( ) (1 - /f sin <s> ds)] . (3.43)

So far, we have seven different atomic solutions to (3.1), namely, ua 1 = up (3.15), ua2 (3.19), ua3
(3.24),ua4 (3.27), up2 (3.35), up 3 (3.40), and up 4 (3.43). Now, for more atomic solutions to (3.1), we
consider case (C) (3.7).

Case (C): This case reveals that the sum of two atoms is an atom. Thus, again by Lemma (1), this

case gives the following two situations, namely

(Ci) P' = P,
(3.44)
(Cii) 2@/ = Q" + Q.
Situation (Ci): For this situation, (3.6) can be reduced as follows
PloQ+P[Q"+2Q'+Q]=f®y. (3.45)

This implies, by lemma (1), either

(CL1) P'=P' =,
or (3.46)
(Ci,2)Q=0Q"+2Q'+Q=y.

By considering (Ci, 1) together with appropriate initial conditions from (3.3)we have
P"(s) = P'(s) = P(s) = f(s) = ¢’ (3.47)

Therefore, on substituting (3.47) into (3.45), we have Q" (t) + 2Q’(t) + 2Q(t) = g(t). By referring to
both (Ai, 1) and (Bi, 1), clearly, (Ci, 1) will give atomic solution uc; that is similar to u4; and up ;.
So, ua1 =up1 = uc, (3.15).

Now, we move to (Ci, 2) from which we have Q" (¢) +2Q’(¢t) = 0 and Q(¢) = g(¢). Hence, by utilizing

related initial conditions from (3.3) we get,

Qt)=g(t) =5 — e . (3.48)

On substituting both (3.48) into (3.45), we get P”(s) + P’(s) = f(s) which can be solved by considering

the related initial conditions from (3.3) as

P(s)=(2-¢*)+ (1 —¢7%) /f(s)esds. (3.49)
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Consequently, the atomic solution that is associated to (Ci, 2), can be obtained by assuming (3.2),

(3.48), and (3.49) as follows:

uco(s,t) = <Z’ — ;e_%) [(2 —e )+ (1—e7) /f(s)esds] . (3.50)

Situation (Cii): (3.6) can be reduced as follows:
P'oQ+ (PP+P)o2Q =f®g. (3.51)
This implies, by lemma (1), either

(Cii,1) P"=P' +P = §,
or (3.52)
(Cii,2) Q = 2Q' = g.

Hence, from (Cii, 1), we have P”(s) = f(s) such that P"(s) — P'(s) — P(s) = 0, this argument together

with appropriate initial conditions from (3.3) gives

P(s) = (5 i ﬁ) S5t (5 1 ﬁ> ¢’ such that f(s) = P'(s). (3.53)

10 10

Therefore, on substituting (3.53) into (3.51), we have 2Q’(t) + Q(t) = g(t) which can be solved by

considering the related initial conditions from (3.3) as

1
Qt) = 56_%t / g(t)eztdt. (3.54)
Hence, by assuming (3.2), (3.53), and (3.54) an atomic solution to (3.1) exists and given by
1 - -
UC,g(S,t) = 26_ét/g(t)€;tdt (5 —Ii()\/g> e@s + (5 10\/5> 612\/551 ) (355)

Finally, we move to (Cii, 2) by which we have 2Q’(t) — Q(t) = 0 and Q(t) = ¢(t). From these two

equations and by taking into account the related initial conditions from (3.3), we get
Qt) = g(t) = e, (3.56)

Therefore, on substituting (3.56) into (3.51), we get P”(s) + P'(s) + P(s) = f(s). Referring to situation
(Bii, 2), one can easily recognize that both situations (Cii, 2) and (Bii, 2) are the same and hence, they
give the same atomic solution. This implies uc4 = up 4 (3.43).

According to the atomic solution method, the PPDE (3.1) has the following nine atomic solutions:
ual =up1 =uc, (3.15),ua2 (3.19),ua3 (3.24), ua4 (3.27), up2 (3.35), up 3 (3.40), up 4 = uc4 (3.43),
ucs (3.50), and uc s (3.55).
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4. CONCLUSION

In this study, we employed the atomic solution method to solve a non-homogeneous parabolic partial
differential equation. By applying tensor product theory in Banach spaces and the properties of atomic
operators, we systematically derived nine distinct exact solutions corresponding to different structural
cases of the equation.

The main novelty of this work lies in showing that the atomic framework is not only capable of
handling homogeneous problems, as in earlier studies, but also extends naturally to non-homogeneous
parabolic PDEs. Each solution arises from precise conditions on the factor functions P(s) and Q(t),
leading to either explicit closed forms or integral representations.

From an applications perspective, PPDEs model a wide range of time-dependent diffusion processes,
including heat conduction, mass transfer, and fluid flow. The exact solutions obtained here provide
useful benchmarks for validating numerical simulations and can guide further extensions of the atomic
approach to more complex PDEs, such as higher-dimensional systems, fractional models, and equations
with variable coefficients.

Future research may explore the application of this method to nonlinear PDEs or coupled systems,
where traditional techniques often face significant challenges. The results of this paper underline the

potential of atomic solutions as a robust analytical tool in both theoretical and applied mathematics.
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