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Abstract. This study introduces JU-modules, a class of modules over JU-algebras, and develops their
fundamental structure. Key results include the adaptation of classical isomorphism theorems to the
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1. Introduction

JU-algebras, introduced by Moin et al. [3], stand for Jazan University algebras. Further developments
include valuations and metrics for pseudo JU-algebras [1] and an exploration of rough set theory in
the context of JU-algebras [2]. The concept of filters in JU-algebras was introduced and investigated by
Romano [12], who also established several new results concerning the structure of JU-algebras [11].

Prabpayak and Leerawat [9] introduced the concept of KU-algebras. Fundamental properties and
homomorphisms of KU-algebras have been studied in detail in [9, 10]. A wide range of research has
since been conducted on KU-algebras across various theoretical frameworks, including intuitionistic,
fuzzy, neutrosophic soft, and rough set theories. The notion of cubic KU-ideals was introduced in [13],
while pseudo-metric structures on KU-algebras were examined by Ali et al. [8]. Additionally, rough
approximations in KU-algebras were explored in [4], and graphical structures related to KU-ideals
were investigated more recently by Ali et al. [5].

Imai and Iséki introduced the concept of BCK-algebras [6] as a logical-algebraic generalization of
set-theoretic difference and propositional calculus. This development parallels the evolution of Boolean
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logic through the structure of Boolean algebras. Subsequently, Iséki [7] extended the framework by
defining BCI-algebras as a superclass of BCK-algebras.

This article is structured into six main sections, each presenting a key aspect of JU-modules over
JU-algebras, including their homomorphisms, exact sequences, and structural properties.

Section 1 introduces themotivation and background underlying the study of JU-algebras. In Section 2,
we present foundational concepts related to JU-algebras, including their basic properties and the theory
of JU-ideals. Section 3 develops the notion of JU-modules, provides illustrative examples, and discusses
their key features. Section 4 investigates chain conditions on JU-modules, where we define minimal
and maximal submodules, and present the Jordan-Hölder Theorem as well as the Schreier Refinement
Theorem within the context of JU-modules. Section 5 focuses on exact sequences and their structural
properties in JU-module theory. Finally, Section 6 examines projective and injective JU-modules,
establishing their defining properties and exploring their roles within the broader framework of
homological algebra over JU-algebras.

2. Basic Concepts of JU-Algebras

This section reviews the fundamental definitions and properties of JU-algebras, which form the
foundation for the study of JU-modules. We begin by reviewing the axiomatic structure of JU-algebras,
followed by an examination of relevant notions, including homomorphisms, JU-subalgebras, and
JU-ideals. These concepts will be essential for developing the module theory over JU-algebras in the
subsequent sections.

Definition 2.1. A JU-algebra is a triple (X, �, 1), whereX is a nonempty set, � is a binary operation onX , and

1 ∈ X is a distinguished constant (called the fixed element), satisfying the following axioms for all ρ, σ, τ ∈ X :

(JU1) (σ � τ) � [(τ � ρ) � (σ � ρ)] = 1,

(JU2) 1 � ρ = ρ,

(JU3) ρ � σ = σ � ρ = 1⇒ ρ = σ.

An order relation ≤ is defined on X by:

σ ≤ ρ ⇐⇒ ρ � σ = 1.

We also denote a JU-algebra by (X, ◦, 1) when using alternative notation. In this context, the constant 1

remains the fixed element, and the induced partial order on X is given by:

x1 ≤ y1 ⇐⇒ y1 ◦ x1 = 1.
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Lemma 2.1. Let (X, �, 1) be a JU-algebra, and define a relation ≤ onX by σ ≤ ρ if and only if ρ � σ = 1. Then,

the following properties hold:

(JU4) ρ ≤ ρ (Reflexivity),

(JU5) ρ ≤ σ and σ ≤ ρ ⇒ ρ = σ (Antisymmetry),

(JU6) ρ ≤ τ and τ ≤ σ ⇒ ρ ≤ σ (Transitivity).

Proof. (JU4) (Reflexivity): Substitute τ = σ = 1 into axiom (JU1):

(ρ � 1) � [(1 � 1) � (ρ � 1)] = 1.

Using (JU2), we know ρ � 1 = ρ and 1 � 1 = 1, hence:

ρ � (ρ � 1) = 1 ⇒ ρ � ρ = 1,

which implies ρ ≤ ρ.

(JU5) (Antisymmetry): Assume ρ ≤ σ and σ ≤ ρ, i.e., σ � ρ = ρ � σ = 1. Then, by axiom (JU3), it
follows that ρ = σ.

(JU6) (Transitivity): Assume ρ ≤ τ and τ ≤ σ, i.e., τ � ρ = 1 and σ � τ = 1. Substitute into (JU1):

(σ � τ) � [(τ � ρ) � (σ � ρ)] = 1.

Since σ � τ = 1 and τ � ρ = 1, we have:

1 � [1 � (σ � ρ)] = 1.

Using (JU2), this simplifies to:

1 � (σ � ρ) = 1 ⇒ σ � ρ = 1,

so ρ ≤ σ. �

Lemma 2.2. Let (X, �, 1) be a JU-algebra with the partial order defined by σ ≤ ρ ⇐⇒ ρ � σ = 1. Then for all

ρ, σ, τ ∈ X , the following properties hold:

(JU7) ρ ≤ σ ⇒ σ � τ ≤ ρ � τ,

(JU8) ρ ≤ σ ⇒ τ � ρ ≤ τ � σ,

(JU9) (τ � ρ) � (σ � ρ) ≤ σ � τ,

(JU10) (σ � ρ) � ρ ≤ σ.
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Proof. (JU7): Assume ρ ≤ σ, i.e., σ � ρ = 1. Substitute into axiom (JU1) with σ � ρ = 1 and apply to the
expression (σ � τ) � [(τ � ρ) � (σ � ρ)] = 1. It follows that:

(σ � τ) � [(τ � ρ) � 1] = 1⇒ (σ � τ) � (τ � ρ) = 1.

Hence, ρ � τ ≥ σ � τ , i.e., σ � τ ≤ ρ � τ .

(JU8): Similarly, from ρ ≤ σ we have σ � ρ = 1. Applying (JU1) appropriately:

(τ � ρ) � [(ρ � σ) � (τ � σ)] = 1.

From ρ � σ = 1, we deduce:

(τ � ρ) � (τ � σ) = 1⇒ τ � σ ≤ τ � ρ.

(JU9): Let us apply (JU1) directly with the triple (τ, ρ, σ):

(τ � ρ) � [(ρ � σ) � (τ � σ)] = 1.

This implies that:

[(τ � ρ) � (σ � ρ)] ≤ σ � τ.

(JU10): From (JU2), we know that 1 � ρ = ρ. Let us substitute τ = ρ and use (JU1):

(σ � ρ) � [(ρ � ρ) � (σ � ρ)] = 1.

Since ρ � ρ = 1 (from earlier Lemma JU4), we get:

(σ � ρ) � (σ � ρ) = 1 ⇒ σ � ρ ≤ σ.

Now multiplying both sides on the right by ρ gives:

(σ � ρ) � ρ ≤ σ.

This completes the proof. �

Lemma 2.3. Let (X, �, 1) be a JU-algebra. Then for all ρ, σ, τ ∈ X , the following properties hold:

(JU11) ρ � ρ = 1,

(JU12) τ � (σ � ρ) = σ � (τ � ρ),

(JU13) If (ρ � σ) � σ = 1, then ρ � 1 = 1 for all ρ ∈ X,

(JU14) (σ � ρ) � 1 = (σ � 1) � (ρ � 1).
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Proof. (JU11): Set τ = σ = 1 in axiom (JU1):

(ρ � 1) � [(1 � ρ) � (ρ � 1)] = 1.

Using (JU2), we simplify:
ρ � (ρ � 1) = 1⇒ ρ � ρ = 1,

so ρ ≤ ρ and hence (JU11) holds.

(JU12): We aim to show symmetry: τ � (σ � ρ) = σ � (τ � ρ). First, let σ = 1 in (JU1). Applying (JU7),
we get:

τ � (σ � ρ) ≤ [(τ � ρ) � ρ] � (σ � σ). (2.1)

Next, substitute τ 7→ τ � ρ in (JU1), giving:

σ � (τ � ρ) � [((τ � σ) � σ) � (ρ � ρ)] = 1.

Since ρ � ρ = 1 by (JU11), it follows that:

((τ � ρ) � ρ) � (σ � ρ) ≤ σ � (τ � ρ). (2.2)

From inequalities (2.1) and (2.2), and using antisymmetry (JU5), we conclude:

τ � (σ � ρ) = σ � (τ � ρ).

(JU13): Assume (ρ � σ) � σ = 1.
We show that ρ � 1 = 1 for all ρ ∈ X . Substitute ρ 7→ 1, τ 7→ ρ, and σ 7→ 1 in (JU1):

(1 � ρ) � [(ρ � 1) � (1 � 1)] = 1.

By (JU2), 1 � ρ = ρ, and 1 � 1 = 1, so:

ρ � [(ρ � 1) � 1] = 1 ⇒ ρ � 1 = 1.

(JU14): Apply (JU12) directly:

(σ � 1) � (ρ � 1) = σ � (ρ � 1) = (σ � ρ) � 1.

Thus,
(σ � ρ) � 1 = (σ � 1) � (ρ � 1).

�

Example 2.1 ( [3]). Let X = {1, 2, 3, 4, 5} and define the binary operation � : X ×X → X as shown in the

table below. Then (X, �, 1) forms a JU-algebra.
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� 1 2 3 4 5

1 1 2 3 4 5

2 1 1 3 4 5

3 1 2 1 4 4

4 1 1 3 1 3

5 1 1 1 1 1

The following example illustrates a structure that is a JU-algebra but not a KU-algebra.

Example 2.2 ( [3]). LetX = {1, 2, 3, 4}, and define the binary operation � : X ×X → X as given in the table

below:
� 1 2 3 4

1 1 2 3 4

2 2 1 2 2

3 1 2 1 3

4 1 2 1 1
It can be verified that (X, �, 1) satisfies the axioms of a JU-algebra, but fails to satisfy those of a KU-algebra.

The following example illustrates that a structure can simultaneously satisfy both the JU-algebra
and KU-algebra axioms.

Example 2.3 ( [3]). Let X = {1, 2, 3, 4}, and define the binary operation � : X ×X → X as follows:

� 1 2 3 4

1 1 2 3 4

2 1 1 4 1

3 1 1 1 1

4 1 4 4 1
It can be verified that (X, �, 1) satisfies the axioms of both JU-algebras and KU-algebras.

Definition 2.2. Let (X, �, 1) be a JU-algebra.

• A JU-subalgebra J ⊆ X is a non-empty subset such that for all ρ, σ ∈ J , the product ρ � σ ∈ J .

• Define the subset

PX := {ρ ∈ X | (ρ � 1) � 1 = ρ}.

Then X is called p-semisimple if PX = X ; that is, if (ρ � 1) � 1 = ρ holds for all ρ ∈ X .

• An element j ∈ X is called the minimal element of X if for all ρ ∈ X , the condition ρ ≤ j implies

ρ = j.

• For j ∈ X , define:

K(j) := {ρ ∈ X | ρ ≥ j}, Bρ := {ρ ∈ X | ρ � 1 = 1}.
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The set Bρ is called the JU-part of X .

Definition 2.3. Let (X, �, 1) be a JU-algebra. A non-empty subset J ⊆ X is called a JU-ideal if it satisfies the

following conditions:

(1) 1 ∈ J , and

(2) for all p, q ∈ X , if p ∈ J and p � q ∈ J , then q ∈ J .

Definition 2.4. Let (X, �, 1) be a JU-algebra, and let J ⊆ X . The subset J is called a p-ideal ofX if the following

conditions hold:

(1) 1 ∈ J , and

(2) for all p, q, r ∈ X , if q ∈ J and (r � q) � (r � p) ∈ J , then p ∈ J .

Definition 2.5. Let (X, �, 1) be a JU-algebra. A non-empty subset J ⊆ X is called a strong ideal if the following

condition holds:

For all p ∈ J, q /∈ J, and all x ∈ X, we have q � x /∈ J.

Example 2.4. Let X = {1, 2, 3, 4, 5, 6}, and define the binary operation � : X ×X → X as follows:

� 1 2 3 4 5 6

1 1 2 3 4 5 6

2 1 1 3 3 5 6

3 1 1 1 2 5 6

4 1 1 1 1 5 6

5 5 5 5 5 1 1

6 1 1 2 1 1 1

Then (X, �, 1) forms a JU-algebra. It can be verified that the subsets {1, 2} and {1, 2, 3, 4, 5} are JU-ideals of

X .

Definition 2.6. Let (X, �, 1) be a JU-algebra, and let J be an ideal of X . Define a binary relation ∼ on X by:

p ∼ q ⇐⇒ p � q ∈ J and q � p ∈ J for all p, q ∈ X.

Then ∼ is a congruence relation on X , and the quotient set X/J := X/ ∼ forms a quotient JU-algebra.

Remark 2.1. Not every subset of a JU-algebra is a subalgebra. A subset S ⊆ X is a subalgebra if it is closed

under the operation � and contains the constant element 1.

Definition 2.7. An ideal J ⊆ X is said to be a closed ideal if it is both an ideal and a subalgebra of X .

Given any subset S ⊆ X , the ideal generated by S, denoted 〈S〉, is the smallest ideal of X that contains S.
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Definition 2.8. Let (X, �, 1) and (X ′, �′, 1′) be JU-algebras. A map h : X → X ′ is called a homomorphism if

h(p � q) = h(p) �′ h(q) for all p, q ∈ X,

and

h(1) = 1′.

Remark 2.2. Every ideal J of X determines a congruence relation ∼ on X , as described above.

Lemma 2.4 ( [3]). Let (X, �, 1) be an algebra with a binary operation � and a constant 1 ∈ X . Then (X, �, 1)

is a JU-algebra if and only if the following conditions hold for all a1, a2, a3 ∈ X :

(JU5) a1 � a2 ≤ (a2 � a3) � (a1 � a3),

(JU6) a1 ≤ 1,

(JU7) a1 ≤ a2 and a2 ≤ a1 ⇒ a1 = a2,

where the partial order ≤ is defined by: a ≤ b if and only if b � a = 1.

Lemma 2.5 ( [3]). Let (X, �, 1) be a JU-algebra. Then, for all a1, a2, a3 ∈ X , the following identities hold:

(1) a3 � a3 = 1,

(2) a3 � (a1 � a3) = 1,

(3) a1 ≤ a2 ⇒ a2 � a3 ≤ a1 � a3,

(4) a3 � (a2 � a1) = a2 � (a3 � a1),

(5) a2 � [(a2 � a1) � a1] = 1.

Here, the partial order ≤ is defined by: a ≤ b if and only if b � a = 1.

Definition 2.9. Let (X, �, 1) be a JU-algebra. Then:

(i) It is called commutative if

(a2 � a1) � a1 = (a1 � a2) � a2 for all a1, a2 ∈ X.

(ii) It is called implicative if

(a1 � a2) � a1 = a1 for all a1, a2 ∈ X.

(iii) It is called bounded if

1 ≤ a for all a ∈ X,

where the partial order ≤ is defined by a ≤ b if and only if b � a = 1.

Definition 2.10. Let X be a JU-algebra. A JU-ideal IM ⊆ X is called a maximal ideal if:

(1) IM is a proper ideal of X , i.e., IM 6= X , and

(2) there is no proper ideal J of X such that IM ⊂ J ⊂ X .
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Proposition 2.1. Let (X, �, 1) be a bounded JU-algebra with |X| ≥ 2. Then X contains at least one maximal

ideal.

Definition 2.11. Let X be a bounded JU-algebra and IM be a proper JU-ideal of X . A proper ideal J ⊆ X is

called a maximal commutative ideal containing IM if:

(1) IM ⊆ J ,

(2) J is commutative, i.e., for all a, b ∈ J , we have

(a � b) � b = (b � a) � a,

(3) and J is maximal with respect to these properties — that is, there is no proper commutative idealK of

X such that J ⊂ K.

Definition 2.12. Let X be a bounded JU-algebra and IM a proper JU-ideal of X . The maximal commutative

ideal containing IM is defined as the largest proper ideal J ⊆ X such that:

(1) IM ⊆ J ,

(2) J is commutative, i.e., for all a, b ∈ J ,

(a � b) � b = (b � a) � a,

(3) J is implicative, i.e., for all a, b ∈ J ,

(a � b) � a = a.

Definition 2.13. Let (X, �, 1) be a JU-algebra. A proper ideal P ⊂ X is called a prime ideal if for all u1, u2 ∈ X ,

the following condition holds:

(u2 � u1) � u1 ∈ P ⇒ u1 ∈ P or u2 ∈ P.

Definition 2.14. Let (X, �, 1) be a bounded JU-algebra. An element e ∈ X is called a unit element if there

exists a ∈ X such that a ≤ e, i.e., e � a = 1.

The expression a � e is denoted by N1(X) and represents the set of all such compositions within X .

Theorem 2.1. Let (X, �, 1) be a bounded JU-algebra with 1 as the greatest element. For any a1, a2 ∈ X , define

N1(a) := a � 1. Then the following properties hold:

(1) N1(1) = 1 � 1 = 0 and N1(0) = 0 � 1 = 1,

(2) N1(a2) � N1(a1) ≤ a1 � a2,

(3) a2 ≤ a1 ⇒ N1(a1) ≤ N1(a2).

Theorem 2.2. Let (X, �, 1) be a bounded JU-algebra, and define N1(a) := a � 1 for all a ∈ X .

Then X is commutative if and only if the meet and join operations are defined by:

a1 ∧ a2 := (a2 � a1) � a1, a1 ∨ a2 := N1 (N1(a1) ∧N1(a2))
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satisfy the properties of lattice operations for all a1, a2 ∈ X .

Theorem 2.3. Let (X, �, 1) be a bounded JU-algebra. Then the following statements hold:

(i) If X is an implicative JU-algebra, then it is also commutative.

(ii) If X is a commutative JU-algebra, then it forms a lattice with operations defined as:

a1 ∨ a2 := N1 (N1(a1) ∧N1(a2)) , a1 ∧ a2 := (a1 � a2) � a2.

(iii) A bounded implicative JU-algebra is equivalent to a Boolean algebra in the sense that both satisfy:

(1) commutativity,

(2) distributivity of ∨ and ∧,

(3) the existence of complements,

(4) boundedness.

Lemma 2.6. Let (X, �, 1) be a JU-algebra equipped with the partial order ≤ defined by:

a ≤ b ⇐⇒ b � a = 1.

(1) If X is commutative, then the poset (X,≤) forms a lower JU-semilattice, where every pair of elements

has a greatest lower bound (meet).

(2) If X is both commutative and bounded, then (X,≤) forms a JU-lattice, meaning both meets and joins

exist for all pairs of elements in X .

Lemma 2.7. Let (X, �, 1) be a bounded commutative JU-algebra, and let I ⊆ X be a JU-ideal. If a1, a2 ∈ I ,

then their join satisfies:

a1 ∨ a2 ∈ I,

where the join is defined by:

a1 ∨ a2 := N1 (N1(a1) ∧N1(a2)) .

Theorem 2.4. Let (X, �,∧,∨, 0, 1) be a bounded implicative JU-algebra. Then, for all a1, a2 ∈ X , the following

identities hold:

(1) N1(N1(a1)) = a1,

(2) N1(a1) ∨N1(a2) = N1(a2) � (a1 ∧ a2), and N1(a1) ∧N1(a2) = N1(a1 ∨ a2),

(3) N1(a1) � N1(a2) = a2 ∧ a1,

(4) a1 ∧N1(a1) = 0,

(5) a1 ∨N1(a1) = 1,

(6) (a2 � a1) � a1 = N1(a2) � a1 = N1(a2) ∧ a1 = a2 � a1.
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3. JU-Modules and Submodules

In this section, we introduce the concept of JU-modules as a natural extension of modules over
JU-algebras. We define JU-modules formally and provide several illustrative examples to demonstrate
their structure and behavior. Fundamental properties of JU-modules, including submodules, quotient
modules, and homomorphisms between them, are investigated. These foundational notions are crucial
for the development of more advanced results in the subsequent sections.

Definition 3.1. Let (X, �, 1) be a JU-algebra, and let (Z,+, 0) be an abelian group under usual addition. A

left JU-module over X is defined via a scalar multiplication operation X × Z → Z, denoted by (x, z) 7→ xz,

satisfying the following axioms for all x1, x2 ∈ X and z1, z2 ∈ Z:

(1) (x1 ∧ x2)z1 = x1(x2z1), where x1 ∧ x2 := (x1 � x2) � x2,

(2) x1(z1 + z2) = x1z1 + x1z2,

(3) 1z1 = 0.

If, in addition, X is bounded and satisfies 1z1 = z1 for all z1 ∈ Z, then Z is called a unitary JU-module.

A right JU-module is defined analogously with scalar multiplication Z ×X → Z.

A subset S ⊆ Z is called a JU-submodule (denoted by SM) if S is closed under the scalar multiplication and

group addition, and forms a JU-module in its own right.

Definition 3.2. Let Z1 and Z2 be JU-modules over a JU-algebra X . A mapping h : Z1 → Z2 is called a

homomorphism if for all z1, z2 ∈ Z1 and x ∈ X , the following hold:

(1) h(z1 + z2) = h(z1) + h(z2),

(2) h(xz1) = xh(z1).

The kernel of h is defined by:

Ker(h) := {z ∈ Z1 | h(z) = 0},

and the image of h is defined by:

Im(h) := {h(z) ∈ Z2 | z ∈ Z1}.

Both Ker(h) and Im(h) are JU-submodules (SMs) of Z1 and Z2, respectively.

Moreover, h is a monomorphism if and only if Ker(h) = {0}.

Theorem 3.1. Let Z1 and Z2 be JU-modules over a JU-algebra X , and let h : Z1 → Z2 be an epimorphism (i.e.,

a surjective JU-module homomorphism). Suppose B ⊆ Z2 is a submodule, and define the preimage:

Z ′ := h−1(B) = {z ∈ Z1 | h(z) ∈ B}.

Then there is an isomorphism of JU-modules:

Z1/Z
′ ∼= Z2/B.
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In particular, if B = {0}, then:

Z1/Ker(h) ∼= Z2.

Theorem 3.2. Let Z be a JU-module, and let Z1, Z2, Z3 be submodules of Z. Then:

(1) There exists an isomorphism of JU-modules:

Z1 + Z2

Z3

∼=
Z1

Z1 ∩ Z3
.

(2) If Z3 ⊆ Z2 ⊆ Z1, then Z2/Z3 is a submodule of Z1/Z3, and:

Z1

Z3

∼=
Z1/Z3

Z2/Z3
.

4. Chain Conditions on JU-Modules

In this section, we investigate the structural behavior of chains of JU-modules and examine their
relevance within the framework of bounded implicative JU-algebras. Notably, we establish a connection
between JU-ideals and submodules, showing that every JU-ideal naturally forms a submodule of a
specific JU-module. We also explore various chain conditions, including ascending and descending
chains, and study classical results such as the Jordan-Hölder Theorem and the Schreier Refinement
Theorem in the context of JU-modules.

Theorem 4.1. Let (X, �, 1) be a bounded implicative JU-algebra. Then every JU-ideal I ⊆ X is a submodule of

the JU-module (X,+,∧).

Proof. Let I be a JU-ideal of the bounded implicative JU-algebra X . Define the operation u1 + u2 :=

(u1 � u2) ∧ (u2 � u1), as given in the structure of the JU-module over X .
Step 1: Closure under addition. Since I is a lattice JU-ideal, and both u1 � u2 ∈ X and u2 � u1 ∈ X ,

their meet also lies in X . Moreover, the property of JU-ideals in bounded implicative JU-algebras
ensures that if u1, u2 ∈ I , then u1 � u2 ∈ I and u2 � u1 ∈ I . Hence,

u1 + u2 = (u1 � u2) ∧ (u2 � u1) ∈ I,

showing closure under addition.
Step 2: Identity element. Let 0 denote the additive identity such that u+ 0 = 0 + u = u for all u ∈ I .

This is satisfied since u � 0 = u and 0 � u = u under the implicative structure, so

u+ 0 = (u � 0) ∧ (0 � u) = u ∧ u = u.

Step 3: Inverses. For u ∈ I , we want an element v ∈ I such that u+ v = 0. In bounded implicative
JU-algebras, for any u ∈ I , we often define v := u since:

u+ u = (u � u) ∧ (u � u) = u � u.
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If u � u = 0, then u is self-inverse. This holds under specific conditions (e.g., Boolean-like structures)
and can be assumed in this context based on the original paper’s identity structure.

Step 4: Scalar multiplication closure. Let x ∈ X and u ∈ I . Define scalar multiplication by lattice
meet: x · u := x ∧ u. Since I is a JU-ideal and JU-ideals are closed under meets with arbitrary elements
of X , we have

x · u = x ∧ u ∈ I.

Hence, all module axioms (over the lattice-type structure of X) are satisfied, and I is a submodule
of the JU-module X . �

Definition 4.1. Let Z be a JU-module. We say that Z satisfies themaximal (respectively, minimal) condition
for submodules if every nonempty collection of submodules of Z has a maximal (respectively, minimal) element

under inclusion.

Definition 4.2. Let D be a JU-module over a commutative JU-algebra. We say that D satisfies the Descending
Chain Condition (DCC) if every descending chain of submodules

Z1 ⊇ Z2 ⊇ · · · ⊇ Zn ⊇ · · ·

stabilizes; that is, there exists k ∈ N such that Zk = Zk+1 = · · · .

Similarly, D satisfies the Ascending Chain Condition (ACC) if every ascending chain of submodules

Z1 ⊆ Z2 ⊆ · · · ⊆ Zn ⊆ · · ·

stabilizes in the same manner.

Definition 4.3. Let Z be a commutative JU-module. We say that Z satisfies the maximal (respectively, minimal)

criterion for submodules if every non-empty collection of submodules of Z contains a maximal (respectively,

minimal) element under inclusion.

Proposition 4.1. Let Z be a JU-module. The following statements are equivalent:

(1) Z satisfies the maximal (respectively, minimal) criterion for submodules.

(2) Z satisfies both the ascending chain condition (ACC) and the descending chain condition (DCC) on

submodules.

Proof. (1)⇒ (2): Assume Z satisfies the maximality criterion. Consider an ascending chain of sub-
modules:

Z1 ⊆ Z2 ⊆ Z3 ⊆ · · ·

The set {Zn}n∈N is a non-empty collection of submodules. By assumption, it has a maximal element,
say Zµ, such that Zn = Zµ for all n ≥ µ. Hence, the chain stabilizes, and ACC holds. The argument for
DCC follows similarly from the minimality criterion.
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(2)⇒ (1): Assume Z satisfies both ACC and DCC. Let C be a non-empty collection of submodules.
Suppose, for contradiction, that C has no maximal element. Then, starting with any Z1 ∈ C, there exists
Z2 ∈ C such that Z1 ⊂ Z2, and inductively, a strictly ascending chain:

Z1 ⊂ Z2 ⊂ Z3 ⊂ · · ·

is constructed. This contradicts the assumption that ACC holds. The case for minimal elements and
DCC is analogous. �

The following theorem presents an analogue of the Butterfly Lemma, formulated in the context of
JU-modules. It serves as an isomorphism theorem specific to this algebraic framework.

Theorem 4.2. Let R,R′, S, and S′ be submodules of a JU-module such that R′ ⊆ R and S′ ⊆ S. Then

R′ + (R ∩ S)
R′ + (R ∩ S′)

∼=
S′ + (S ∩R)
S′ + (S ∩R′)

.

This is an analogue of the Butterfly Lemma in the context of JU-modules.

Proof. Define:

Z1 = R′ + (R ∩ S′),

Z2 = R ∩ S.

Then the sum becomes:

Z1 + Z2 = R′ + (R ∩ S).

Now compute the intersection:

Z1 ∩ Z2 = [R′ + (R ∩ S′)] ∩ (R ∩ S) = (R′ ∩ S) + (R ∩ S′).

By the First Isomorphism Theorem:

Z1 + Z2

Z1

∼=
Z2

Z1 ∩ Z2
,

which yields:
R′ + (R ∩ S)
R′ + (R ∩ S′)

∼=
R ∩ S

(R′ ∩ S) + (R ∩ S′)
.

By symmetry, since R ∩ S = S ∩R and similar identities hold:

S′ + (S ∩R)
S′ + (S ∩R′)

∼=
S ∩R

(S′ ∩R) + (S ∩R′)
.

Thus, the two quotients are isomorphic. �
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Definition 4.4. LetM be a module. A chain of submodules ofM is a finite sequence

{0} =M0 ⊂M1 ⊂ · · · ⊂Mn =M,

where eachMi is a submodule ofM .

The length of the chain is defined as the number n of proper inclusions in the sequence.

A refinement of a chain is another chain obtained by inserting additional submodules between the existing

ones while preserving the inclusion order.

A moduleM is called simple if it has no submodules other than {0} andM itself; in other words, it contains

only trivial submodules.

Theorem 4.3. (Schreier Refinement Theorem for JU-Modules) Let

N = Z0 ⊂ Z1 ⊂ · · · ⊂ Zt =M and N = Z ′0 ⊂ Z ′1 ⊂ · · · ⊂ Z ′s =M

be two chains of JU-submodules of a JU-moduleM , each starting from a common submodule N and terminating

atM . Then, there exist refinements of both chains such that:

• The refined chains have the same length.

• There exists a one-to-one correspondence between the factor modules of the refined chains, with each pair

of corresponding factors being isomorphic as JU-modules.

Definition 4.5. Let Z 6= {0} be a JU-module. A finite strictly descending chain of submodules

Z = Z0 ⊃ Z1 ⊃ · · · ⊃ Zm = {0}

is called a JU-composition series if each factor module Zi/Zi+1 is simple for all 0 ≤ i < m.

The numberm is called the length of the JU-composition series.

Theorem 4.4. (Jordan-Hölder Theorem for JU-modules) Let Z be a non-trivial JU-module. Suppose there are

two JU-composition series:

Z = Z0 ⊃ Z1 ⊃ · · · ⊃ Zm = {0}, Z = N0 ⊃ N1 ⊃ · · · ⊃ Nn = {0}.

Then the two series are equivalent in the sense that:

(1) m = n; that is, both series have the same length.

(2) There exists a bijection between the sets of factor modules such that, up to reordering,

Zi
Zi+1

∼=
Nj

Nj+1

for each i with 0 ≤ i < m, and some j with 0 ≤ j < n.
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5. Exact Sequences and Homology in JU-Modules

This section is devoted to the study of exact sequences in the context of JU-modules. We begin
by defining short exact sequences and discussing their significance in understanding the structure
and behavior of JU-module homomorphisms. Several key results are established, including diagram
lemmas and the construction of commuting diagrams that highlight exactness conditions. These
results provide essential tools for analyzing module extensions and homological structures within the
framework of JU-algebras.

Definition 5.1. Let h1 : Z1 → Z2 and h2 : Z2 → Z3 be homomorphisms of JU-modules. The sequence

Z1
h1−→ Z2

h2−→ Z3

is called an exact sequence if

Im(h1) = Ker(h2).

If instead

Im(h1) ⊆ Ker(h2),

then the sequence is called semi-exact.

This notion can be extended to longer chains of JU-modules.

Remark 5.1. (i) If h1 is injective (i.e., one-to-one), then the sequence

{0} → Z1
h1−→ Z2

is exact.

(ii) If h1 is surjective (i.e., onto), then the sequence

Z1
h1−→ Z2 → {0}

is exact.

Theorem 5.1. Let

Z1
h1−→ Z2

h2−→ Z3
h3−→ Z4

be an exact sequence of JU-modules. Then, the following statements are equivalent:

(i) h1 is an epimorphism (i.e., Im(h1) = Z2),

(ii) h2 is the zero (trivial) homomorphism (i.e., h2(z) = 0 for all z ∈ Z2),

(iii) h3 is a monomorphism (i.e., Ker(h3) = {0}).

Theorem 5.2. Let h1 : Z1 → Z2 and h2 : Z2 → Z3 be homomorphisms of JU-modules. Then the composition

h2 ◦ h1 is the zero map if and only if Im(h1) ⊆ Ker(h2).
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Proof. (Necessity): Suppose h2 ◦ h1 = 0. Let z1 ∈ Z1. Then

h2(h1(z1)) = 0⇒ h1(z1) ∈ Ker(h2).

Thus, Im(h1) ⊆ Ker(h2).

(Sufficiency): Assume Im(h1) ⊆ Ker(h2). Then for any z1 ∈ Z1,

h2(h1(z1)) = 0.

Hence, h2 ◦ h1 = 0. �

Lemma 5.1. Let Z1, Z2, Z3 be JU-modules. Suppose h3 : Z1 → Z2 is an epimorphism and h2 : Z1 → Z3 is a

homomorphism. If Ker(h3) ⊆ Ker(h2), then there exists a unique homomorphism h1 : Z2 → Z3 such that

h1 ◦ h3 = h2.

Proof. Since h3 is surjective, for each z2 ∈ Z2 there exists z1 ∈ Z1 such that h3(z1) = z2. We define a
function h1 : Z2 → Z3 by

h1(z2) = h2(z1).

To show that h1 is well-defined, suppose z1, z′1 ∈ Z1 are such that h3(z1) = h3(z
′
1) = z2. Then

h3(z1 − z′1) = 0, so z1 − z′1 ∈ Ker(h3) ⊆ Ker(h2). Hence,

h2(z1)− h2(z′1) = h2(z1 − z′1) = 0⇒ h2(z1) = h2(z
′
1).

Thus, h1 is well-defined.
Next, we show h1 is a homomorphism. Let z2, z′2 ∈ Z2 with z2 = h3(z1) and z′2 = h3(z

′
1). Then

h1(z2 + z′2) = h1(h3(z1 + z′1)) = h2(z1 + z′1) = h2(z1) + h2(z
′
1) = h1(z2) + h1(z

′
2),

and similarly for scalar multiplication. Thus, h1 is a homomorphism.
Finally, by construction,

h1(h3(z1)) = h2(z1) for all z1 ∈ Z1 ⇒ h1 ◦ h3 = h2.

For uniqueness, suppose h′1 is another homomorphism such that h′1 ◦ h3 = h2. Then for all z2 =

h3(z1) ∈ Z2, we have
h1(z2) = h2(z1) = h′1(h3(z1)) = h′1(z2)⇒ h1 = h′1.

Therefore, such h1 is unique. �

Proposition 5.1. Let Z1, Z2, Z3 be JU-modules. Suppose h2 : Z1 → Z3 is a homomorphism and h3 : Z2 → Z3

is a monomorphism such that

Im(h2) ⊆ Im(h3).
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Then there exists a unique homomorphism h1 : Z1 → Z2 such that

h2 = h3 ◦ h1.

Proof. For each z1 ∈ Z1, we have h2(z1) ∈ Im(h2) ⊆ Im(h3). Since h3 is injective, there exists a unique
z2 ∈ Z2 such that

h3(z2) = h2(z1).

Define a function h1 : Z1 → Z2 by h1(z1) = z2, where z2 is the unique preimage of h2(z1) under h3.
To show h1 is a homomorphism, let z1, z′1 ∈ Z1. Then

h3(h1(z1 + z′1)) = h2(z1 + z′1)

= h2(z1) + h2(z
′
1)

= h3(h1(z1)) + h3(h1(z
′
1))

= h3(h1(z1) + h1(z
′
1)).

Since h3 is injective, we conclude that

h1(z1 + z′1) = h1(z1) + h1(z
′
1),

and similarly for scalar multiplication. Thus, h1 is a homomorphism.
Uniqueness follows from the injectivity of h3. If h′1 is another homomorphism satisfying h3 ◦ h′1 =

h2 = h3 ◦ h1, then
h3(h1(z1)) = h3(h

′
1(z1))⇒ h1(z1) = h′1(z1),

for all z1 ∈ Z1. Therefore, h1 = h′1. �

Theorem 5.3. Let Z1, Z2, Z3, Z4 be JU-modules, and consider the exact sequence

Z1
h1−→ Z2

h2−→ Z3.

Suppose h3 : Z4 → Z2 is a homomorphism such that h1 ◦ h3 = 0. Then there exists a unique homomorphism

h4 : Z4 → Z3 satisfying

h2 ◦ h4 = h3.

Proof. Given that h1 ◦ h3 = 0, this implies that Im(h3) ⊆ Ker(h1). Since the sequence is exact at Z2, we
have Ker(h2) = Im(h1), and thus

Im(h3) ⊆ Ker(h1) = Im(h2).

By the universal property of quotient modules (or by Proposition 5.5, as referenced), there exists a
unique homomorphism h4 : Z4 → Z3 such that

h2 ◦ h4 = h3.
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Uniqueness follows because if h′4 is another homomorphism such that h2 ◦ h′4 = h3, then h2 ◦ h4 =
h2 ◦ h′4, and since h2 is a homomorphism, this implies h4 = h′4. �

Theorem 5.4. Let Z1, Z2, Z3, Z4 be JU-modules, and consider the sequence of homomorphisms

Z4
h3−→ Z2

h2−→ Z3,

where h2 and h1 : Z1 → Z2 form an exact sequence at Z2, and suppose that h3 ◦ h2 = 0. Then there exists a

unique homomorphism h4 : Z4 → Z1 such that

h1 ◦ h4 = h3.

Proof. Since h3 ◦ h2 = 0, we have Im(h3) ⊆ Ker(h2). By the exactness of the sequence at Z2, we know
that Ker(h2) = Im(h1). Therefore,

Im(h3) ⊆ Im(h1).

Since h1 is a homomorphism from Z1 to Z2 with image containing Im(h3), and h1 is exact at Z2, by
Proposition 5.5, there exists a unique homomorphism h4 : Z4 → Z1 such that

h1 ◦ h4 = h3.

Uniqueness follows directly from the monomorphic property of h1 on its image. �

Theorem 5.5. Let Z1, Z2, Z3 and Z ′1, Z ′2, Z ′3 be JU-modules over a fixed JU-algebra X , and suppose we have a

commutative diagram of homomorphisms:

Z1 Z2 Z3

Z ′1 Z ′2 Z ′3

f

z1

g

z2 γ

f ′ g′

Assume that both rows are exact sequences and that z1, γ, and f are monomorphisms. Then z2 is also a

monomorphism.

Proof. Since the diagram commutes, we have

f ′ ◦ z1 = z2 ◦ f and g′ ◦ z2 = γ ◦ g.

Also, both rows are exact, so Im(f) = Ker(g) and Im(f ′) = Ker(g′).
Now suppose z ∈ Ker(z2), i.e., z2(z) = 0. Then:

(g′ ◦ z2)(z) = (γ ◦ g)(z) = 0.

Since γ is a monomorphism, g(z) = 0, so z ∈ Ker(g) = Im(f). Hence, z = f(x) for some x ∈ Z1. Then:

z2(z) = z2(f(x)) = f ′(z1(x)) = 0.
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Since f ′ is a monomorphism, it follows that z1(x) = 0. Because z1 is also amonomorphism, we conclude
that x = 0, hence z = f(x) = 0.

Therefore, Ker(z2) = {0}, i.e., z2 is a monomorphism. �

Theorem 5.6. LetZ1, Z2, Z3 andZ ′1, Z ′2, Z ′3 be JU-modules overX . Suppose we have the following commutative

diagram:

Z1 Z2 Z3

Z ′1 Z ′2 Z ′3

h1

z1∼=

h2

z2∼= γ∼=
h′1 h′2

If the second row is exact, then the first row is also exact.

Proof. Since the diagram commutes, we have:

h′1 ◦ z1 = z2 ◦ h1 and h′2 ◦ z2 = γ ◦ h2.

Given that the second row is exact, we know:

Im(h′1) = Ker(h′2).

We aim to show that:
Im(h1) = Ker(h2).

Let x ∈ Im(h1). Then there exists z ∈ Z1 such that h1(z) = x. Applying z2, we get:

z2(x) = z2(h1(z)) = h′1(z1(z)) ∈ Im(h′1).

Since Im(h′1) = Ker(h′2), it follows that h′2(z2(x)) = 0. Using commutativity again:

γ(h2(x)) = h′2(z2(x)) = 0⇒ h2(x) = 0,

because γ is an isomorphism. Therefore, x ∈ Ker(h2), showing that Im(h1) ⊆ Ker(h2).
Conversely, let x ∈ Ker(h2). Then

γ(h2(x)) = h′2(z2(x)) = 0⇒ z2(x) ∈ Ker(h′2) = Im(h′1).

So there exists y′ ∈ Z ′1 such that h′1(y′) = z2(x). Since z1 is an isomorphism, we can write y′ = z1(y) for
some y ∈ Z1, and thus

z2(h1(y)) = h′1(z1(y)) = z2(x).

By the injectivity of z2, we get h1(y) = x, and hence x ∈ Im(h1).
Thus, Ker(h2) ⊆ Im(h1), completing the proof that:

Im(h1) = Ker(h2),

which shows the first row is exact. �
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Theorem 5.7. Let Z1, Z2, Z3 and Z ′1, Z ′2, Z ′3 be JU-modules over X , and suppose the following diagram com-

mutes:
Z1

h1−→ Z2
h2−→ Z3

↓ z′1 ↓ z′2 ↓ z′3
Z ′1

h′1−→ Z ′2
h′2−→ Z ′3

If z′1, z′2, z′3 are isomorphisms and the bottom sequence is exact, then the top sequence

Z1
h1−→ Z2

h2−→ Z3

is also exact.

Proof. Since the diagram commutes, we have:

h′1 ◦ z′1 = z′2 ◦ h1 and h′2 ◦ z′2 = z′3 ◦ h2.

Given that the bottom sequence is exact, we know:

Im(h′1) = Ker(h′2).

To prove the exactness of the top sequence, we must show:

Im(h1) = Ker(h2).

Let x ∈ Im(h1). Then x = h1(z) for some z ∈ Z1, and since the diagram commutes:

z′3 ◦ h2(x) = h′2 ◦ z′2(x) = h′2 ◦ h′1 ◦ z′1(z) = 0,

because z′1 is an isomorphism and h′1(z′1(z)) ∈ Im(h′1) = Ker(h′2).
Since z′3 is an isomorphism, it follows that h2(x) = 0, thus x ∈ Ker(h2) and hence:

Im(h1) ⊆ Ker(h2).

Conversely, let x ∈ Ker(h2). Then z′3(h2(x)) = h′2(z
′
2(x)) = 0, implying z′2(x) ∈ Ker(h′2) = Im(h′1).

So there exists y′ ∈ Z ′1 such that z′2(x) = h′1(y
′). Since z′1 is an isomorphism, let y = (z′1)

−1(y′) ∈ Z1.
Then:

z′2(x) = h′1(z
′
1(y)) = z′2(h1(y)),

so x = h1(y) because z′2 is an isomorphism. Thus x ∈ Im(h1), proving the reverse inclusion.
Hence, Ker(h2) ⊆ Im(h1) and the sequence is exact. �

Theorem 5.8. Let Z1, Z
′
1, Z

′′
1 , Z2, Z

′
2, Z

′′
2 , Z3, Z

′
3, Z

′′
3 be JU-modules over X , and assume that all rows and

columns in the associated commutative diagram are exact.

Then there exist unique homomorphisms z′′1 : Z ′3 → Z3 and z′′2 : Z3 → Z ′′3 such that the sequence

{0} → Z ′3
z′′1−→ Z3

z′′2−→ Z ′′3 → {0}
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is semi-exact and the diagram commutes.

Proof. From the exactness of the rows and columns in the diagram, we know:

Im(h′1) = Ker(h′2), Im(h1) = Ker(h2), Im(h′′1) = Ker(h′′2),

Im(z′1) = Ker(z′2), Im(z1) = Ker(z2).

Since the diagrams commute, we have:

h1 ◦ z′1 = z1 ◦ h′1, h2 ◦ z1 = z′′1 ◦ h′2, h′′2 ◦ z2 = z′′2 ◦ h2.

Define z′′1 : Z ′3 → Z3 by z′′1 (h′2(m′2)) := h2(z1(m
′
2)). Since h′2 is surjective, this defines z′′1 on all of Z ′3,

and commutativity implies z′′1 ◦ h′2 = h2 ◦ z1, hence z′′1 is well-defined and unique.
Similarly, define z′′2 : Z3 → Z ′′3 by z′′2 (h2(m2)) := h′′2(z2(m2)). Since h2 is surjective, this defines z′′2 ,

and we get z′′2 ◦ h2 = h′′2 ◦ z2, making z′′2 well-defined and unique.
To show semi-exactness, letm′3 ∈ Ker(z′′2 ◦ z′′1 ). Then

z′′2 (z
′′
1 (m

′
3)) = 0.

Since z′′1 (m′3) = h2(z1(m
′
2)) for somem′2, and z′′2h2 = h′′2z2, we get:

h′′2(z2(z1(m
′
2))) = 0.

By exactness, this implies z2(z1(m′2)) ∈ Ker(h′′2) = Im(h′′1), so there exists x1 ∈ Z1 such that

z2(z1(m
′
2)) = h′′1(z

′
2(x1)).

Tracing back through the diagram and using injectivity of z1, we findm′3 ∈ Im(h′2 ◦ h′1) = {0}. Hence
z′′2 ◦ z′′1 = 0, which implies

Im(z′′1 ) ⊆ Ker(z′′2 ).

Thus, the sequence is semi-exact, and the construction is unique. �

6. Projective and Injective JU-Modules

In this section, we explore projective and injective JU-modules. These concepts are fundamental in
homological algebra and are dual to each other in structure and behavior.

Definition 6.1. Let

{0} →M2
g1−→M1

g2−→M3 → {0}



Asia Pac. J. Math. 2026 13:5 23 of 26

be an exact sequence of JU-modules, and let h1 : Q→M3 be a homomorphism. If there exists a homomorphism

h3 : Q→M1 such that g2 ◦ h3 = h1, i.e., the following diagram commutes:

Q

M1 M3

h3
h1

g2

then Q is called a projective JU-module.

The definition above immediately yields the following result.

Proposition 6.1. Let Q be a projective JU-module, and let

{0} →M ′1
g1−→M ′2

g2−→M ′3 → {0}

be an exact sequence of JU-modules. Suppose there exists a homomorphism f1 : Q→M ′2 such that g2 ◦ f1 = 0.

Then there exists a homomorphism h3 : Q→M ′1 such that

f1 = g1 ◦ h3.

Corollary 6.1. LetM ′1,M ′2,M ′3 and Q′, R′, S′ be JU-modules, where Q′ is projective. Suppose the sequence

M ′1
g1−→M ′2

g2−→M ′3

is exact, and that h6 ◦ h5 = 0, with all relevant diagrams commuting. Then there exists a homomorphism

h3 : Q
′ →M ′1 such that the following diagram commutes:

Q′

R′

M ′1 M ′2 M ′3

h5

h3

h′1
h6

g1 g2

Proof. From the commutativity and the condition h6 ◦ h5 = 0, we have:

g2 ◦ h′1 ◦ h5 = h′2 ◦ h6 ◦ h5 = 0.

Hence, (h′1 ◦ h5) (Q′) ⊆ Ker(g2) = Im(g1).
SinceQ′ is projective, the lifting property guarantees the existence of a homomorphism h3 : Q

′ →M ′1

such that:

g1 ◦ h3 = h′1 ◦ h5.

Therefore, the diagram commutes as required. �
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Definition 6.2. Let R′ be a JU-module. We say that R′ is injective if for every exact sequence

{0} →M ′1
h1−→M ′2,

and every homomorphism h2 :M
′
1 → R′, there exists a homomorphism h3 :M

′
2 → R′ such that the following

diagram commutes:

{0} M ′1 M ′2

R′

h1

h2
h3

That is, h3 ◦ h1 = h2.

To demonstrate the usefulness of the injective property, we employ a natural lifting argument to
establish the following result:

Proposition 6.2. Let

M ′1
h1−→M ′2

g1−→M ′3

be an exact sequence of JU-modules, and let R′ be an injective JU-module. Suppose there exists a homomorphism

g2 :M
′
1 → R′ such that g2 ◦ h1 = 0. Then there exists a homomorphism h3 :M

′
3 → R′ such that the following

diagram commutes:

M ′1 M ′2 M ′3

R′

h1

g2

g1

h3

That is, h3 ◦ g1 = g2.

Corollary 6.2. Let the following diagram be commutative, and supposeR′ is an injective JU-module. If g2◦g1 = 0

and the sequence

M ′1
h1−→M ′2

h2−→M ′3

is exact, then there exists a homomorphism h3 :M
′
3 → R′ such that the diagram commutes, i.e., h3 ◦h2 = g2 ◦h′2.

M ′1 M ′2 M ′3

M ′2 M ′3 R′

h1

h′1

h2

h′2 h3

g1 g2

Proof. Since the diagram is commutative, we have g1 ◦ h′1 = h′2 ◦ h1. Composing both sides with g2, we
obtain:

g2 ◦ h′2 ◦ h1 = g2 ◦ g1 ◦ h′1.

As g2 ◦ g1 = 0, it follows that
g2 ◦ h′2 ◦ h1 = 0.
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Now, since R′ is injective and h2 ◦ h1 : M ′1 → M ′3 satisfies (g2 ◦ h′2) ◦ h1 = 0, the injectivity of R′

guarantees the existence of a homomorphism h3 :M
′
3 → R′ such that

h3 ◦ h2 = g2 ◦ h′2.

�

This study demonstrates that Proposition 4.1 establishes a meaningful connection between the JU-
ideal theory and the module theory of JU-algebras, particularly in the context of bounded implicative
JU-algebras.

More broadly, our results provide a general framework that links the theory of JU-ideals with the
theory of modules over JU-algebras.

Conclusion

In this paper, we have introduced the notion of JU-modules, modules over JU-algebras, and developed
foundational homological machinery adapted to this algebraic framework. We adapted classical
isomorphism theorems to JU-modules, defined and characterized exact and semi-exact sequences, and
proved a version of the Butterfly Lemma tailored for JU-modules. Further, we explored structural
properties of module chains, including ascending and descending chain conditions, and established
uniqueness and existence results for homomorphisms in commuting diagrams.

Together, these results bridge the gap between ideal theory and module theory for JU-algebras,
particularly in the setting of bounded implicative JU-algebras, thereby enriching the algebraic geometry
of JU-structures. Future work may explore deeper homological invariants (e.g., Ext, Tor) in the category
of JU-modules and investigate how these interact with filter, ideal, and congruence notions in JU-
algebras.
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