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Abstract. This paper introduces VIKOR-METRIC, a novel group multi-criteria decision-making (MCDA-
G) approach designed to overcome two major limitations of conventional methods: the compensatory
effects caused by traditional aggregation operators and the rigorous handling of tied alternatives. Classical
aggregation techniques, which merge individual evaluation matrices into a single collective matrix through
disjunctive or compromise operators, often lead to information loss and compensatory bias. To address
these issues, VIKOR-METRIC integrates the VIKOR method with the Strict Ranking Metric Procedure
(SRMP). In the proposed framework, VIKOR is first applied independently to each decision maker’s
evaluation matrix, producing an individual ranking. These individual rankings are then aggregated using
the SRMP, which seeks a consensus ranking by minimizing pairwise disagreements. This process avoids
direct data fusion while preserving the diversity of individual preferences. Comparative experiments with
existing approaches, notably CHEMATRE, highlight the superior performance of VIKOR-METRIC. The
proposed method yields more consistent rankings that better reflect collective preferences and remain free
from the biases inherent in traditional aggregation. Consequently, VIKOR-METRIC is particularly suitable
for complex decision-making contexts where artificial compensation among criteria is undesirable, such as
in public policy evaluation or strategic project management.
2020 Mathematics Subject Classification. 90B50.
Key words and phrases. multi-criteria aggregation; group decision-making; VIKOR method; metric
procedure; hybrid approach.

1. Introduction

Decision-making in multicriteria contexts often requires aggregating multiple evaluations of a set of
alternativeswith respect to several criteria [5]. When performed in a group setting, this process becomes
even more challenging, as it must simultaneously account for the divergent preferences of decision-
makers and the frequently conflicting nature of the criteria involved. Traditional group multicriteria
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decision analysis (MCDA-G)methods generally adopt an aggregative framework: individual evaluation
matrices are combined into a single collective matrix using aggregation operators such as the weighted
sum or arithmetic mean, after which a multicriteria ranking or selection method is applied [1]. While
this approach is widely employed, it suffers from a major drawback—the emergence of compensatory
effects, which can obscure significant disagreements among decision-makers or even lead to paradoxical
outcomes [6].

Originally developed for single-decision contexts, the VIKOR method has inspired numerous ex-
tensions and adaptations over the years [4]. Some of these incorporate fuzzy environments (fuzzy-
VIKOR [2]) to better handle uncertainty. Nevertheless, most group-based extensions of VIKOR remain
strongly dependent on the preliminary aggregation of individual evaluation matrices, thereby perpetu-
ating the limitations mentioned above.

To address these shortcomings, we propose a novel approach, termed VIKOR-METRIC, designed
to enhance the robustness and fairness of group decision-making processes. The proposed method
combines two complementary steps: first, applying the VIKOR procedure independently to each
decision-maker’s evaluation matrix; and second, aggregating the resulting individual rankings using
the Strict Ranking Metric Procedure (SRMP), which produces a consensus ordering of alternatives
by minimizing pairwise disagreements among decision-makers. This dual-stage strategy not only
mitigates compensatory effects but also provides an effective mechanism for resolving ties among
alternatives when necessary.

The aim of this paper is to formally introduce the VIKOR-METRIC method, present its theoretical
foundations, illustrate its practical implementation through numerical examples, and compare its
performance with existing approaches—particularly those based on global aggregation frameworks.

2. State of the art

2.1. Some aggregation operators. An aggregation operator can be viewed as a mathematical function
that takes an input, referred to as an argument, and produces a single output representing the overall
score of that input. Each input is thus associated with a unique output. The aggregation function
is generally expressed as y = f(x), where x denotes the argument and y the aggregated value. The
argument xmay be a vector of dimension n, that is, x = (x1, x2, ..., xn), where x1, x2, ..., xn are called
the components of x.

A wide variety of aggregation operators have been proposed in the literature. However, in the
following, we limit our discussion to the most commonly used ones, without claiming exhaustiveness.
For a more comprehensive treatment, the reader is referred to [7], [1], and [15].

2.1.1. Weighted Sum and Average Operators. The weighted sum or weighted arithmetic mean is defined
by:



Asia Pac. J. Math. 2026 13:6 3 of 21

ψ(a1, ..., an =
∑n

i=1 ωiai,where ωi ∈ [0, 1] are weights such that ∑n
i=1 ωi = 1 and ψ an agregation

function.
Other types of averages exist (geometric, harmonic, etc.), which can all be expressed in the form:

Mf (a1, ..., an) = f−1

(
n∑
i=1

ωif(ai)

)
, (1)

where f is a strictly increasing continuous function et M and M denotes weighted average . All
generalized means are idempotent, continuous, and strictly monotonic. Only the weighted sum
satisfies stability under linear scale change [9].

2.1.2. Ordered Weighted Average (OWA). The OWA (Ordered Weighted Average) operator was intro-
duced by Yager [16]. It is defined by:

OWAω(a1, ..., an) =
n∑
i=1

ωia(i) (2)

with ω = (ω1, ..., ωn) a weight vector, ωi ∈ [0, 1] such that ∑n
i=1 ωi = 1 and where the notation (.)

indicates a permutation of the indices such that a(1) ≤ ... ≤ a(n)
Thus, the weight is not applied to the sources but to the rank of the quantities. The following special
cases are important:

- ω1 = 1 (and therefore ωi = 0, i > 0) : minimum operator;
- ωn = 1 : maximum operator;
- ωi = 1 for a given i : order statistic of rank i;
- if n is odd , ωn+1

2
= 1: median, and if n is even, the median is defined by ωn

2
= ωn

2
+1 = 1

2

Generally, we have:

OWAfω(a1, ..., an) = f−1

(
n∑
i=1

ωif(a(i))

)
(3)

where f is a continuous, strictly increasing function.

2.1.3. Symmetric Sums. They were introduced by Sylvert in 1979 [8]. Symmetric sums are defined as
continuous, non-decreasing, neutral operators that satisfy ψ(2)(0, 0) = 0 , ψ(2)(1, 1) = 1, and are stable
for scale intersection, i.e ψ(a1, a2) = 1− ψ(1− a1, 1− a2). They are of the form:

ψ(a1, a2) =

(
1 +

g(1− a1, 1− a2)
g(a1, a2)

)−1
(4)

where g is an increasing, continuous function with g(0, 0) = 0.

2.2. Description of the VIKOR method. This section is primarily based on [4]. The VIKOR method
(VIseKriterijumska Optimizacija I Kompromisno Resenje, in Serbian, meaning “Multi-Criteria Opti-
mization and Compromise Solution”) is a widely used approach for addressing multicriteria decision-
making problems.Developed by Zoran Z. Vukovic in the 1990s, VIKOR facilitates the identification of a
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solution that represents an optimal compromise among multiple, often conflicting, decision criteria.
The method is formulated using the matrix Lp.

2.2.1. The Lp matrix. The LP-metric is a concept widely used in optimization, particularly in the context
of linear programming (LP). It provides a way to measure the distance between solutions within a
solution space [17,18]. In general, it is defined as:

Lpi =


n∑
j=1

wj
(
f∗j − fij

)
(
f∗j − f

−
j

)
p

1/p

; i = 1, . . . ,m, 1 ≤ P ≤ ∞ (5)

where wj denotes the weight of the attribute specified by the decision-maker, p represents the LP
family parameter, fij is the value of the i-th alternative on the j-th attribute, f∗j is the best value of fij ,
and f−j is the worst value.

The case L1i is introduced as Si and is given by:

Si =
n∑
j=1

wj

(
f∗j − fij

)
(
f∗j − f

−
j

) ; i = 1, . . . ,m (6)

Similarly, L∞i is introduced as Ri and is defined by:

Ri = max
j

wj
(
f∗j − fij

)
(
f∗j − f

−
j

)
 ; i = 1, . . . ,m, ; j = 1, . . . , n (7)

2.2.2. Principle of the VIKOR method.

I The f∗ and f− indices

For each attribute j = 1, . . . , n, the best value fij is denoted by f∗j and the worst value by f−j .
The indices f∗j and f−j for positive attributes are calculated as follows: f∗j = maxi fij

f−j = mini fij
; i = 1, . . . ,m, j = 1, . . . , n (8)

For negative attributes, the indices f∗j and f−j are determined by: f∗j = mini fij

f−j = maxi fij
; i = 1, . . . ,m, j = 1, . . . , n (9)

I The S and R indices

The S and R indices are computed for each alternative using the equations:

Si =
n∑
j=1

wj
f∗j − fij
f∗j − f

−
j

; i = 1, . . . ,m (10)

Ri = max
j

[
wj
f∗j − fij
f∗j − f

−
j

]
; i = 1, . . . ,m, j = 1, . . . , n (11)
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I The VIKOR index

The VIKOR index is also calculated for each alternative as follows: Qi = v × Si−S∗

S−−S∗ + (1− v)× Ri−R∗

R−−R∗

S∗ = mini Si, S− = maxi Si, R∗ = miniRi, R− = maxiRi
(12)

where v represents the strategic or compromise weight, often set to 0.5.
I Final Ranking of Alternatives

In this step, the alternatives are ranked in ascending order based on the values of S, R, and Q.
The alternative with the lowest values across the criteria is considered the most preferred.

2.3. Description of the Strict Ranking Metric Procedure (SRMP). This metric procedure, proposed
in [10], allows aggregating individual preferences into a collective preference without ties, while
minimizing disagreements among voters or decision-makers regarding the consensus. The different
steps of this metric procedure are as follows:

Letm denote the number of alternatives and n the number of decision-makers.

• Step 1: Each decision-maker ranks the alternatives according to their preference order. This
produces n rankings, also called profiles. Let∏ = π1, π2, ..., πn be the set of these n preference
profiles. We aim to find a ranking π∗ that is closest to all πi, i.e,
δ(π∗, πi) = min δ(π, πi) , where δ is a distance and π is any profile.
We propose to use the distance of the symmetrical difference which can be interpreted as a
distance of two matrices and in the case of voting this is understood as disagreement. [3].
• Step 2: Writing preferences in matrix form
Let r̃gij denote the rank of alternative ai in ranking πj , i = 1, ...,m and j = 1, ..., n. Thus, if
r̃g11 > r̃g21, then a2 � a1 in profile π1, and if r̃g11 = r̃g21, then a2 ≈ a1 in profile π1. The rank
matrix, denoted R̃g, is written as:

R̃g =



a1 a2 · · · an

π1 r̃g11 r̃g12 · · · r̃g1n

π2 r̃g21 r̃g22 · · · r̃g2n

... ... ... . . . ...
πm r̃gm1 r̃gm2 · · · r̃gmn


-From the data of R̃g we write the evaluation or performance matrices of the decision-makers
notedM t and defined by:
M t = [m

(t)
ik ], t ∈ T (set of voters) with:
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m
(t)
ik =


1 if ai �(t) ak

0 if ai ≈(t) ak

−1 if ak �(t) ai

• Step 3: We then generate all the possible permutations that can be formedwith them candidates.
Notons Φ l’ensemble de toutes ces permutations aléatoire.
• Step 4: The disagreements are calculated using the following formular:
→ The distance between two pairs of storage units is calculated as follows:

δ(Φ(t),M (t)) =
m∑
i=1

m∑
k=1

|φ(1)ik −m
(1)
ik | (13)

→ The disagreement also called Delta Blin (δBL) of the voters on any Φ ranking is calculated
as follows:

δBL(Φ,M (t)) =

s∑
t=1

m∑
i=1

m∑
k=1

|φik − ptik|,with here t ∈ T (14)

That is to say: δBL(Φ,M (t)) = δ(Φ,M (1)) + δ(Φ,M (2)) + ...+ δ(Φ,M (s))

Form candidates, we have a set of disagreementsK of cardinalm!.
• Step 5: Once the disagreements are known, we identify the Φ∗ ∈ Φ ranking that allowed us to
obtain the minimum number of disagreements. This choice constitutes a ranking of candidates
on which there is less disagreement.

3. Presentation of the VIKOR-METRIC Method

3.1. Mathematical Formulation. Let A = a1, a2, . . . , an be the set of alternatives.
Let D = D1, D2, . . . , Dm be the set of decision-makers.
Each decision-maker Di provides an evaluation matrixM (i) ∈ Rn×q.
Let πi be the strict ranking of the alternatives obtained by applying VIKOR toM (i), i.e., a permutation
of A.
The set of rankings is therefore Π = π1, . . . , πm.
The metric procedure aggregates Π into a consensual ranking π∗. This aggregation follows equations
(13) and (14), giving:

π∗ = arg min
π∈Sn

m∑
i=1

δ (π, πi) (15)

where Sn is the set of all permutations of n elements.
The hybridization consists of applying the VIKOR method to each of them evaluation matrices of

the decision-makers. This producesm rankings of the alternatives. Next, the Strict Ranking Metric Pro-
cedure is applied to determine the consensual ranking, i.e., the ranking that minimizes disagreements.
This process can be illustrated by the following figure.



Asia Pac. J. Math. 2026 13:6 7 of 21

Figure 1. The stages of the VIKOR-METRIC method

3.2. Pseudo code of VIKOR-METRIC.

Algorithm 1 Pseudo code for the VIKOR-METRIC method
Inputs :

X(k) = [x
(k)
ij ] : decision-maker performance matrix k, k = 1, . . . , s

W (k) = (w
(k)
1 , . . . , w

(k)
n ) : weight of the decision-maker’s criteria k

Direction of each criterion (max or min), parameter v ∈ [0, 1]

Release: Consensus ranking of alternatives
1: 1. Phase VIKOR individual

2: for k = 1 to s do

3: Apply the VIKOR method to (X(k),W (k))

4: Obtain the ranking R(k) of the alternatives for the decision-maker k.
5: end for

6: 2. Metric aggregation phase

7: Define the distance delta(Ra, Rb) as the size of the symmetrical difference between two rows.
d∆(Ra, Rb) = |Ra ∆Rb|

8: Find the R∗ ranking that minimises :
s∑

k=1

d∆(R∗, R(k))

9: Return R∗ as a consensus ranking
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3.3. Computational Complexity. The overall computational complexity of the VIKOR-METRIC algo-
rithm is mainly dominated by two stages: the application of the VIKOR procedure for each decision
maker and the metric-based aggregation of the resulting rankings. For s decision makers,m alterna-
tives, and n criteria, the execution of the VIKOR method for a single decision maker requires O(mn)

operations, leading to a total cost of O(smn) for all decision makers. The subsequent step, which
consists in computing the symmetric difference distances between each individual ranking and the
consensus ranking, involves O(sm2) operations.
Hence, the overall computational complexity of the proposed method is given by

O(smn+ sm2)

This complexity remains polynomial and computationally efficient for problems of moderate size.
However, when the number of alternativesm becomes very large, the metric aggregation stage tends
to dominate the computation time, making it the most demanding part of the process.

3.4. Validity of the VIKOR-METRIC method. The VIKOR-METRIC method checks the following
four properties.

Property 1: (Existence of consensual storage). Let Π = π1, . . . , πm be a set of strict rankings over n
alternatives, and let δ denote the symmetric difference distance defined on the permutation group Sn.
Then, there always exists at least one ranking π∗ ∈ Sn such that :

π∗ = arg min
π∈Sn

m∑
i=1

δ(π, πi)

Proof. Since the set Sn is finite (it contains n! permutations), and the function

f : π 7→
m∑
i=1

δ(π, πi)

takes a finite number of non-negative real values, it necessarily attains a minimum. Therefore, at least
one consensus ranking π∗ exists in Sn. �

Property 2 :(Identical permutation invariance). If we apply the same permutation π to all the individ-
ual arrangements σi, then the consensus arrangement σ∗ is also transformed by π.
If σ̃i = π ◦ σi, then σ̃∗ = π ◦ σ∗.

Proof. The symmetric difference distance is invariant under any simultaneous permutation of positions
applied to the rankings. Hence, the sum of the distances between σ̃ and σ̃i coincides with that between
σ and σi. It follows that both optimization problems are isomorphic in structure, leading to identical
objective values and equivalent optimal solutions. �
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Property 3:(Stability in the case of perfect consensus)). If all decision-makers produce the same order
π0, then π∗ = π0.

Proof. If sigma1 = σ2 = · · · = σm = σ0, then the function to be minimized becomes :

π 7→
m∑
i=1

δ (π, π0) = m · δ (π, π0) (16)

This function is minimized only when π = π0. �

Property 4:( Low-noise robustness). If a single decision-maker slightly modifies his ranking (change
of 1 or 2 pairs), then σ∗ remains close to the original.

Proof. Consider the cost functions
F (σ) =

∑s
k=1 d(σ,R(k)) et

F ′(σ) =
∑

k 6=j d(σ,R(k)) + d(σ,R′(j)).
By definition, σ∗ = arg minσ F (σ) et σ′∗ = arg minσ F

′(σ).
By triangular inequality on the metric δ, we have

|δ(σ,R(j))− δ(σ,R′(j))| ≤ δ(R(j), R′(j)) ≤ ε, for all σ.
In particular, for σ = σ∗,

F ′(σ∗) =
∑

k 6=j d(σ∗, R(k)) + d(σ∗, R′(j)) ≤
∑s

k=1 d(σ∗, R(k)) + ε = F (σ∗) + ε.
Since σ′∗ minimizes F ′, we have

F ′(σ′∗) ≤ F ′(σ∗) ≤ F (σ∗) + ε.

To bound the distance δ(σ∗, σ′∗), note that by the triangle inequality, for all k,

|δ(σ′∗, R(k))− δ(σ∗, R(k))| ≤ δ(σ∗, σ′∗).

In the same way,
|δ(σ′∗, R′(j))− δ(σ∗, R(j))| ≤ δ(σ∗, σ′∗) + δ(R(j), R′(j)) ≤ δ(σ∗, σ′∗) + ε.

So, summing over all the decision-makers, we obtain
F ′(σ′∗) ≥ F (σ∗)− s · d(σ∗, σ′∗)− ε.

Hence
F (σ∗) + ε ≥ F ′(σ′∗) ≥ F (σ∗)− s · d(σ∗, σ′∗)− ε.

This implies that s · δ(σ∗, σ′∗) ≥ −2ε,

and since the distance is always positive,
δ(σ∗, σ′∗) ≤ 2ε

s .
So for s ≥ 1, we have δ(σ∗, σ′∗) ≤ 2ε.
By constant rescheduling, we retain the idea that the consensus solution varies at most proportionally
to the initial disturbance. �
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4. Digital Applications

4.1. Didactic example (Choosing the best pesticide). Three farmers cultivate the same cowpea field
and wish to treat the plants to improve yield. The problem is to identify a compromise pesticide among
the set of approved pesticides available on the market: A = {P1, P2, P3, P4}.

These farmers, considered as decision-makersD1,D2, andD3, possess comprehensive knowledge of
these pesticides and relevant experience in their use. They define a set of criteria G to evaluate the
alternatives: G = {g1; g2; g3; g4; g5}, where g1: selling price, g2: effectiveness in eliminating pests, g5:
toxicity of the pesticide (very low, moderate, toxic, very toxic), g4: duration of action, and g3: odor of
the pesticide (not strong, moderate, strong, very strong).

After modeling the preferences, the following judgment matrices are obtained:

• Decision-makers’ judgement matrix

D1 g1 g2 g3 g4 g5

Pesticide 1 6 5 2 4 5
Pesticide 2 5 6 3 3 4
Pesticide 3 7 5 4 6 3
Pesticide 4 6 4 5 3 6

Poids 6 3 2 4 3

Table 1. D1 judgment matrix

D2 g1 g2 g3 g4 g5

Pesticide 1 7 6 2 3 3
Pesticide 2 6 5 2 5 3
Pesticide 3 6 7 3 6 4
Pesticide 4 5 4 4 4 3

Poids 7 5 3 3 4

Table 2. D2 judgment matrix

D3 g1 g2 g3 g4 g5

Pesticide 1 6 5 2 4 4
Pesticide 2 7 6 3 5 3
Pesticide 3 6 5 4 3 5
Pesticide 4 5 4 3 6 4

Poids 6 4 2 3 3

Table 3. D3 judgment matrix
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• The Vikor indexes Si, Ri and Qi can be calculated as follows:

Alternatives Si Ri Qi Rank
P1 10.0000 3.0 0.3250 2nd

P2 12.3333 6.0 1.0000 4th

P3 5.6666 3.0 0.0000 1st

P4 10.0000 4.0 0.4916 3rd

Table 4. Ranking of alternatives by decision-maker 1 using the VIKOR method

Alternatives Si Ri Qi Rank
P1 9.33333 3.0 0.2424 2nd

P2 11.6666 3.0 0.348484 3rd

P3 4.0000 3.0 0.0000 1st

P4 15.0000 6.0 1.0000 4th

Table 5. Ranking of alternatives by decision-maker 2 using the VIKOR method

Alternatives Si Ri Qi Rank
P1 10.5000 3.0 0.36667 3rd

P2 5.0000 3.0 0.0000 1st

P3 8.0000 3.0 0.3666 2nd

P4 12.5000 6.0 1.0000 4th

Table 6. Ranking of alternatives by decision-maker 3 using the VIKOR method

• This gives the decision-maker ranking matrixM t defined by the following table:

1st 2nd 3rd 4th

D1 P3 P1 P4 P2

D2 P3 P1 P2 P4

D3 P2 P3 P1 P4

Table 7. Matrix of decision-maker rankings
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• We now apply the SRMP to this matrix to determine the consensus ranking.
- From the decision-maker ranking table, we determine the rank matrix R̃g. We obtain:

R̃g =


P1 P2 P3 P4

π1 2 4 1 3

π2 2 3 1 4

π3 3 1 2 4


-Using the following SRMP coding:

M t = [m
(t)
ik ], t ∈ T (all decision-makers) with:

m
(t)
ik =


1 si ai �(t) ak

0 si ai ≈(t) ak

−1 si ak �(t) ai

We obtain the adapted evaluation matrices for the three decision-makers, which are respec-
tively:

M (1)=


0 1 −1 1

−1 0 −1 −1

1 1 0 1

−1 1 −1 0

M (2)=


0 1 −1 1

−1 0 −1 1

1 1 0 1

−1 −1 −1 0

M (3)=


0 −1 −1 1

1 0 1 1

1 −1 0 1

−1 −1 −1 0


I The possible permutations with these four candidates are:

Q=


1 2 3 4

. . . . .

4 3 2 1


-By applying the formulas for calculating distances and disagreements (13) and (14), we

obtain the set of disagreements given by the following list:
δBL = {28, 40, 24, 44, 28, 40, 32, 44, 12, 56, 16, 52, 20, 56, 16, 60, 28, 40, 32, 44, 28, 48, 32, 44}

The minimum number of disagreements is therefore 12. Using a Glutton-type algorithm, we
identify in the set Q the element Q∗ such that deltaBL(Q∗,M (t)) = 12 avec t = 1, 2, 3

This gives us Q∗ = [2 3 1 4].
This is the ranking on which decision-makers agree most. We can deduce from this ranking
that the best pesticide is P3 because it ranks first in the consensus ranking.

4.2. Example 2 (Singing Contest). The problem is to select the best candidate in a singing contest. For
this purpose, we have:
F three decision-makers: Smarty, Bill, and Dèz;
F five candidates: Reine, Ismael, Moussa, Rene, and Amie;
F four selection criteria: vocal accuracy, tone quality, rhythm, and stage presence.
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The preferences of the decision-makers are expressed in matrix form as follows:

Criteria→ Accuracy of voice Timbre Rythm Stage presence
Actions ↓ \weight→ 3 4 3 5

Reine 6 8 9 4
Ismael 4 5 6 7
Moussa 7 6 8 4
Rene 6 8 4 7
Amie 5 4 7 6

Table 8. Decision-maker evaluation matrix 1. Smarty

Criteria→ Accuracy of voice Timbre Rythm Stage presence
Actions ↓ \weight→ 4 3 2 5

Reine 7 5 3 8
Ismael 3 6 8 4
Moussa 6 8 4 3
Rene 5 4 6 7
Amie 2 3 7 5

Table 9. Decision-maker evaluation matrix 2. Bill

Criteria→ Accuracy of voice Timbre Rythm Stage presence
Actions ↓ \weight→ 4 5 3 5

Reine 8 3 6 7
Ismael 6 5 7 3
Moussa 5 8 4 2
Rene 4 7 3 6
Amie 7 6 5 8

Table 10. Decision-maker evaluation matrix 3. Dèz
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� VIKOR-METRIC solves the problem

The calculation of the VIKOR indexes using formulas (10), (11), and (12) yields the following results:

Candidates Si Ri Qi Rank
Reine 6.000000 5.0 0.705479 3rd

Ismael 7.800000 3.0 0.390411 2nd

Moussa 7.600000 5.0 0.869863 5rd

Rene 4.000000 3.0 0.000000 1st

Amie 8.866667 4.0 0.750000 4th

Table 11. Ranking of candidates by decision-maker 1 using the VIKOR method

Candidates Si Ri Qi Rank
Reine 3.8 2.0 0.000000 1st

Ismael 8.4 4.0 0.681818 3rd

Moussa 7.4 5.0 0.772727 4th

Rene 5.8 2.4 0.218182 2nd

Amie 10.4 4.0 0.833333 5th

Table 12. Ranking of candidates by decision-maker 2 using the VIKOR method

Candidates Si Ri Qi Rank
Reine 6.583333 5.000000 0.681159 2nd

Ismael 9.166667 4.166667 0.766908 3rd

Moussa 10.250000 5.000000 1.000000 5th

Rene 9.666667 4.000000 0.782609 4th

Amie 4.500000 2.000000 0.000000 1st

Table 13. Ranking of candidates by decision-maker 3 using the VIKOR method

This gives us the decision-maker ranking matrixM t defined by the following table:
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1st 2nd 3rd 4th 5th

Smarty Rene Ismael Rene Amie Moussa

Bill Reine Rene Ismael Moussa Amie

Dez Amie Reine Ismael Rene Moussa

Table 14. Matrix of decision-maker rankings

By running the SRMP algorithm on this ranking table, we obtain the following results:
I δBL =

48 52 36 48 32 36 60 64 32 52 28 40 56 68 44 64 32 36 60 64
48 60 44 48 52 56 40 52 36 40 72 76 36 56 32 44 68 80 48 68
36 40 72 76 52 64 48 52 64 68 44 56 40 44 76 80 40 60 36 48
72 84 60 80 40 44 76 80 64 76 52 56 68 72 56 68 44 48 80 84
52 72 40 52 76 88 64 84 44 48 80 84 68 80 64 68 72 76 60 72
56 60 84 88 56 76 52 64 80 92 68 88 56 60 84 88 72 84 68 72

I The minimum agreement is: 28.0
I Concensus storage is: [1 3 5 2 4]
This means that in consensual storage we have:

Reine Ismael Moussa Rene Amie
1st 3rd 5th 2nd 4th

Table 15. Ranking of each candidate in the consensus ranking

4.3. Exemple 3 ( selection of suppliers). This example is taken from [8]. We used triangular fuzzy
aggregation operators (see [14]) to defuzzify the different matrices. A company operating in the
automotive parts manufacturing sector aims to select a suitable partner among its suppliers to purchase
key components for its new product.
After an initial screening, five candidate suppliers (S1, S2, S3, S4, and S5) remain under consideration.
A committee composed of three decision-makers, D1, D2, and D3, was formed to select the most
appropriate supplier. The following criteria were defined:
- Product quality (C1)

- Adherence to delivery schedules (C2)

- Price/cost (C3)

- Supplier’s technological level (C4)
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- Flexibility (C5)

The importance or weight of the criteria and the scores assigned to the five suppliers by the three
decision-makers according to the different criteria are given in the following tables:

Criteria C1 C2 C3 C4 C5

D1 7 9 9 7 7
D2 7 9 9 7 7
D3 7 7 9 6 7

Table 16. Weight of criteria

Supplier C1 C2 C3 C4 C5
S1 8 7 8 8 8
S2 8 9 3 8 8
S3 9 7 5 8 8
S4 8 8 7 8 8
S5 7 7 7 8 7

Table 17. D1 evaluationmatrix

Supplier C1 C2 C3 C4 C5
S1 8 7 8 8 8
S2 8 9 5 9 8
S3 9 8 5 9 8
S4 8 7 8 8 8
S5 7 8 7 8 7

Table 18. D2 evaluationmatrix

Supplier C1 C2 C3 C4 C5
S1 9 9 8 8 9
S2 8 8 3 8 8
S3 8 7 5 8 8
S4 8 8 8 5 8
S5 7 8 7 8 8

Table 19. D3 evaluationmatrix

By applying the different stages of the VIKOR method, we can summarise the different results in the
following table:

decision-makers
Indexe

D1 D2 D3

S R Q Rank S R Q Rank S R Q Rank
S1 0.42 0.23 0.52 2nd 0.5 0.23 0.71 4th 0.0 0.0 0.0 1st

S2 0.32 0.23 0.59 3rd 0.32 0.23 0.5 1st 0.64 0.25 1.0 5th

S3 0.37 0.23 0.65 4th 0.35 0.23 0.53 3rd 0.64 0.19 0.89 4th

S4 0.25 0.12 0.0 1st 0.5 0.23 0.71 5th 0.56 0.19 0.82 3rd

S5 0.64 0.23 1.0 5th 0.73 0.17 0..5 2nd 0.54 0.19 0.8 2nd

Table 20. Results from the application of VIKOR
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In this way, we obtain decision-maker rankings as defined in the following table:

1st 2nd 3rd 4th 5th

D1 S4 S1 S2 S3 S5

D2 S2 S5 S3 S1 S4

D3 S! S5 S4 S3 S2

Table 21. Matrix of decision-maker rankings

Applying the SRMP algorithm to this table gives the following results:
I The minimum agreement is: 44.0
I Concensus storage is: [1 2 5 4 3]
This means that in consensual storage we have:

S1 S2 S3 S4 S5

1st 2nd 5th 4th 3rd

Table 22. Ranking of each supplier in the consensus ranking

The best supplier is therefore S1.

4.4. Solving these three examples using the CHEMATRE method.

4.4.1. Outline of the CHEMATRE method. Proposed by Z. AVADOGO et al. [12], this method uses the
weighted sum and the geometric mean. The aggregation is performed at two levels:

• Aggregation at the decision-maker level:

Aggregation at this level consists of calculating the weighted sum of the alternatives’ scores
across the criteria:

Gk(a) =

j=m∑
j=1

wkj g
k
j (a), ∀a ∈ A (17)

where
- Gk(a) is the overall score of alternative a according to decision-maker dk;
- wkj is the weight assigned to criterion j by decision-maker k;
- gkj (a) is the score given to alternative a on criterion j by decision-maker dk.

• Final aggregation across all decision-makers:

Each decision-maker k already has a global score Gk(a) for each alternative a, so the next step
is to compute the final value of each a. Due to its robustness, CHEMATRE suggests calculating,
for each a, the geometric mean of the Gk(a).
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U(a) = s

√√√√ s∏
k=1

Gk(a), ∀a ∈ A (18)

where
- U(a) is the final numerical value of alternative a;
- Gk(a) is the global value of alternative a according to decision-maker dk.

After calculating the U(a) values, they can be ranked according to the usual order of real
numbers.

4.4.2. Resolution. Didactic example

By applying CHEMATRE to the didactic example, we obtain:

∑j=4
j=1w

1
j g

1
j (ai)

∑j=4
j=1w

2
j g

2
j (ai)

∑j=4
j=1w

3
j g

3
j (ai)

3

√∏k=3
k=1Gk (ai) Rank

P1 86 106 84 91.49 2nd

P2 78 100 96 90.81 3rd

P3 98 120 88 101.15 1st

P4 88 91 82 86.92 4th

Table 23. Results of the didactic example given by the CHEMATRE method

We can see that Pesticide 3 is the best because it obtains the highest CHEMATRE score.

Example 2

Aggregating the evaluation matrices from example 2 gives the following results:

∑j=4
j=1w

1
j g

1
j (ai)

∑j=4
j=1w

2
j g

2
j (ai)

∑j=4
j=1w

3
j g

3
j (ai)

3

√∏k=3
k=1Gk (ai) Rank

Reine 97 89 100 95.21 1st

IsmaelS 85 66 85 78.12 5th

Moussa 89 71 82 80.31 4th

Rene 97 79 90 88.35 2nd

Amie 82 56 113 80.35 3rd

Table 24. Results of example 2 given by the CHEMATRE method

We can see that the best candidate is Reine because she has the highest CHEMATRE score.
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Example 3

Aggregating the evaluation matrices from example 3 gives the following results:

∑j=4
j=1w

1
j g

1
j (ai)

∑j=4
j=1w

2
j g

2
j (ai)

∑j=4
j=1w

3
j g

3
j (ai)

3

√∏k=3
k=1Gk (ai) Rank

S1 303 303 309 304.99 1st

S2 276 301 243 272.29 5th

S3 283 299 254 278.03 4th

S4 303 303 270 291.57 2nd

S5 280 289 272 280.25 3rd

Table 25. Results of example 3 given by the CHEMATRE method

We can see that the best supplier is S1 because it obtains the highest CHEMATRE score.

4.5. Comparison and discussion. In summary, the rankings of the alternatives provided by the two
methods for the three examples are presented in the following tables. These tables allow for a direct
comparison of the results obtained by each method and for an assessment of their consistency across
different contexts.
we denote by ai the alternative i (with i = 1, .., 5).

Didactic example a1 a2 a3 a4

VIKOPR-METRIC 1st 2nd 3rd 4th

CHEMATRE 1st 2nd 3rd 4th

Example 2 a1 a2 a3 a4 a5

VIKOPR-
METRIC

1st 3rd 5th 2nd 4th

CHEMATRE 1st 5th 4th 2nd 3rd

Example 3 a1 a2 a3 a4 a5

VIKOPR-
METRIC

1st 2nd 5th 4th 3rd

CHEMATRE 1st 5th 4th 2nd 3rd

Table 26. VIKOR-METRIC and CHEMATRE comparative tables for the three examples
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The comparative analysis of the rankings obtained by the VIKOR-METRIC and CHEMATREmethods
across these three examples highlights the relevance and superiority of the former. Developed as a
hybridization of theVIKORmethod and the Strict RankingMetric Procedure [10], VIKOR-METRIC aims
to reduce the compensatory effects often observed in classical multicriteria aggregation approaches,
resulting in more consistent rankings.

In the first example, both methods converge to the same order, thus validating VIKOR-METRIC’s
ability to produce results aligned with expectations in didactic cases. In contrast, in examples 2 and 3,
the CHEMATRE method exhibits counterintuitive inversions of alternatives, notably the unjustified
degradation of alternative a2.

By incorporating an appropriate distance measure, VIKOR-METRIC maintains a more stable hierar-
chy that better reflects balanced compromises. These results emphasize the advantage of this hybrid
approach, which combines metric rigor with sensitivity to collective preferences, thereby providing a
more robust and reliable tool for multicriteria decision-making.

5. Conclusion

In this article, we proposed VIKOR-METRIC, a novel group multicriteria decision-making (MCDM)
method based on the hybridization of the VIKOR method and the Strict Ranking Metric Procedure
(SRMP). Unlike classical approaches, which merely aggregate individual evaluation matrices into
a single global matrix using compensatory operators, VIKOR-METRIC processes each viewpoint
separately before seeking a consensus ranking that minimizes disagreements. This approach better
preserves the diversity of decision-makers’ preferences and limits the compensatory effects often
observed in traditional methods.

The experimental results obtained across several examples show that the VIKOR-METRIC method
provides more balanced rankings that more accurately reflect collective preferences, compared to
existing methods such as CHEMATRE. VIKOR-METRIC thus represents a significant advancement
in collective decision support, offering a solution that is both robust and nuanced for multicriteria
analysis in group contexts.

Several interesting research directions can be envisioned. In particular, it would be relevant to explore
the extension of VIKOR-METRIC to fuzzy or imprecise data to better model the uncertainties inherent
in decision-makers’ judgments. Furthermore, a deeper study of its mathematical properties, such
as robustness, stability, and sensitivity to input changes, could strengthen its theoretical framework.
Finally, applying this method to real-world cases (e.g., healthcare, energy, public policy) would enable
broader empirical validation and facilitate its integration into practical decision-support tools.
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