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SOME OPERATIONS IN HUB-INTEGRITY OF GRAPHS
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Abstract. The hub-integrity of a connected graph G = (V (G), E(G)) is denoted as
HI(G) and defined by HI(G) = min{|S|+m(G−S), S is a hub set of G}, where m(G−S)

is the order of a maximum component of G− S. In this paper we discuss hub-integrity
of square graph of path as well as we give some results connecting the hub-integrity of
binary graph operations.
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1. Introduction

We begin with simple, finite, connected and undirected graph G with vertex set
V (G) and edge set E(G). For graph theoretic terminology, we refer to Harary [9]. In
the remaining portion of this section we will give brief summary of definitions and
information related to the present work.

The vulnerability of network have been studied in various contexts including road
transportation system, information security, structural engineering and communica-
tion network. A graph structure is vulnerable if ąőany small damage produces large
consequencesąŕ. In a communication network, the vulnerability measures the resis-
tance of the network to disruption of operation after the failure of certain stations
(junctions) or communication links (connections). In the theory of graphs, the vulner-
ability implies a lack of resistance(weakness) of graph network arising from deletion
of vertices or edges or both. Communication networks must be so designed that they
do not easily get disrupted under external attack and even if they get disturbed then
they should be easily reconstructible. Many graph theoretic parameters have been in-
troduced to describe the vulnerability of communication networks including binding
number, rate of disruption, toughness, neighbor-connectivity, integrity, mean integri-
ty, edge-connectivity and tenacity. In the analysis of the vulnerable communication
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network two quantities are playing vital role, namely (i) the number of elements that
are not functioning (ii) the size of the largest remaining (survived) sub network within
which mutual communication can still occur. In adverse relationship it is desirable
that an opponentąŕs network would be such that the above referred two quantities
can be made simultaneously small. Here the first parameter provides an information
about nodes which can be targeted for more disruption while the later gives the im-
pact of damage after disruption. To estimate these quantities Barefoot et al. [2] have
introduced the concept of integrity, which is defined as follows.

Definition 1.1. [2] The integrity of a graph G is denoted by I(G) and defined by I(G) =

min{|S| + m(G − S) : S ⊆ V (G)}, where m(G − S) denotes the order of a maximum
component of G− S.

Definition 1.2. [2] A subset S of V (G) is said to be an I-set, if I(G) = |S|+m(G− S).

The parameters of integrity and edge-integrity were introduced by Barefoot, En-
tringer and Swart in [2] and were studied more extensively by the same authors in
[3]. Computational aspects of these parameters were studied in [4, 5]. Some general
results on the interrelations between integrity and other graph parameters are inves-
tigated by Goddard and Swart [7] while Mamut and Vumar [11] have determined the
integrity of middle graph of some graphs. It is also observed that bigger the integrity
of network, more reliable functionality of the network after any disruption caused by
nonfunctional devices (elements). The connectivity is useful to identify local weak-
nesses in some respect while integrity gives brief account of vulnerability of the graph
network.

Suppose that H ⊆ V (G) and let x, y ∈ V (G). An H-path between x and y is a path
where all intermediate vertices are from H. (This includes the degenerate cases where
the path consists of the single edge xy or a single vertex x if x = y, call such an H-
path trivial). A set H ⊆ V (G) is a hub set of G if it has the property that, for any
x, y ∈ V (G)−H, there is an H-path in G between x and y. The smallest size of a hub
set in G is called the hub number of G, and is denoted by h(G) [8, 12].
The concept of hub-integrity was introduced by Sultan et al. [10].

Definition 1.3. [10] The hub-integrity of a graph G denoted by HI(G) is defined by,
HI(G) = min{|S| + m(G − S), S is a hub set of G}, where m(G − S) is the order of a
maximum component of G− S.

Definition 1.4. [9] For a simple connected graph G the square of G denoted by G2, is
defined as the graph with the same vertex set as of G and two vertices are adjacent in
G2 if they are at a distance 1 or 2 in G .
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Many results on the integrity of graphs in the context of union, join, composition
and product of two graphs have been reported by Goddard and Swart (1988) [6]. The
present work is intended to investigate the hub-integrity of a square graph of Pp, com-
position (lexicographic product), (Cartesian)product and join of two graphs. We need
the following to prove main results.

Theorem 1.5. [1] For any graphs G and H, I(G + H) = min{I(G) + |V (H)|, I(H) +

|V (G)|}.

Theorem 1.6. [2] The integrity of
(a): the complete graph Kp is p,
(b): the star K1,n is 2,
(c): the path Pp is d2

√
p+ 1e − 2,

(d): the cycle Cp is d2√pe − 1.

Proposition 1.7. [10]
(1) The hub-integrity of the complete graph Kp is p.
(2) For any path Pp with p ≥ 3, HI(Pp) = p− 1.
(3) For any cycle Cp,

HI(Cp) =

{
p− 1, if p = 4, 5;
p− 2, if p ≥ 6.

2. Main Results

Theorem 2.1.

HI(P 2
p ) =



2 if p = 2,

3 if p = 3, 4,

2p
3

if p ≥ 5 and p ≡ 0(mod 3),

2(p−1)
3

+ 1 if p ≥ 5 and p ≡ 1(mod 3),

2p+2
3

if p ≥ 5 and p ≡ 2(mod 3).

Proof. Let V (Pp) = {v1, v2, ...., vp}. Then, |V (P 2
p )| = p and |E(P 2

p )| = 2p− 3. We consider
the following three cases:
Case 1: p = 2. P 2

2 is isomorphic to complete graph K2. By Proposition 1.7, HI(P 2
2 ) = 2.

Case 2: p = 3, 4. For p = 3, P 2
3 is isomorphic to complete graph K3. By Proposi-

tion 1.7, HI(P 2
3 ) = 3. For p = 4, consider S = {v2, v3} which is a hub set for P 2

4 and
m(P 2

4 − S) = 1. Therefore, |S| + m(P 2
4 − S) = 3. For S = {v1, v3} , {v2, v4} , {v1, v2} or

{v3, v4}, m(P 2
4 − S) = 2, then we get |S|+m(P 2

4 − S) = 4. If S = {vi}, i = 1, 2, 3, 4 , then
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m(P 2
4 − S) = 3, so |S|+m(P 2

4 − S) = 4. Hence HI(P 2
4 ) = 3.

Case 3: p ≥ 5. We consider a hub set S of V (P 2
p ) as below:

• If p ≡ 0(mod 3), then p = 3k for some integer k ≥ 2. Consider

S = {v3+3i, v4+3i/0 ≤ i ≤ k − 2} and |S| = 2(k − 1).

We have, |S| = 2p
3
− 2.

• If p ≡ 1(mod 3) then p = 3k + 1 for some integer k ≥ 2. Consider

S = {v3+3i, v4+3i/0 ≤ i ≤ k − 2} ∪ {vp−1} and |S| = 2k − 1.

We have, |S| = 2(p−1)
3
− 1.

• If p ≡ 2(mod 3) then p = 3k − 1 for some integer k ≥ 2. Consider

S = {v3+3i, v4+3i/0 ≤ i ≤ k − 2} and |S| = 2k − 2.

We have, |S| = 2p+2
3
− 2.

In all the above cases S is a hub set for P 2
p and m(P 2

p − S) = 2.

Now, we discuss the minimality of |S| + m(P 2
p − S). If we consider any hub set S1 of

P 2
p such that, |S1| ≤ |S|, then due to the construction of P 2

p (i.e., to convert P 2
p − S1

into disconnected graph, we must include at least two consecutive vertices in S1), it
generates large value of m(P 2

p − S1) such that,
|S|+m(P 2

p − S) < |S1|+m(P 2
p − S1). (1)

Let S2 be any hub set of P 2
p such that m(P 2

p − S2) = 1. Then
|S|+m(P 2

p − S) ≤ |S2|+m(P 2
p − S2), (2)

From (1) and (2) we have,
|S|+m(P 2

p − S) = min{|X|+m(G−X) : X is a hub set}
= HI(P 2

p ).
Hence,

HI(P 2
p ) =



2 if p = 2,

3 if p = 3, 4,
2p
3

if p ≥ 5 and p ≡ 0(mod 3),
2(p−1)

3
+ 1 if p ≥ 5 and p ≡ 1(mod 3),

2p+2
3

if p ≥ 5 and p ≡ 2(mod 3).

�

Definition 2.2. [9] The composition G[H] of two graphs G and H has its vertex set
V (G) × V (H), with (u1, u2) adjacent to (v1, v2) if either u1 is adjacent to v1 in G or u1 =
v1 and u2 is adjacent to v2 in H.
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Theorem 2.3.
HI(K2[Pp]) = p+ d2

√
p+ 1e − 1.

Proof. Consider K2 with vertices u1, u2 and Pp with v1, v2, ...., vp. Let G be the graph
K2[Pp]. Then,

V (G) = {(ui, vj)/1 ≤ i ≤ 2, 1 ≤ j ≤ p}

and

E(G) = {(u1, vj)(u2, vk)/1 ≤ j ≤ p, 1 ≤ k ≤ p} ∪ {(u1, vj)(u1, vj+1), (u2, vj)(u2, vj+1/1 ≤
j ≤ p− 1}.

For the sake of convenience, we denote the vertices (u1, vj) = w1j, 1 ≤ j ≤ p and

(u2, vj) = w2j, 1 ≤ j ≤ p.

Then graph of K2[P6] is shown in Figure 1 for better understanding of the notation and
arrangement of vertices. Moreover, Kp,p is a subgraph of G and HI(Kp,p) = p + 1, so
HI(G) > p+ 1.

Consider S1 = {w2j/1 ≤ j ≤ p}, |S1| = p. Then, S1 is a hub set of G and G− S1 = Pp, so
m(G− S1) = p.

x x

x x x x

x

x

xx

x

x

b
b
b

b
b
b

b
b

bb

w11 w12 w13 w14 w15 w16

w21 w22 w23 w24 w25 w26

Figure 1

Let S2 = {w1k = (u1, vk)/vk ∈ I − set of Pp}. Take V1 = {vk/vk ∈ I − set of Pp} so
|S2| = |V1|.
Consider S = S1 ∪ S2. Then, S is also a hub set of G (as S1 ⊂ S). We have,

|S| = |S1|+ |S2| = |S1|+ |V1| and G− S = Pp − V1, so m(G− S) = m(Pp − V1).

By Theorem 1.6, we have

|S|+m(G− S) = |S1|+ |V1|+m(Pp − V1)

= |S1|+ I(Pp).

= p+ d2
√
p+ 1e − 2 > p+ 1.
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Hence,
|S|+m(G− S) = p+ d2

√
p+ 1e − 2 > p+ 1. (3)

Now we discuss the minimality of |S|+m(G−S). If S3 is any hub set of G which is not
containing S1 or S2 as a proper subset and |S3| = k < 2p. Then, due to construction of
G(w1i is adjacent to w2k for 1 ≤ i, k ≤ p),

|S3|+m(G− S3) = k + 2p− k = 2p > |S|+m(G− S). (4)

Let S5 be another hub set of G such that S5 = S4 ∪ S2, where S4 ⊂ S1 with |S4| < p. In
G, w1i is adjacent to w2k for 1 ≤ i, k ≤ p. Therefore,

m(G− S5) = |S2|+ p− |S4|.

Hence,

|S5|+m(G− S5) = |S2|+ |S4|+ |S2|+ p− |S4|

= 2|S2|+ p.

> |S|+m(G− S). (5)

Therefore, from the above discussion and (4) and (5), it follows that |S| +m(G − S) is
minimum. Hence, from equation (3) and the minimality of |S|+m(G− S) we have,

HI(K2[Pp]) = min{|X|+m(G−X) : X is a hub set}

= |S|+m(G− S).

= p+ d2
√
p+ 1e − 2.

�

Theorem 2.4. HI(K2[Cp]) = p+ d2√pe − 1.

Proof. The proof is similar to that of Theorem 2.3. �

Theorem 2.5. HI(K2[K1,n]) = n+ 3.

Proof. The proof is similar to that of Theorem 2.3. �

Theorem 2.6. HI(K2[Kp]) = 2p.

Proof. The proof is similar to that of Theorem 2.3. �

Theorem 2.7.

HI(Pp[K2]) =



4 if p = 2, 3,

6 if p = 4,

7 + 4i if p ≥ 5 and p = 5 + 3i,

8 + 4i if p ≥ 5 and p = 6 + 3i,

10 + 4i if p ≥ 5 and p = 7 + 3i,
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where i ∈ Z+ ∪ {0}.

Proof. Let Pp be a path with vertices u1, u2, .., up and complete graph K2 with vertices
v1, v2. Let G be the graph Pp[K2]. Then,

V (G) = {(ui, vj)/1 ≤ i ≤ p, 1 ≤ j ≤ 2}

and

E(G) = {(ui, vj)(ui+1, vj)/1 ≤ i ≤ p − 1, 1 ≤ j ≤ 2} ∪ {(ui, v1)(ui+1, v2)/1 ≤ i ≤
p− 1} ∪ {(ui, v2)(ui+1, v1)/1 ≤ i ≤ p− 1}.
Without loss of generality, we denote vertices (ui, v1) by wi1, 1 ≤ i ≤ p and (ui, v2) by wi2, 1 ≤
i ≤ p. The graph P6[K2] is shown in Figure 2 for better understanding of the notations
and arrangement of vertices.
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We consider the following two cases:
Case 1: 2 ≤ p ≤ 4.

For p = 2, P2[K2] is isomorphic to a complete graphK4. By Proposition 1.7,HI(P2[K2]) =

4.

For p = 3, consider S = {w21, w22}, which is a hub set of P3[K2] and m(G−S) = 2. There
does not exist any hub set S1 of G such that |S1|+m(G− S1) < |S|+m(G− S). Hence,
HI(P3[K2]) = 4.

For p = 4, consider S = {w21, w22, w32}, which is a hub set for P4[K2] and m(G− S) = 3.
Moreover, for any hub set S1 of G we have, |S1| +m(G− S1) ≥ |S| +m(G− S). Hence,
HI(P4[K2]) = 6.

Case 2: p ≥ 5. We consider a subset S of V (G) as below :

• If p = 5 + 3i, where i = 0, 1, 2, ...., then consider S = {w(2+3j)1, w(2+3j)2/0 ≤ j ≤
i} ∪ {w(3j)2, w(3j+1)2/1 ≤ j ≤ i+ 1} ∪ {w(p−1)1}.
Then, |S| = 5 + 4i.
• If p = 6 + 3i, where i = 0, 1, 2, ...., then consider S = {w(2+3j)1, w(2+3j)2/0 ≤ j ≤
i+ 1} ∪ {w(3j)2, w(3j+1)2/1 ≤ j ≤ i+ 1}.
Then, |S| = 6 + 4i.
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• If p = 7 + 3i, where i = 0, 1, 2, ...., then consider S = {w(2+3j)1, w(2+3j)2/0 ≤ j ≤
i+ 1} ∪ {w(3j)2, w(3j+1)2/1 ≤ j ≤ i+ 2}.
Then, |S| = 8 + 4i.

Moreover, in all above three cases m(G− S) = 2.
Now, we discuss the minimality of |S|+m(G−S). If we consider any hub set S1 ofG such
that |S1| < |S|, then due to construction of G (i.e., to convert G− S1 into disconnected
graph we must include vertices wi1 and wi2 in S1), it generates large value of m(G−S1)

such that
|S|+m(G− S) ≤ |S1|+m(G− S1). (6)

Let S2 be any hub set of G such that m(G− S2) = 1, then,

|S|+m(G− S) < |S2|+m(G− S2). (7)

Thus, from above discussion and (6) and (7), |S| +m(G − S) is minimum. So, in both
the cases we have,

|S|+m(G− S) = min{|X|+m(G−X) : X is a hub set}

= HI(G).

Hence,

HI(Pp[K2]) =



4 if p = 2, 3,

6 if p = 4,

7 + 4i if p ≥ 5 and p = 5 + 3i,

8 + 4i if p ≥ 5 and p = 6 + 3i,

10 + 4i if p ≥ 5 and p = 7 + 3i.

�

Definition 2.8. [9] The (Cartesian)product G×H of graphs G and H has V (G)×V (H)

as its vertex set and (u1, u2) is adjacent to (v1, v2) if either u1 = v1 and u2 is adjacent to
v2 or u2 = v2 and u1 is adjacent to v1 .

Theorem 2.9.

HI(K2 × Pp) =



3 if p = 2,

4 if p = 3,

6 if p = 4,

7 + 4i if p ≥ 5 and p = 5 + 3i,

8 + 4i if p ≥ 5 and p = 6 + 3i,

10 + 4i if p ≥ 5 and p = 7 + 3i,
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where i ∈ Z+ ∪ {0}.

Proof. Let Pp be a path with vertices u1, u2, .., up and complete graph K2 with vertices
v1, v2. Let G be the graph K2 × Pp, it has 2p vertices and 3p− 2 edges.
For the sake of convenience, we denote vertices (v1, uj) by w1j, 1 ≤ j ≤ p and (v2, uj) by w2j, 1 ≤
j ≤ p. The graph K2 × P7 is shown in Figure 3 for better understanding of the nota-
tions and arrangement of vertices. Moreover, Pp is a subgraph of G and HI(Pp) =

p− 1, HI(G) > p− 1.
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Figure 3
We consider the following two cases :
Case 1 : 2 ≤ p ≤ 4.

For p = 2, K2 × P2 is isomorphic to a cycle C4. By Proposition 1.7, HI(K2 × P2) = 3.

For p = 3, consider S = {w12, w22}, which is a hub set for K2 × P3. and m(G − S) = 2.
There does not exist any hub set S1 of G such that |S1| +m(G− S1) < |S| +m(G− S).
Hence, HI(K2 × P3) = 4.

For p = 4, consider S = {w12, w22, w14, w24} or S = {w11, w21, w13, w23}, which is a hub
set for K2 × P4 and m(G − S) = 2. Therefore |S| + m(G − S) = 6. It is easy to ob-
serve that there does not exist a hub set S for which |S| + m(G − S) < 6. Therefore,
HI(K2 × P4) = 6.

Case 2 : p ≥ 5. We consider a subset S of V (G) as below :

• If p = 5 + 3i, where i = 0, 1, 2, ..., then consider

S = {w1(2+3j), w2(2+3j)/0 ≤ j ≤ i} ∪ {w2(3j), w2(3j+1)/1 ≤ j ≤ i+ 1} ∪ {w1p}.

Then, |S| = 5 + 4i.
• If p = 6 + 3i, where i = 0, 1, 2, ..., then consider

S = {w1(2+3j), w2(2+3j)/0 ≤ j ≤ i+ 1} ∪ {w2(3j), w2(3j+1)/1 ≤ j ≤ i+ 1}.

Then, |S| = 6 + 4i.
• If p = 7 + 3i, where i = 0, 1, 2, ..., then consider

S = {w1(2+3j), w2(2+3j)/0 ≤ j ≤ i+ 1} ∪ {w2(3j), w2(3j+1)/1 ≤ j ≤ i+ 2}.
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Then, |S| = 8 + 4i.
In all the above cases, S is a hub set for (K2 × Pp) and m(G− S) = 2.
Now we discuss the minimality of |S|+m(G−S). If we consider any hub set S1 of G such
that |S1| ≤ |S|, then due to construction of G (i.e., to convert G− S1 into disconnected
graph we must include vertices w1i and w2i in S1), it generates large value of m(G−S1)

such that
|S|+m(G− S) ≤ |S1|+m(G− S1). (8)

Let S2 be any hub set of G such that m(G− S) = 1, then, for p ≥ 5,

|S|+m(G− S) < |S2|+m(G− S2). (9)

Thus, from above discussion and (8) and (9), |S| +m(G − S) is minimum. So, in both
the cases we have,

|S|+m(G− S) = min{|X|+m(G−X) : X is a hub set}

= HI(G).

Hence,

HI(K2 × Pp) =



3 if p = 2,

4 if p = 3,

6 if p = 4,

7 + 4i if p ≥ 5 and p = 5 + 3i,

8 + 4i if p ≥ 5 and p = 6 + 3i,

10 + 4i if p ≥ 5 and p = 7 + 3i.

�

Theorem 2.10.

HI(K2 × Cp) =



5 if p = 3, 4,

p+ 2 if p = 5, 6,

p+ 3 if p = 7, 8,

13 if p = 9.

Proof. Let K2 be a complete graph with vertices v1, v2 and Cp be a cycle with vertices
u1, u2, ..., up. LetG be the graphK2×Cp, with 2p vertices and 3p edges for p > 2. Without
loss of generality, we denote vertices (v1, ui) by w1i, 1 ≤ i ≤ p and (v2, ui) by w2i, 1 ≤ i ≤ p.
The graph K2×C4 is shown in Figure 4 for better understanding of the notations and
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arrangement of vertices.
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Figure 4

For p = 3, consider S = {w11, w21, w12, w23}, which is a hub set for K2 × C3. and
m(G − S) = 1. For S = {w11, w21, w22, w13} also, we have m(G − S) = 1. There does
not exist any hub set S1 of G such that |S1| + m(G − S1) < |S| + m(G − S). Hence,
HI(K2 × C3) = 5.

For p = 4, consider S = {w11, w13, w22, w24}, which is a hub set for K2 × C4. and
m(G − S) = 1. There does not exist any hub set S1 of G such that |S1| +m(G − S1) <

|S|+m(G− S). Hence, HI(K2 × C4) = 5.

For p = 5, consider S = {w11, w13, w15, w22, w24}, which is a hub set for K2 × C5. and
m(G − S) = 2. There does not exist any hub set S1 of G such that |S1| +m(G − S1) <

|S|+m(G− S). Hence, HI(K2 × C5) = 7.

For p = 6, consider S = {w11, w13, w14, w15, w22, w24, w26}, which is a hub set for K2 × C6.
and m(G − S) = 1. For S = {w11, w12, w14, w16, w21, w23, w25}, also m(G − S) = 1. There
does not exist any hub set S1 of G such that |S1|+m(G− S1) < |S|+m(G− S). Hence,
HI(K2 × C6) = 8.

For p = 7, consider S = {w11, w12, w13, w15, w17, w21, w22, w24, w26}, which is a hub set
for K2 × C7. and m(G − S) = 1. There does not exist any hub set S1 of G such that
|S1|+m(G− S1) < |S|+m(G− S). Hence, HI(K2 × C7) = 10.

For p = 8, consider S = {w11, w13, w14, w15, w16, w17, w22, w24, w26, w28}, which is a hub
set for K2 × C8. and m(G− S) = 1.
For S = {w11, w12, w13, w15, w17, w18, w22, w24, w26, w28}, also m(G − S) = 1. There does
not exist any hub set S1 of G such that |S1| + m(G − S1) < |S| + m(G − S). Hence,
HI(K2 × C8) = 11.
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For p = 9, consider S = {w11, w12, w13, w14, w16, w18, w19, w21, w23, w25, w27, w29}, which is a
hub set for K2 × C9. and m(G− S) = 1. There does not exist any hub set S1 of G such
that |S1|+m(G− S1) < |S|+m(G− S). Hence, HI(K2 × C9) = 13.

�

Theorem 2.11.

HI(K2 × Cp) =


4p
3
+ 2 if p ≥ 10 and p ≡ 0(mod 3),

4(p−1)
3

+ 3 if p ≥ 10 and p ≡ 1(mod 3),

4(p+1)
3

if p ≥ 10 and p ≡ 2(mod 3).

Proof. Let K2 be a complete graph with vertices v1, v2 and Cp be a cycle with vertices
u1, u2, ..., up. Let G be the graph K2 × Cp, with 2p vertices and 3p edges for p ≥ 10.
We consider a subset S of V (G) as below:

• If p ≡ 0(mod 3) then p = 3k for some k ∈ Z+. We have

S = {w1(1+3i), w2(1+3i)/0 ≤ i ≤ k − 1} ∪ {w2(3i)/0 < i ≤ k} ∪ {w2(2+3i)/0 ≤ i ≤ k − 1}

and |S| = 4k. So, |S| = 4p
3
for p ≡ 0(mod 3).

• If p ≡ 1(mod 3) then p = 3k+1 for some k ∈ Z+.We have S = {w1(1+3i), w2(1+3i)/0 ≤
i ≤ k − 1} ∪ {w1p} ∪ {w2(3i)/0 < i ≤ k} ∪ {w2(2+3i)/0 ≤ i ≤ k − 1} and |S| = 4k + 1.

So, |S| = 4(p−1)
3

+ 1 for p ≡ 1(mod 3).

• If p ≡ 2(mod 3) then p = 3k−1 for some k ∈ Z+.We have S = {w1(1+3i), w2(1+3i)/0 ≤
i ≤ k − 1} ∪ {w2(3i)/0 < i ≤ k − 1} ∪ {w2(2+3i)/0 ≤ i ≤ k − 2} and |S| = 4k − 2.

So, |S| = 4(p+1)
3
− 2 for p ≡ 2(mod 3).

In all the above cases, S is a hub set for G and m(G− S) = 2.

Now we discuss the minimality of |S|+m(G−S). If we consider any hub set S1 of G such
that |S1| < |S|, then due to construction of G (i.e., to convert G− S1 into disconnected
graph), it generates large value of m(G− S1) such that

|S|+m(G− S) ≤ |S1|+m(G− S1). (10)

Let S2 be any hub set of G such that m(G− S) = 1, then, for p ≥ 10,

|S|+m(G− S) < |S2|+m(G− S2). (11)
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Thus, from above discussion and (10) and (11), |S|+m(G−S) is minimum. So, in both
the cases we have,

|S|+m(G− S) = min{|X|+m(G−X) : X is a hub set}

= HI(G).

Hence,

HI(K2 × Cp) =


4p
3
+ 2 if p ≥ 10 and p ≡ 0(mod 3),

4(p−1)
3

+ 3 if p ≥ 10 and p ≡ 1(mod 3),
4(p+1)

3
if p ≥ 10 and p ≡ 2(mod 3).

�

Theorem 2.12. HI(K2 ×K1,n) = 4.

Proof. Consider the graph K2 × K1,n. The number of vertices in K2 × K1,n is 2n + 2.
Let S be a hub set of K2 × K1,n. We choose S = {u, v} as shown in Figure 5. If we
remove the set S and all its adjacent vertices, we get n components of order 2, i.e
m(K2 ×K1,n − S) = 2. So, |S|+m(K2 ×K1,n − S) = 4. Therefore, HI(K2 ×K1,n) = 4.
If S1 is any hub set of K2×K1,n other than S with m(K2×K1,n−S1) = 1, then |S1| ≥ n+2.
This implies that |S1|+m(K2 ×K1,n − S1) ≥ n+ 3 > 4.

If m(K2×K1,n−S1) ≥ 3, then trivially |S1|+m(K2×K1,n−S1) > 4. Thus HI(K2×K1,n) =

4.
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The join of two graphs G1(V1, E1) and G2(V2, E2), denoted G1 +G2 consists of vertex
set V = V1 ∪ V2, and edge set E = E1 ∪ E2 and all edges joining V1 with V2 [9].

Theorem 2.13. HI(K2 + Pp) = d2
√
p+ 1e.

Proof. Let K2 be a complete graph with vertices u1, u2 and Pp, a path with v1, v2, ...., vp.
Let G be the graph K2+Pp. Then, V (G) = {u1, u2, v1, ..., vp}, |V (G)| = p+2, and |E(G)| =
3p.
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The graph K2+P5 is shown in Figure 6 for better understanding of the notation and
arrangement of vertices. Consider S1 = {u1, u2}, |S1| = 2. Then, S1 is a hub set of G
and G− S1 = Pp, so that m(G− S1) = p.

w w w w w
ww

�
�
�
�
��

u1
u2

v1 v2 v3 v4 v5

Figure 6

Let S2 = {vk/vk ∈ I − set of Pp}. Take V1 = {vk/vk ∈ I − set of Pp} so that |S2| = |V1|.
Consider S = S1 ∪ S2. Then, S is also a hub set of G as S1 ⊂ S. Thus,

|S| = |S1|+ |S2| = |S1|+ |V1| and G− S = Pp − V1, so m(G− S) = m(Pp − V1).

By Theorem 1.6, we have

|S|+m(G− S) = |S1|+ |V1|+m(Pp − V1)

= |S1|+ I(Pp).

= 2 + d2
√

p+ 1e − 2.

Hence,

|S|+m(G− S) = d2
√

p+ 1e. (12)

Now we discuss the minimality of |S|+m(G−S). If S3 is any hub set of G which is not
containing S1 or S2 as a proper subset and |S3| = k < 2 + p. Then, due to construction
of G, (ui is adjacent to vk for 1 ≤ i, k ≤ p),

|S3|+m(G− S3) = k + 2 + p− k = 2 + p > |S|+m(G− S). (13)

Let S5 be another hub set of G such that S5 = S4 ∪ S2, where S4 ⊂ S1 with |S4| < 2. In
G, ui is adjacent to vk for 1 ≤ i, k ≤ p. Therefore,

m(G− S5) = |S2|+ p− |S4|.

Hence,

|S5|+m(G− S5) = |S2|+ |S4|+ |S2|+ p− |S4|

= 2|S2|+ p.

> |S|+m(G− S). (14)
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Therefore, from the above discussion and (13) and (14), |S| + m(G − S) is minimum.
Hence, from equation (12) and the minimality of |S|+m(G− S) we have,

HI(K2 + Pp) = min{|X|+m(G−X) : X is a hub set}

= |S|+m(G− S).

= d2
√

p+ 1e.

�

Theorem 2.14. HI(K2 + Cp) = d2
√
pe+ 1.

Proof. The proof is similar to that of the Theorem 2.13. �

Theorem 2.15. HI(K2 +Kp) = p+ 2.

Proof. Since K2 +Kp = Kp+2, a complete graph of order p + 2, by Proposition 1.7 , we
get HI(K2 +Kp) = HI(K(p+2)) = p+ 2. �

Proposition 2.16. For any two graphs G and H, HI(G+H) = I(G+H).

Proof. Let S = V (H), and let T be an I-set of G. Then S∪T is a hub set of G+H. Then

HI(G+H) ≤ |S ∪ T |+m((G+H)− (S ∪ T ))

= |V (H)|+ |T |+m(G− T ) = |V (H)|+ I(G).

Also, we have HI(G+H) ≤ |V (G)|+ I(H).
By Theorem 1.5 we get , HI(G+H) ≤ min{I(G)+ |V (H)|, I(H)+ |V (G)|} = I(G+H) ≤
HI(G+H).
Hence, HI(G+H) = I(G+H).

�
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