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UNIQUE POSITIVE SOLUTION OF SEMILINEAR ELLIPTIC EQUATIONS
INVOLVING CONCAVE AND CONVEX NONLINEARITIES IN RY
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Asstract. In this article, we investigate the effect of the coefficient a(z) on the exis-
tence of positive solution of the subcritical semilinear elliptic problem. We prove for
sufficiently large A, 1 > 0, there exists at least one positive solution for the problem
—Av + pb(2)v = a(2)vP™t + Ah(2)v? !
2N
where v € HY(RY), 1 <g<2<p<2*= for N > 3.
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1. INTRODUCTION

2N
ForN >3, 1<g<2<p<2t= m, we consider the semilinear elliptic equation

—Av + pb(2)v = a(2)vP~t + Ah(2)v?™t  in RY;
v e HY(RY), (Ex,)

where A\, i > 0 and

(a1) a is a positive continuous function in RY and limy.| 00 a(2) = ase > 0,

(a2) there exists a point a; in RY such that a(a;) = amnee = iga%: a(z) , oo < Amaz,
(hy) h € Lv-a(RY) N L=(RY) and h 2 0.

Let | u = |

RN

(| Vu |* + | u |?)dz is the norm in H'(R") and u, = max{u,0} > 0.

Semilinear elliptic problems involving concave - convex nonlinearities in RY

—Au+u = a(z)uP~' + M(z)u?™!  in RY;
u e HY(RY),
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have been studied by Huei-li Lin [4] (b(z) = 1,py=1landfor N > 3,1 <¢<2<p< 2" =

2N 2N
—_ i = < 2* = .
(N_2))andAmbrosett1 [1](ea=1land 1 <g¢g<2<p<2 ) ). They proved

that this equation has at least two positive solutions for small enough A > 0. In [3], ex-

istence of at least four positive solutions for the general case —Av + v = a(2)v?~! + Ah(2)v??
in RY, for small enough \ > 0 has been investigated.

In this paper, we study the existence of at least positive solution for equation (E, ,) in

RY .

In the special case where A = ¢, ;i = 2 by the change of variable u(z) = gﬁv(ez),

equation (£} ,) is transformed to

—2(g+2—p)

-Au+b(ez)u =a(ez)uP +e 2 h(z)utt  inRY; (E:)
u e H'(RY).

Associated with equation (E.), we consider the C'-functional

—2(g+2-p)

1 1 1
Jo(u) == || u |} ——/ a(ez)ul,dz — —/ e » 2 h(ezx)uldz;
2 P JRrN q JRrN

where || u ||7= / (|Vu|? +b(ez)u?)dz is an equivalent norm in H'(R"). Precisely choos-
ing d = max{l,bﬂ(gz,z)}, we have || u [|[g<| u |[p< d | w ||#-

We know that the nonnegative weak solutions of equation (£.) are corresponding to
the critical points of J..

This article is organized as follows. In section 2 we use the argument of Tarantello
[5] to divide the Nehari manifold M. into the two parts M and M_ . In section 3, we
prove that the existence of a positive ground state solution v, € M of equation (E.).

Let

S=sup| u |

ue H'(RY)
| wllg=1
then
| wll»< S| ully for any u € H*(RY)\ {0} . (1.1)
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For the semilinear elliptic equations

-Au+u=a(ez)uP~!  in RY;
uc HYRY),

1
we define the energy functional I.(u) = = || u ||3; ——/ a(ez)ul dz, and
D Jry

where N. = {u € H'(RY) \ {0}|uy # 0 and (I’(u),u) = 0}.
If @ = Gz, we define I, (u) = 5 | w % > a(ez)ul dz, and
RN
Ymaz = 1&2?} ]maz (U),

where Q = {u € H'(RY)\ {0}{uy # 0and (I’ (u),u) = 0}.
Lemma 1.1

P — 2 _=2
maxr — maxSp ®-2) > (),
v o (a )
. 1 5 1 »
proof: if I,,,. = — || u || —— AmazUdz, then
2 D Jry
1 1 2p
maxr — ma;L’Q:___ Qﬂa
Y Ymaz($2) = (5 p)v( )
1
where 7(§2) = sup { / Umaztl? |u € HY(RY) and || u || g= 1} = Qmaz -
RN
Moreover
G- D@k >0. D
maxr — \5 — —)\QmazO )P~ .
8 2 p

2. TuE NEHARI MANIFOLD

We define the Palais - Smale (denoted by (PS))— sequences , (PS)— value, and
(PS)— conditions in H*(RY) for J as follows.
Definition
(i) For 5 € R, a sequence {u,} is a (PS)s-sequence in H'(R") for J if J(u,) = B + o(1)
and J'(u,) = o(1) strongly in H~!(R") as n — oo, where H~'(R") is the dual space of
HY(RY);
(ii) 8 € Ris a(PS)— value in H'(RY)for J if there is a (PS)- sequence in H'(RY) for J;
(iii) J satisfies the (PS)s- condition in H'(RY) if every (PS);- sequence in H'(R") for
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J contains a convergent subsequence.
Next, since J. is not bounded form below in H'(R"), we consider the Nehari manifold
M. = {ue HY(RV)\ Oluy # 0 and (J/(u),u) =0}, (2.1
where
—2(g+2-p)

(JL(u),u)y = |jul|3 — /N a(ez)ufldz —e™ vz /RN h(ez)uldz.

R
Note that A, contains all nonnegative solutions of equation (E, ,).

Lemma 2.1 The energy functional J. is coercive and bounded from below on M.
Proof. For u € M., by (3.1), the Holder inequality (p; = Ly = B) and the Sobolev
b—q q

embedding theorem (1.1), we get

1 1 1 1 —2(q+2-p)
Jo(u) = (= — = uz————/ap—?hszuqdz
(W) =5 =) lelly = =2) . (e2)ul
1 1 1 1. —2(+2-p)
> (5=l 15 L N U v
q _ 2 — —2(q+2—p)
> Il [P 2 (T EET |y 84| > 0.
p
_9 —q. —2(at2-p)
Since > 0 and (p q)e% | A |lx S? > 0, we have that J. is coercive and

bounded from below on M..

Define

Ve(u) = (Ji(u), u).
Then for u € M., we get

(Yi(u),u) = 2ullf —p / a(ez)ul.dz — Aq / h(ez)uldz

= @=p) luly+Ap—a) [ hlez)utds 22
=g lul +a-p) [ aletds (2.3

Now we divide the Nehari manifold into three disjoint subsets
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M = {ue M. | (v(u),u) > O}:

MO = {u € M. | (W(u),u) = O};

M: = {u € M.|(¥/(u),u) < O}.
Lemma 2.2 Under some assumptions (a;), (a2) and (hy),if 0 < A < Ay, then M? =0 .
Proof. Assuming the contrary, there is \j € R and 0 < \y < Aj such that MQO = 0.
Then for ue M,

| u ||H— - qu/ h(ez)uidz = —/ alez)u
By the Holder and the Soblev embedding theorem we get

L ot
TS {—< 7 s-p] |

(p_ q)amax
and
Il (=5 I Iy 577
Thus 5
— (. 2=a a=p _
N = (p=2) (=) [(p—q)$* | || b |5'= o,

which is a contradiction. [

Lemma 2.3 Suppose that u is a local minimizer for J. on M. and u € M?. Then
J'(u) = 0in H1(RY).
Proof. See Brown and Zhang [2,Theorem 2.3]. [

Lemma 2.4 For each v € M we have

1
— (2—a)
/ h(ez)uldz > 0 and || u || z< (uA I B Sq)
RN P — 2
Proof. For u € M we get

@=p) lulfy +o = [ hesplds >0

o= [ hetds> 2= p) | ulfy

/RN h(ez)uldz > A(?p;_p;) |5 0.

For everyu € M C M., by (2.2) and the Holder inequality (p; = L, P2 = ]—9), we have
pP—q q

0<(p-a) [ Ab(e) [l utdz = (p-2) | u

R
S@—@A Dy ST ullly —(p—2) [ ull
pP—q 1
< (——=A|h 2=, [
||UIIH_(p_2 72 [l S7)
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1

_2-a SP]M.

Lemma 2.5 For each v € M_ we have || u ||z>
(p - Q)amaz

Proof.For every u € M-, by (2.3), we have that

HH<—/ a(ez)u

S Sp | w ”p Amaz-

2 —

— W
luloz [ELs] ™7 o
(p_q)amax

A
Lemma 2.6 If 0 < A < % and v € M_ then J.(u) > 0.
Proof. For v € M- we have

1 1 1 1
J(u) = (= — = uz————/Ahezuqdz.
(u) (H2 Hg))LID I (q p) . (ez)ul

U p—q
> H— ——A | h||x S5?.
= (2 I [l . 1Al 59)

—p _q_

> - (—mF————)p—2

p< p— Q>amaxsp)

p—2 2—q 22¢  p—(q
X —2 ——A ||l h S7).
O g = Ay 57
So J.(u) = dy > 0 for some dy = do(e,p,q, S, || h |4, @maz). O

For v € HY(RM) \ {0} and u, # 0, let

1
p—2

>0.

i | =0 Ll
o= [ aleta:
Lemma 2.7 For every u € H'(RY) \ {0} and u, # 0, we have that
if / Ah(2)u%dz= 0, then there is a unique positive number [~ = [~(u) > [ such that
l*uRGN M- and J.(I"u) = sup;5q J:(lu).
Proof. For every u € H*(RY)\ {0} and u, # 0, define

k(D) = k() =177 | w [ —lp_q/ a(ez)ul dz for | >

R
Clearly, £(0) = 0 and k(l) - —oc0 as | — oo. Since

KO = g |2 ) 10 == 0) [ ates)(tupaz] for 10

then k(1) = 0,k’(l) >0for 0 <l < [,and k’(l) < 0 for [ > [ . Thus,

k(1) gets its maximum at /. Furthermore, by the Sobolev embedding theorem, we have
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(p—2)
- 2—q) || ul?
k() = | — 20 I I
w-a) [ alntas
. (p—a)
(p—2)
2 _ 2
-0 [ alontds 2
RN
prla—
> (p—2)(2 - q)E(p— )2 ST [y (2.4)
Since Ah(z)uldz = 0, there exists a unique positive number [~ = [~(u) > [ such
RN
that k(1) = / Ah(z)uldz = 0and k'(I") > 0. Then
RN
d 1 )
—J:(lu) =-(Ilullf — | alez)(lugp)Pdz — | Ah(ez)(luy)idz) =0
dl =i l ]RN ]RN I—1—
2 B 1 ) a
00| =5l == [ e

==

—(¢—1) /RN Ah(ez)(luy)¥dz) < 0.

1=
Furthermore J.(lu) - —oo as [ — oo, so it is not difficult to find that {~« € M_ and
Jo(I"u) = supyso Je(lu). O

Lemma 2.8if 0 < A < Ag and Ah(ez)uldz > 0, then there is unique positive num-
ber i =" (u) <l <1~ =1 (u) such that [Tu € M_, and
J-(Itu) = inf J.(lu), J.(I"u)=supJ.(lu).

0<i<I I~

Proof. Since 0 < A < Agand [ Ah(ez)uldz > 0, by (2.4), then
RN
E(0)=0<A [ h(ez)uldz <A| h|gS? || u ||%
RN

<(p-22-qrtp-qris” 4 < k().

It follows that there are unique positive number It = ["(u) and [~ = [~ (u) such that
A P / Ah(ez)uldz — k(i) and K(I-) < 0 < K(*). We also
have that [Tu € MF ) i7u € M-, J.(I"u) < J.(lu) < J.(I"u) for every | € [I7,17], and
J-(I"u) < J.(lu) for every | € [0,1] . Hence, J.(ITu) = 0132 Jo(lw), J.(I"u) = Szlilzo J.(lu).
U
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Applying lemma 2.2, we have

M. = M UM,

where

M — {u M=) lul —(p— 0 /R a(ez)ul.dz > o} ,

M- =3ueMN2—q) || ul? —(p— q)/ a(ez)ulldz <0
RN
Define
+ _

a. = inf J(u); aof = inf J.(u); o = inf J.(u).
uEM, ueM uEMs
Lemma 2.9 If 0 < A < Ay, then a. < af <0.

Proof. Suppose u € M, by (2.2) we get that
@—%HU%<@—®A/hQMMa

Then - ® -
L) = (=)l =G = ) [ heyutds
<|G--C-D2

By the definition «. and2ozz?;€, we conclude that o. < af <0. O

Lemma 2.10 If 0 < A < QTAO, then a_ > dy > 0 for some dy = do(e,p,q, S, || h||£).
Proof. See [3, Lemma 2.5]. O

Corollary 2.11

(a) There exists a (PS),.—sequence {u,} in M. for J;
(b) There exists a (PS),+ —sequence {u,} in M for J;

(c) There exists a (PS),-—sequence {u,} in M for J..

3. EXISTENCE OF A GROUND STATE SOLUTION

At first, we show that J. satisfies the (PS)z— condition in H'(RY) for 3 € (—00, Vimaz—
CoAﬁ), where
Co=2=a)[(p—a) I hlly $177 ./ [20a(p - )73 .
Lemma 3.1 Under some assumptions a;,as, by and 0 < A < Ag. If {u,} is a (PS)s—
sequence in H'(RY) for J. with v, — v in H*(RY), then J/(u) = 0 in H~!(RY).
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Proof. Suppose {u,} be a (PS);— sequence in H'(R") for J. such that J.(u,) = B+0,(1)
and J'(u,) = 0,(1) in H7}(RY). Then

dn n 1
| 8| +on(1) + du || wn 1 > Je(up) — Z—)<Jé(un>,un>

11 , 1 1/

=== uu I =(=== Ah(ez)(u,)ldz
(5 2p) | ([ ( p) . (e2) (un)3
p— 2 P4 q

>— || u, ———A || h||x S| u,
o | [ p Al S 1 un 15
p—

> — .

> 222 I

Then

| un [|= 2p(] B | +0n(1))/(2dn — (p = 2)),
where d,, = 0,(1) as n — oo. It follows that {u,} is bounded in H!(RY), so there exist a
subsequence {u,} and v € H'(RY) such that J/(u) =0in H~}(RY). O

Lemma 3.2 For 0 < A < A, if {u,} is a (PS)s—sequence in H'(R") for J. with u,, — u
weakly in H'(RY), we have J.(u) > —CoA7 7 > —Cj, where
Co = (0 =22~ )72/ (2p4(amar(p — 9)) 72 S7°2).

Proof. We have (J/(u),u) = 0, that is ,/ a(ez)ubdz =| u ||5 — / Ah(ez)uldz. Hence,
RN

2 2
by the Young inequality (p; = — and p, = ——)
q

2—q
w0 = (53 ) luliy = (5 -3) [ Aneopa:
> %Q Il A 57w
> P2,
_pp—q2 [qIIZH%{Hp Ay S9)75 2;(1}

—AaPi(2 - ) (0~ 0) | b e ST/ [2palp — 2)75]
b-2C2-9r= _ .
2pq [@maz(p — Q)]ﬁ Sz

Z_

Lemma 3.3 For 0 < A < A, the functional J. satisfies the (PS);s- condition in H'(RY)
for 8 € (—00, Ymaz — CoAZ4),

Proof. Suppose {u,} bea (PS);— sequence in H'(R") for J. such that J.(u,) = S+0,(1)
and J/(u,) = 0,(1) in H~'(RY). Then it follows that {u,} is bounded in H*(R") and so
there exist a subsequence {u,} and u € H*(R"Y) such that J/(u) = 0 in H }(RY), u,, — u
in H*(RY) u,, = v a.e. in RN u, — uvin L; (RY) for every 1 < s < 2*.
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Next, we claim that

h(ez)|u, — u|?dz — 0 as n — oo. 3.1
Using the Brezis-Lﬂfgb lemma to get
/ h(ez)(u, — u)tdz = / h(ez)(uy)ddz — / h(ez)uldz + o,(1).
RN RN RN
For every o > 0, there is » > 0 such that h(gz)p%qdz < 0. By the Holder in-

[BN (0;7)]°
equality and the Sobolev embedding theorem, we get

/ h(ez) | u, —u |? dz
RN

g/ h(ez) | up —u |7 dz
BN (0;7)

—i—/ h(ez) | u, —u |? dz
(BN (0;r)]¢

a

<Unle ([ Jw—upa:)

+ 5 (/ h(ez)p%dz) ’ | wn —w ||%
RN
< o0,(1) + oC". Using this fact, we get

/ a(ez)(un, — u)hdz = / Amaz (U — )5 dz + 0, (1). (3.2)

RN RN

Let p, = u, — u. Suppose p, - 0 strongly in H*(R"). By (3.1) and (3.2) we conclude
that

o 5= 7 — 1 (1 +on(1)
:/ a(ez)(uy, pdz—/ Ah(ez)(un)tdz
RN RN
/ a(ez)uPdz +/ Mh(ez)uldz + 0,(1)
RN RN
/ ale —u)idz+ 0,(1) = / Umaz (Pn)h dz + 0, (1).
RN RN
Then . .
L e R e
1 1
=5~ ]—?) I pa 7 +0a(1) > 0.

By Theorem 4.3 in Wang [6] , there exists a sequence {s,} C R such that
Sp =14 0,(1),{spn} C Q and 42 (Sn0n) = Lmaz(Pn) + 0n(1). It follows that
Ymaz > < Imaa:(snpn) - Imax(pn) + On(]-)
= Je(un) — Je(u) + 0n(1)
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=06 — Je(u) + 0,(1)
= Jo(uy) — Jo(u)
- Je(pn) — On(l) < Ymazs
which is a contradiction. Hence , u,, — u strongly in H*(RY). O
—2(q+2—p)

Theorem 3.4 LetAze2 »=2 . Then for
0<A<ho=0-2C—)2p- 5] 115,

p—2
max

where || h ||4 is the norm in Lvs (RY), The problem (E.) admits at least one positive
ground state solution u, of the problem (E.) in RY. Moreover, uo € M and
Je(ug) = a. = af > —C’OAQQTQ.

Proof. Consider minimizing sequence {u,} C M. for J. such that J.(u,) = a. + 0,(1)
and J!(u,) = 0,(1) in H~'(RY).
By Lemma 3.2 (i), there is a subsequence {u,} and vy, € H*(RY). We claim that
ug € MF(M? = 0 for 0 < A < Ag) and J.(ug) = a.. On the contrary, if uy € M we
get that

/ Ah(ez)(up)ddz > 0.
Otherwise, “

iy = [ aez)w)idz = [ An(e)(un)ids

:/ Ah(e2)(up)ddz + 0,(1)
RN
=o,(1).
1 1
It follows that lim (5 - 13) | u, ||3= a., which contradicts to a. < 0. By Lemma 2.11
n—oo

(b), then there are positive numbers I* < | < I~ = 1 such that ITuy € MF ,l7uy € M-
which is a contradiction. Hence, uy € M
—COA%Q < Jo(wp) = a. = o .

By Lemma 2.4 and the maximum principle, then u, is a positive solution of the
problem (E, ,). O
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