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UNIQUE POSITIVE SOLUTION OF SEMILINEAR ELLIPTIC EQUATIONS
INVOLVING CONCAVE AND CONVEX NONLINEARITIES IN RN

SOMAYEH KHADEMLOO∗ AND RAHELEH MOHSENI

Department of Basic Sciences, Babol Noushirvany University of Technology; Babol, Iran

Abstract. In this article, we investigate the effect of the coefficient a(z) on the exis-
tence of positive solution of the subcritical semilinear elliptic problem. We prove for
sufficiently large λ, µ > 0, there exists at least one positive solution for the problem

−∆v + µb(z)v = a(z)vp−1 + λh(z)vq−1

where v ∈ H1(RN), 1 ≤ q < 2 < p < 2∗ =
2N

(N − 2)
for N ≥ 3.
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1. Introduction

ForN ≥ 3, 1 6 q < 2 < p < 2∗ =
2N

(N − 2)
, we consider the semilinear elliptic equation

−∆v + µb(z)v = a(z)vp−1 + λh(z)vq−1 in RN ;

v ∈ H1(RN), (Eλ,µ)

where λ, µ > 0 and
(a1) a is a positive continuous function in RN and lim|z|→∞ a(z) = a∞ > 0,
(a2) there exists a point a1 in RN such that a(a1) = amax = max

z∈RN
a(z) , a∞ < amax,

(h1) h ∈ L
p

p−q (RN) ∩ L∞(RN) and h 	 0.
Let ‖ u ‖2

H=

∫
RN

(| ∇u |2 + | u |2)dz is the norm in H1(RN) and u+ = max{u, 0} > 0.

Semilinear elliptic problems involving concave - convex nonlinearities in RN

 −∆u+ u = a(z)up−1 + λh(z)uq−1 in RN;

u ∈ H1(RN),
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have been studied by Huei-li Lin [4] (b(z) = 1, µ = 1 and forN ≥ 3, 1 6 q < 2 < p < 2∗ =
2N

(N − 2)
) and Ambrosetti [1] ( a ≡ 1 and 1 < q < 2 < p ≤ 2∗ =

2N

(N − 2)
). They proved

that this equation has at least two positive solutions for small enough λ > 0. In [3], ex-
istence of at least four positive solutions for the general case −∆v + v = a(z)vp−1 + λh(z)vq−1

in RN , for small enough λ > 0 has been investigated.
In this paper, we study the existence of at least positive solution for equation (Eλ,µ) in
RN .

In the special case where λ = ε2, µ = 1
ε2

by the change of variable u(z) = ε
2

p−2v(εz),

equation (Eλ,µ) is transformed to

 - ∆u+ b(εz)u = a(εz)up−1 + ε
−2(q+2−p)

p−2 h(z)uq−1 in RN; (Eε)

u ∈ H1(RN).

Associated with equation (Eε), we consider the C1-functional

Jε(u) =
1

2
‖ u ‖2

b −
1

p

∫
RN
a(εz)up+dz −

1

q

∫
RN
ε

−2(q+2−p)
p−2 h(εz)uq+dz;

where ‖ u ‖2
b=

∫
RN

(|∇u|2 + b(εz)u2)dz is an equivalent norm inH1(RN). Precisely choos-
ing d = max{1, b(εz)}, we have ‖ u ‖H≤‖ u ‖b≤ d ‖ u ‖H .
We know that the nonnegative weak solutions of equation (Eε) are corresponding to
the critical points of Jε.
This article is organized as follows. In section 2 we use the argument of Tarantello
[5] to divide the Nehari manifold Mε into the two parts M+

ε and M−
ε . In section 3, we

prove that the existence of a positive ground state solution u0 ∈M+
ε of equation (Eε).

Let
S = sup ‖ u ‖Lp

u ∈ H1(RN)

‖ u ‖H= 1

then
‖ u ‖Lp≤ S ‖ u ‖H for any u ∈ H1(RN) \ {0} . (1.1)
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For the semilinear elliptic equations

 -∆u+ u = a(εz)up−1 in RN;
u ∈ H1(RN),

we define the energy functional Iε(u) =
1

2
‖ u ‖2

H −
1

p

∫
RN
a(εz)up+dz, and

γε = inf
u∈Nε

Iε(u);

where Nε = {u ∈ H1(RN) \ {0}|u+ 6≡ 0 and 〈I ′ε(u), u〉 = 0}.
If a = amax, we define Imax(u) =

1

2
‖ u ‖2

H −
1

p

∫
RN
a(εz)up+dz, and

γmax = inf
u∈Ω

Imax(u);

where Ω = {u ∈ H1(RN) \ {0}|u+ 6≡ 0 and 〈I ′max(u), u〉 = 0}.
Lemma 1.1

γmax =
p− 2

2p
(amaxS

p)
−2

(p−2) > 0.

proof: if Imax =
1

2
‖ u ‖2

H −
1

p

∫
RN
amaxu

p
+dz, then

γmax = γmax(Ω) = (
1

2
− 1

p
)γ(Ω)

2p
2−p ,

where γ(Ω) = sup

{∫
RN
amaxu

p

∣∣∣∣∣u ∈ H1(RN) and ‖ u ‖H= 1

}
= a

1
p
max .

Moreover
γmax = (

1

2
− 1

p
)(a

1
p
maxS)

2p
p−2 > 0. �

2. The Nehari manifold

We define the Palais - Smale (denoted by (PS))− sequences , (PS)− value, and
(PS)− conditions in H1(RN) for J as follows.
Definition
(i) For β ∈ R, a sequence {un} is a (PS)β-sequence in H1(RN) for J if J(un) = β + o(1)

and J ′(un) = o(1) strongly in H−1(RN) as n −→∞, where H−1(RN) is the dual space of
H1(RN);
(ii) β ∈ R is a(PS)− value in H1(RN)for J if there is a (PS)β- sequence in H1(RN) for J ;
(iii) J satisfies the (PS)β- condition in H1(RN) if every (PS)β- sequence in H1(RN) for
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J contains a convergent subsequence.

Next, since Jε is not bounded form below inH1(RN), we consider the Nehari manifold

Mε = {u ∈ H1(RN) \ 0|u+ 6≡ 0 and 〈J ′ε(u), u〉 = 0}, (2.1)
where

〈J ′ε(u), u〉 = ‖u‖2
H −

∫
RN
a(εz)up+dz − ε

−2(q+2−p)
p−2

∫
RN
h(εz)uq+dz.

Note that Mε contains all nonnegative solutions of equation (Eλ,µ).

Lemma 2.1 The energy functional Jε is coercive and bounded from below on Mε.
Proof. For u ∈Mε, by (3.1), the Holder inequality (p1 =

p

p− q
, p2 =

p

q
) and the Sobolev

embedding theorem (1.1), we get

Jε(u) = (
1

2
− 1

p
) ‖ u ‖2

H −(
1

q
− 1

p
)

∫
RN
ε

−2(q+2−p)
p−2 h(εz)uq+dz

≥ (
1

2
− 1

p
) ‖ u ‖2

H −(
1

q
− 1

p
)ε

−2(q+2−p)
p−2 ‖ h ‖# Sq ‖ u ‖qH

≥ ‖ u ‖
q
H

p

[
p− 2

2
‖ u ‖2−q

H −(
p− q
q

)ε
−2(q+2−p)

p−2 ‖ h ‖# Sq
]
≥ 0.

Since p− 2

2
> 0 and (

p− q
q

)ε
−2(q+2−p)

p−2 ‖ h ‖# Sq > 0, we have that Jε is coercive and
bounded from below on Mε.

Define

ψε(u) = 〈J ′ε(u), u〉.
Then for u ∈Mε, we get

〈ψ′ε(u), u〉 = 2‖u‖2
H − p

∫
RN
a(εz)up+dz − Λq

∫
RN
h(εz)uq+dz

= (2− p) ‖ u ‖2
H +Λ(p− q)

∫
RN
h(εz)uq+dz (2.2)

= (2− q) ‖ u ‖2
H +(q − p)

∫
RN
a(εz)up+dz. (2.3)

Now we divide the Nehari manifold into three disjoint subsets
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M+
ε = {u ∈Mε | 〈ψ′ε(u), u〉 > 0};

M0
ε = {u ∈Mε | 〈ψ′ε(u), u〉 = 0};

M−
ε = {u ∈Mε|〈ψ′ε(u), u〉 < 0}.

Lemma 2.2 Under some assumptions (a1), (a2) and (h1), if 0 < Λ < Λ0, then M0
ε = ∅ .

Proof. Assuming the contrary, there is λ0 ∈ R and 0 < λ0 < Λ0 such that M0
λ0

= ∅.
Then for u ∈M0

λ0
,

‖ u ‖2
H=

p− q
p− 2

λ0

∫
RN
h(εz)uq+dz =

p− q
2− q

∫
RN
a(εz)up+dz.

By the Holder and the Soblev embedding theorem, we get

‖ u ‖H≥
[

(2− q)
(p− q)amax

S−p
] 1

(p−2)

,

and
‖ u ‖H≤ (

p− q
p− 2

λ0 ‖ h ‖# Sq)
1

2−q .

Thus
λ0 ≥ (p− 2)(

2− q
amax

)
2−q
p−2

[
(p− q)S2

]
q−p
p−2 ‖ h ‖−1

# = Λ0,

which is a contradiction. �

Lemma 2.3 Suppose that u is a local minimizer for Jε on Mε and u ∈ M0
ε . Then

J ′ε(u) = 0 in H−1(RN).

Proof. See Brown and Zhang [2,Theorem 2.3]. �

Lemma 2.4 For each u ∈M+
ε we have∫

RN
h(εz)uq+dz > 0 and ‖ u ‖H<

(
p− q
p− 2

Λ ‖ h ‖ 6= Sq
) 1

(2−q)

.

Proof. For u ∈M+
ε we get

(2− p) ‖ u ‖2
H +(p− q)Λ

∫
RN
h(εz)uq+dz > 0

(p− q)Λ
∫
RN
h(εz)uq+dz > (2− p) ‖ u ‖2

H∫
RN
h(εz)uq+dz >

(2− p)
Λ(p− q)

‖ u ‖2
H> 0.

For every u ∈M+
ε ⊂Mε, by (2.2) and the Holder inequality (p1 =

p

p− q
, p2 =

p

q
), we have

0 < (p− q)
∫
RN

Λh(εz) ‖ uq+dz − (p− 2) ‖ u ‖2
H

≤ (p− q)Λ ‖ h ‖# Sq ‖ u ‖qH −(p− 2) ‖ u ‖2
H

‖u‖H ≤ (
p− q
p− 2

Λ ‖ h ‖# Sq)
1

2−q . �
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Lemma 2.5 For each u ∈M−
ε we have ‖ u ‖H>

[
2− q

(p− q)amax
Sp
] 1

p−2

.
Proof.For every u ∈M−

ε , by (2.3), we have that

‖ u ‖2
H<

p− q
2− q

∫
RN
a(εz)up+dz

≤ p− q
2− q

Sp ‖ u ‖pH amax.

‖ u ‖H≥
[

(2− q)
(p− q)amax

S−p
] 1

(p−2)

. �

Lemma 2.6 If 0 < Λ <
qΛ0

2
and u ∈M−

ε then Jε(u) > 0.

Proof. For u ∈M−
ε we have

Jε(u) = (
1

2
− 1

p
) ‖ u ‖2

H −(
1

q
− 1

p
)

∫
RN

Λh(εz)uq+dz.

≥ ‖ u ‖
q
H

p
(
P − 2

2
‖ u ‖2−q

H −p− q
q

Λ ‖ h ‖# Sq).

>
1

p
(

2− p
(p− q)amaxSp

)
q

p−2

×(
p− 2

2
(

2− q
(p− q)amaxSp

)
2−q
p−2 − p− q

q
Λ ‖ h ‖# Sq).

So Jε(u) > d0 > 0 for some d0 = d0(ε, p, q, S, ‖ h ‖#, amax). �

For u ∈ H1(RN) \ {0} and u+ 6≡ 0, let

l = l(u) =

 (2− q) ‖ u ‖2
H

(p− q)
∫
RN
a(εz)up+dz


1

p−2

> 0 .

Lemma 2.7 For every u ∈ H1(RN) \ {0} and u+ 6≡ 0, we have that
if
∫
RN

Λh(z)uq+dz= 0, then there is a unique positive number l− = l−(u) > l such that
l−u ∈M−

ε and Jε(l−u) = supl>0 Jε(lu).

Proof. For every u ∈ H1(RN) \ {0} and u+ 6≡ 0, define

k(l) = ku(l) = l2−q ‖ u ‖2
H −lp−q

∫
RN
a(εz)up+dz for l > 0.

Clearly, k(0) = 0 and k(l)→ −∞ as l→∞. Since

k′(l) =
1

lq+1

[
(2− q) ‖ lu ‖2

H −(p− q)
∫
RN
a(εz)(lu+)pdz

]
for l > 0

then k′(l) = 0, k′(l) > 0 for 0 < l < l, and k′(l) < 0 for l > l . Thus ,
k(l) gets its maximum at l. Furthermore, by the Sobolev embedding theorem, we have
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that

k(l) =

 (2− q) ‖ u ‖2
H

(p− q)
∫
RN
a(εz)up+dz


(2−q)
(p−2)

‖ u ‖2
H

−

 (2− q) ‖ u2
H

(p− q)
∫
RN
a(εz)up+dz


(p−q)
(p−2) ∫

RN
a(εz)up+dz

≥ (p− 2)(2− q)
2−q
p−2 (p− q)

q−p
p−2S

p(q−2)
p−2 ‖ u ‖qH . (2.4)

Since
∫
RN

Λh(z)uq+dz = 0, there exists a unique positive number l− = l−(u) > l such

that k(l−) =

∫
RN

Λh(z)uq+dz = 0 and k′(l−) > 0. Then

d

dl
Jε(lu)

∣∣∣∣∣
l=l−

=
1

l
(‖ lu ‖2

H −
∫
RN
a(εz)(lu+)pdz −

∫
RN

Λh(εz)(lu+)qdz)

∣∣∣∣∣
l=l−

= 0

d2

dl2
Jε(lu)

∣∣∣∣∣
l=l−

=
1

l2
(‖ lu ‖2

H −(p− 1)

∫
RN
a(εz)(lu+)pdz

−(q − 1)

∫
RN

Λh(εz)(lu+)qdz)

∣∣∣∣∣
l=l−

< 0.

Furthermore Jε(lu) → −∞ as l → ∞, so it is not difficult to find that l−u ∈ M−
ε and

Jε(l
−u) = supl≥0 Jε(lu). �

Lemma 2.8 if 0 < Λ < Λ0 and
∫
RN

Λh(εz)uq+dz > 0, then there is unique positive num-

ber l+ = l+(u) < l < l− = l−(u) such that l+u ∈M−
ε , and

Jε(l
+u) = inf

0≤l≤l
Jε(lu), Jε(l

−u) = sup
l≥l

Jε(lu).

Proof. Since 0 < Λ < Λ0 and
∫
RN

Λh(εz)uq+dz > 0, by (2.4), then

k(0) = 0 < Λ

∫
RN
h(εz)uq+dz ≤ Λ ‖ h ‖# Sq ‖ u ‖qH

< (p− 2)(2− q)
2−q
p−2 (p− q)

q−p
p−2S

p(q−2)
p−2 ‖ u ‖qH≤ k(l).

It follows that there are unique positive number l+ = l+(u) and l− = l−(u) such that
l+ < l < l− , k(l+) =

∫
RN

Λh(εz)uq+dz = k(l−) and k′(l−) < 0 < k′(l+). We also
have that l+u ∈ M+

ε , l
−u ∈ M−

ε , Jε(l
+u) ≤ Jε(lu) ≤ Jε(l

−u) for every l ∈ [l+, l−] , and
Jε(l

+u) ≤ Jε(lu) for every l ∈
[
0, l
]
. Hence, Jε(l+u) = inf

0≤l≤l
Jε(lu), Jε(l

−u) = sup
l≥l

Jε(lu).

�
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Applying lemma 2.2, we have

Mε = M+
ε ∪M−

ε ,

where

M+
ε =

{
u ∈Mε

∣∣∣∣∣(2− q) ‖ u ‖2
H −(p− q)

∫
RN
a(εz)up+dz > 0

}
,

M−
ε =

{
u ∈Mε

∣∣∣∣∣(2− q) ‖ u ‖2
H −(p− q)

∫
RN
a(εz)up+dz < 0

}
.

Define
αε = inf

u∈Mε

Jε(u); α+
ε = inf

u∈M+
ε

Jε(u); α−ε = inf
u∈M−

ε

Jε(u).

Lemma 2.9 If 0 < Λ < Λ0, then αε ≤ α+
ε < 0.

Proof. Suppose u ∈M+
ε , by (2.2) we get that

(p− 2) ‖ u ‖2
H< (p− q)Λ

∫
RN
h(z)uq+dz.

Then
Jε(u) = (

1

2
− 1

p
) ‖ u ‖2

H −(
1

q
− 1

p
)Λ

∫
h(εz)uq+dz

<

[
(
1

2
− 1

p
)− (

1

q
− 1

p
)
p− 2

p− q

]
‖ u ‖2

H

= −(2− q)(p− 2)

2pq
‖ u ‖2

H< 0.

By the definition αε and α+
ε , we conclude that αε ≤ α+

ε < 0. �

Lemma 2.10 If 0 < Λ <
qΛ0

2
, then α−ε ≥ d0 > 0 for some d0 = d0(ε, p, q, S, ‖ h ‖#).

Proof. See [3, Lemma 2.5]. �

Corollary 2.11
(a) There exists a (PS)αε−sequence {un} in Mε for Jε;

(b) There exists a (PS)α+
ε
−sequence {un} in M+

ε for Jε;

(c) There exists a (PS)α−
ε
−sequence {un} in M−

ε for Jε.

3. Existence of a ground state solution

At first, we show that Jε satisfies the (PS)β− condition inH1(RN) for β ∈ (−∞, γmax−
C0Λ

2
2−q ), where

C0 = (2− q) [(p− q) ‖ h ‖# Sq]
2

2−q �
[
2pq(p− 2)

q
2−q

]
.

Lemma 3.1 Under some assumptions a1, a2, h1 and 0 < Λ < Λ0. If {un} is a (PS)β−
sequence in H1(RN) for Jε with un ⇀ u in H1(RN), then J ′ε(u) = 0 in H−1(RN).

168



Proof. Suppose {un} be a (PS)β− sequence inH1(RN) for Jε such that Jε(un) = β+on(1)

and J ′ε(un) = on(1) in H−1(RN). Then
| β | +on(1) +

dn ‖ un ‖H
p

≥ Jε(un)− 1

p
〈J ′ε(un), un〉

= (
1

2
− 1

p
) ‖ un ‖2

H −(
1

q
− 1

p
)

∫
RN

Λh(εz)(un)q+dz

≥ p− 2

2p
‖ un ‖2

H −
p− q
pq

Λ ‖ h ‖# Sq ‖ un ‖qH

≥ p− 2

2p
‖ un ‖2

H .
Then

‖ un ‖≥ 2p(| β | +on(1))/(2dn − (p− 2)),

where dn = on(1) as n→∞. It follows that {un} is bounded in H1(RN), so there exist a
subsequence {un} and u ∈ H1(RN) such that J ′ε(u) = 0 in H−1(RN). �

Lemma 3.2 For 0 < Λ < Λ0, if {un} is a (PS)β−sequence in H1(RN) for Jε with un ⇀ u

weakly in H1(RN), we have Jε(u) > −C0Λ
2

2−q > −C ′0, where
C ′0 = (p− 2)(2− q)

p
p−2/(2pq(amax(p− q))

2
p−2S

2p
p−2 ).

Proof. We have 〈J ′ε(u), u〉 = 0, that is ,
∫
RN
a(εz)up+dz =‖ u ‖2

H −
∫
RN

Λh(εz)uq+dz. Hence,

by the Young inequality (p1 =
2

q
and p2 =

2

2− q
)

Jε(u) =

(
1

2
− 1

p

)
‖ u ‖2

H −
(

1

q
− 1

p

)∫
RN

Λh(εz)uqdz

≥ p− 2

2p
‖ u ‖2

H −
p− q
pq

Λ ‖ h ‖# Sq ‖ u ‖qH

≥ p− 2

2p
‖ u ‖2

H

−p− 2

pq

[
q ‖ u ‖2

H

2
+ (

p− q
p− 2

Λ ‖ h ‖# Sq)
2

2−q
2− q

2

]
=−Λa

2
2−q (2− q) [(p− q) ‖ h ‖# Sq]

2
2−q �

[
2pq(p− 2)

q
2−q

]
≥ − (p− 2)(2− q)

p
p−2

2pq [amax(p− q)]
2

p−2 S
2p
p−2

= −C ′0. �

Lemma 3.3 For 0 < Λ < Λ0 the functional Jε satisfies the (PS)β- condition in H1(RN)

for β ∈ (−∞, γmax − C0Λ
2

2−q ).

Proof. Suppose {un} be a (PS)β− sequence inH1(RN) for Jε such that Jε(un) = β+on(1)

and J ′ε(un) = on(1) in H−1(RN). Then it follows that {un} is bounded in H1(RN) and so
there exist a subsequence {un} and u ∈ H1(RN) such that J ′ε(u) = 0 in H−1(RN), un ⇀ u

in H1(RN), un → u a.e. in RN , un → u in Lsloc(RN) for every 1 ≤ s < 2∗.
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Next, we claim that∫
RN
h(εz)|un − u|qdz → 0 as n→∞. (3.1)

Using the Brezis-Lieb lemma to get∫
RN
h(εz)(un − u)q+dz =

∫
RN
h(εz)(un)q+dz −

∫
RN
h(εz)uqdz + on(1).

For every σ > 0, there is r > 0 such that
∫

[BN (0;r)]c
h(εz)

p
p−q dz < σ. By the Holder in-

equality and the Sobolev embedding theorem, we get

∣∣∣∣∣
∫
RN
h(εz) | un − u |q dz

∣∣∣∣∣ ≤
∫
BN (0;r)

h(εz) | un − u |q dz

+

∫
[BN (0;r)]c

h(εz) | un − u |q dz

≤‖ h ‖#

(∫
RN
| un − u |p dz

) q
p

+ Sq
(∫

RN
h(εz)

p
p−q dz

) p−q
p

‖ un − u ‖qH
≤ on(1) + σC ′. Using this fact, we get

∫
RN
a(εz)(un − u)p+dz =

∫
RN
amax(un − u)p+dz + on(1). (3.2)

Let pn = un − u. Suppose pn 9 0 strongly in H1(RN). By (3.1) and (3.2) we conclude
that
‖ pn ‖2

H=‖ un ‖2
H − ‖ u ‖2

H +on(1)

=

∫
RN
a(εz)(un)p+dz −

∫
RN
λh(εz)(un)q+dz

−
∫
RN
a(εz)updz +

∫
RN
λh(εz)uqdz + on(1)

=

∫
RN
a(εz)(un − u)p+dz + on(1) =

∫
RN
amax(pn)p+dz + on(1).

Then
Imax(pn) =

1

2
‖ pn ‖2

H −
1

p

∫
RN
amax(pn)p+dz

= (
1

2
− 1

p
) ‖ pn ‖2

H +on(1) > 0.
By Theorem 4.3 in Wang [6] , there exists a sequence {sn} ⊂ R+ such that
sn = 1 + on(1), {snpn} ⊂ Ω and Imax(snpn) = Imax(pn) + on(1). It follows that

γmax ≤ Imax(snpn) = Imax(pn) + on(1)

= Jε(un)− Jε(u) + on(1)
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= β − Jε(u) + on(1)

= Jε(un)− Jε(u)

= Jε(pn)→ on(1) < γmax,

which is a contradiction. Hence , un → u strongly in H1(RN). �

Theorem 3.4 Let Λ = ε
−2(q+2−p)

p−2 . Then for
0 < Λ < Λ0 = (p− 2)(

2− q
amax

)
2−q
p−2 [(p− q)S2 ] q−p

p−2
‖ h ‖−1

# ,

where ‖ h ‖# is the norm in L
P

p−q (RN), The problem (Eε) admits at least one positive
ground state solution u0 of the problem (Eε) in RN . Moreover, u0 ∈M+

ε and
Jε(u0) = αε = α+

ε ≥ −C0Λ
2

2−q .

Proof. Consider minimizing sequence {un} ⊂ Mε for Jε such that Jε(un) = αε + on(1)

and J ′ε(un) = on(1) in H−1(RN).

By Lemma 3.2 (i), there is a subsequence {un} and u0 ∈ H1(RN). We claim that
u0 ∈ M+

ε (M0
ε = ∅ for 0 < Λ < Λ0) and Jε(u0) = αε. On the contrary, if u0 ∈ M−

ε we
get that ∫

RN
Λh(εz)(u0)q+dz > 0.

Otherwise,
‖ un ‖2

H −
∫
RN
a(εz)(un)p+dz =

∫
RN

Λh(εz)(un)q+dz

=

∫
RN

Λh(εz)(u0)q+dz + on(1)

= on(1).

It follows that lim
n→∞

(
1

2
− 1

p
) ‖ un ‖2

H= αε, which contradicts to αε < 0. By Lemma 2.11

(b), then there are positive numbers l+ < l < l− = 1 such that l+u0 ∈ M+
ε ,l−u0 ∈ M−

ε

which is a contradiction. Hence, u0 ∈M+
ε

−C0Λ
2

2−q ≤ Jε(u0) = αε = α+
ε .

By Lemma 2.4 and the maximum principle, then u0 is a positive solution of the
problem (Eλ,µ). �
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