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Abstract. The edge hub-integrity of a graph is given by the minimum of |S|+m(G−
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of an edge by vertex and duplication of a vertex by an edge of some graphs.
2010 Mathematics Subject Classification. 05C40, 05C99, 05C76.
Key words and phrases. edge integrity; edge hub-integrity; splitting graph; dupli-
cation graph.

1. Introduction

In 1987, Barefoot, Entringer and Swart [2], defined the edge-integrity of a graph
Gwith edge setE(G) by I ′(G) = min{|S|+m(G−S) : S ⊆ E(G)}. Any set S ⊆ E(G) of
edges which realizes this value is called an I ′−set. Sultan et al. [6], have introduced
the concept of hub-integrity of a graph as a new measure of vulnerability. The hub-
integrity of a graphG denoted byHI(G) is defined by, HI(G) = min{|S|+m(G−S)},
where S is a hub set and m(G− S) is the order of a maximum component of G− S.
Further Sultan Mahde and Veena Mathad [7] have studied hub-integrity of some
operations of graphs. In [8] they discussed hub-integrity of a graph obtained by
duplication of an edge by vertex and duplication of a vertex by an edge and splitting
graph of some graphs. Sultan Mahde and Veena Mathad [9] defined the edge hub-
integrity of a graph G. Let e = (u, v) and f = (u′, v′), a path between the two edges e
and f is a path between one end vertex from e and another end vertex from f such
that d(e, f) = min{d(u, u′), (u, v′), (v, u′), (v, v′)}. Internal edges of a path between two
edges e and f are all the edges of the path except e and f . Suppose that S ⊆ E(G).
An S-path between edges e and f is a path in which all its edges except e and f are in
S. (This includes if the path contains two adjacent edges or single edge, such cases
the S-path is trivial.)A subset S ⊆ E(G) is called an edge hub set of G if every pair
of edges e, f ∈ E − S are connected by a path where all internal edges are from S.
The minimum cardinality of an edge hub set is called edge hub number of G, and is
denoted by he(G). If G is a disconnected graph then any edge hub set must contain
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all of the edges in all but one of the components, as well as an edge hub set in the
remaining component. The edge hub-integrity of a graph G denoted by EHI(G) is
defined as EHI(G) = min{|S|+m(G−S), S is an edge hub set of G}, where m(G−S)

is the order of a maximum component of G − S. Any set S ⊆ E(G) with property
that |S|+m(G− S) = EHI(G) is called an EHI− set of G.
In the present work edge hub-integrity of splitting graphs and a graph obtained
by duplication of an edge by vertex and duplication of a vertex by an edge in some
graphs is investigated. In this paper, a graph is considered as finite, undirected,
with single lines and no loops with p vertices and q edges. The vertex set and edge
set of a graph G are denoted by V (G) and E(G) respectively. The cardinalities of
V (G) and E(G) are called respectively the order and size ofG. Let us denote byG−e
the graph obtained from G by removing the edge e ∈ E(G). The symbols ∆(G), δ(G),
α(G), β(G) and χ(G) denote the maximum degree, the minimum degree, the vertex
cover number, the independence number and chromatic number of G, respectively.
Also we denote the minimum number of edges in edge cover of G ( i.e., edge cover
number ) by α1(G) and the maximum number of edges in independent set of edges
of G (i.e., edge independence number) by β1(G). For the terminology and notation
not defined in this paper, the reader is referred to [3, 4]

Definition 1.1. [5] For a graph G the splitting graph S ′(G) of a graph G is obtained
by adding a new vertex v′ corresponding to each vertex v of G such thatN(v) = N(v′),

where N(v) and N(v′) are the neighborhood sets of v and v′, respectively.

Definition 1.2. [10] Duplication of a vertex vi by a new edge e = (v′i, v
′′
i ) in graph G

produces a new graph G′ such that N(v′i) = {v′′i , vi} and N(v′′i ) = {v′i, vi}.

Definition 1.3. [10] Duplication of an edge e = (u, v) by a new vertex w in graph G

produces a new graph G′ such that N(w) = {u, v}.

The following are some fundamental results which will be required for many of
our arguments in this paper.

Proposition 1.1. [5] For any graph G with p points,
(1) α(S ′(G)) = p = β(S ′(G)),
(2) α1(S

′(G)) = 2α1(G) and β1(S
′(G)) = 2β1(G).

Proposition 1.2. [5] χ(S ′(G)) = χ(G).

Theorem 1.1. [1] The edge-integrity of
(1) the path Pp is d2√pe − 1,
(2) the cycle Cp is d2√pe.

Lemma 1.1. [9] For any graph G, EHI(G) ≥ ∆(G) + 1.
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Proposition 1.3. [9] For any graph G, EHI(G) ≥ γ(G).

Corollary 1.1. [9] For any graph G, EHI(G) ≥ χ(G).

Corollary 1.2. [9] For any graph G, EHI(G) ≥ α1(G).

Lemma 1.2. [9] For any graph G, EHI(G) ≥ β1(G).

2. The edge hub-integrity of splitting graph

Lemma 2.1. For any proper subgraph H of G, EHI(S ′(H)) < EHI(S ′(G)).

Proposition 2.1. For any graph G, p + 1 ≤ EHI(S ′(G)) ≤ 3p− 1. The lower bound
is sharp for G = P2, and the upper bound is sharp for G = Kp.

Theorem 2.1. For any graph G, EHI(S ′(G− e)) ≥ EHI(S ′(G))− 1.

Proof. Let S ′ be anEHI-set of S ′(G)−e, soEHI(S ′(G)−e) = |S ′|+m((S ′(G)−e)−S ′).
Consider S ′′ = S ′ ∪ {e}, then |S ′′| = |S ′| + 1. Hence, S ′′ is an EHI-set of S ′(G) and
m(S ′(G)− S ′′) = m((S ′(G)− e)− S ′). Thus,

(1)

EHI(S ′(G)) ≤ |S ′′|+m(S ′(G)− S ′′)

= |S ′|+ 1 +m(S ′(G)− e)− S ′)

= EHI(S ′(G)− e) + 1.

�

Theorem 2.2. EHI(S ′(G)) = EHI(L(S ′(G)) if and only if G ∼= P2.

By Corollary 1.1 and Proposition 1.2, the proof of the following result is straight
forward.

Proposition 2.2. For any graph G, EHI(G) ≥ χ(S ′(G)).

Lemma 2.2. (1) For any graph G, EHI(G) ≥ α1(S(G))
2

.

(2) For any graph G, EHI(G) ≥ β1(S(G))
2

+ 1.

Proof. (1)Proof follows from Corollary 1.2 and Proposition 1.1.
(2) Proof follows from Lemma 1.2 and Proposition 1.1. �

Observation 2.1. For any graph G, EHI(S ′(G)) ≥ EHI(G)+1. The bound is sharp
for G = P2.

Lemma 2.3. For any graph G,EHI(S ′(G)) ≥ δ(S ′(G)) + 2.

Proof. Let S be an EHI-set of S ′(G) satisfies EHI(S ′(G)) = |S| + m(S ′(G) − S),

since m(S ′(G) − S) ≥ δ(S ′(G) − S) + 1 ≥ δ(S ′(G) − S) − |S| + 2, we conclude that
EHI(S ′(G)) = |S|+m(S ′(G)− S) ≥ δ(S ′(G)) + 2. �
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Corollary 2.1. EHI(S ′(G)) ≥ ∆(G) + 2.

Proof. Lemma 1.1 and Observation 2.1, lead to the result. �

Corollary 2.2. For any graph G, EHI(S ′(G)) ≥ γ(G) + 1.

Proof. Proof follows from Proposition 1.3 and Observation 2.1. �

Theorem 2.3. For p ≥ 2,

EHI(S ′(Pp)) =

{
2p− 1, if p = 2, 3, 4, 5 ;
p+ dp

i
e+ 2i− 3, i(2i− 1) ≤ p ≤ i((2i− 1)) + 4, i ∈ Z+/{1}.

Proof. Let {u1, u2, ..., up} be the vertices set of path Pp and {v1, v2, v3, ..., vp} be the
new vertices corresponding to {u1, u2, ..., up} which are added to obtain S ′(Pp). We
have the following cases:
Case 1: For p = 2, consider S = {(u1, u2)}, an edge hub set of S ′(P2), thenm(S ′(P2)−
S) = 2. This implies that EHI(S ′(P2)) ≤ |S|+m(S ′(P2)−S) = 3. If S1 is any edge hub
set other than S with m(S ′(P2)− S1) = 1, then |S1| = 3, so EHI(S ′(P2)) = 3. Clearly
there does not exist any edge hub set S1 of S ′(P2) such that |S1| + m(S ′(P2) − S1) >

|S|+m(S ′(P2)− S). Hence, EHI(S ′(P2) = 3.

Case 2: For p = 3, consider S = {(u1, u2), (u2, u3)}, an edge hub set of S ′(P3), then
S ′(P3)− S = 2P3, m(S ′(P3)− S) = 3, and |S| = 2. Thus

(2) EHI(S ′(P3)) ≤ |S|+m(S ′(P3)− S) = 5.

If m(S ′(P3)− S) = 2, then |S| ≥ 4, Therefore,

(3) EHI(S ′(P3)) ≥ |S|+m(S ′(P3)− S) = 6.

Consider m(S ′(P3)− S) = 1, then |S| = 6. Therefore, EHI(S ′(P3) = |S|+m(S ′(P3)−
S) = 7. Consider m(S ′(P3) − S) ≥ 3, then trivially, EHI(S ′(P3)) ≥ 2p − 1. So
EHI(S ′(P3)) = 5.

Case 3: For p = 4, consider S = {(u1, u2), (u2, u3), (u3, u4)}, an edge hub set of S ′(P4),
|S| = 3, then m(S ′(P4)− S) = 4, thus

(4) EHI(S ′(P4)) ≤ |S|+m(S ′(P4)− S) = 7 = 2p− 1.

Clearly there does not exist any edge hub set S1 of S ′(P4) such that |S1|+m(S ′(P4)−
S1) < |S|+m(S ′(P4)− S). Hence, EHI(S ′(P4) = 7.

Case 4: For p = 5, consider S = {(u1, u2), (u2, u3), (u3, u4), (u4, u5)}, an edge hub set
of S ′(P5), |S| = 4, then m(S ′(P5)− S) = 5, this implies that

(5) EHI(S ′(P5)) ≤ |S|+m(S ′(P5)− S) = 9.

Clearly there does not exist any edge hub set S1 of S ′(P5) such that |S1|+m(S ′(P5)−
S1) < |S|+m(S ′(P5)− S). Hence, EHI(S ′(P5) = 9.
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Case 5: For p ≥ 6, in case p = 6. Consider S1 = {(u1, u2), (u2, u3), (u3, u4), (u4, u5), (u5, u6)},
an edge hub set of S ′(P6), |S1| = 5, then S ′(P6) − S1 = 2P6 and m(S ′(P6) − S1) = 6.

We choose one edge from each component P6, so |S| = 2, and m(P6 − S) = 3, then
I ′(2C6) = 5. So EHI(S ′(P6)) = |S1| + m(S ′(P6)− S) = 11. But this value is not mini-
mum, therefore, we can do follows: let S2 = {ek = {(uk, vk+1), (vj, uj+1), 1 ≤ k, j ≤ 5 :

ek ∈ I ′− set of 2P6}. Take E1 = {ek : ek ∈ I ′− set of 2P6}, thus |S2| = |E1|. Consider
S = S1 ∪ S2. Then S is an edge hub set of P6, and |S| = |S1| + |S2| = |S1| + |E1|, and
S ′(P6)− S = 2P6 − E1. So m(S ′(P6)− S) = m(2P6 − E1) = 5. Therefor,

(6)

|S|+m(S ′(P6)− S) = |S1|+ |E1|+m(2P6 − E1)

= |S1|+ I ′(2P6)

= p− 1 + dp
2
e+ 2 = 10.

In general if p ≥ 6, for i ∈ Z+/{1}, i(2i− 1) ≤ p ≤ i((2i− 1) + 4). Then

(7) I ′(2Pp) = dp
i
e+ 2(i− 1).

For more details, if i = 2, then p = 6, 8, 10, 12, 14, |S| = dp
2
e, and m(S ′(PP ) − S) = 2.

Thus, consider S1 = {(u1, u2), (u2, u3), (u3, u4), ..., (up−1, up)}, an edge hub set of S ′(Pp),
|S1| = p − 1, and S ′(Pp) − S1 = 2Pp. Let S2 = {(uk, vk+1), (vj, uj+1), 1 ≤ i, k ≤ p − 1 ∈
I ′− set of 2Pp}. Take E1 = {ek, ej : ek, ej ∈ I ′− set of 2Pp}. Thus |S2| = |E1|. Consider
S = S1 ∪ S2. Then S is an edge hub set of S ′(Pp), thus |S| = |S1| + |S2| = |S1| +
|E1|, S ′(Pp)− S = 2Pp − E1 and m(S ′(Pp)− S) = m(2Pp − E1). By Equation (7),

(8)

|S|+m(S ′(Pp)− S) = |S1|+ |E1|+m(2Pp − E1)

= |S1|+ I ′(2Pp)

= p− 1 + dp
i
e+ 2(i− 1).

The minimality of |S|+m(S ′(Pp)−S) is discussed. Consider S3 is any edge hub set of
G such that S3 = S1, thus |S3| = p−1. Then S ′(Pp)−S3 = 2Pp and m(S ′(Pp)−S3) = p,
this implies that

(9) |S3|+m(S ′(Pp)− S3) = 2p− 1 > |S|+m(S ′(Pp)− S).

Let S5 be another an edge hub set of S ′(Pp) such that S5 = S4 ∪ S1, where S4 ⊂ S2

with |S4| < dpi e. Therefore, m(S ′(Pp)− S5) = p− |S4|. Hence,

(10)

|S5|+m(S ′(Pp)− S5) = |S4|+ |S1|+ p− |S4|

= |S1|+ p

> |S|+m(S ′(Pp)− S).

Consider S7 = S6∪S1, where S6 = {(u1, v2), (v2, u3), (u3, v4), (v4, u5), ..., (up−1, vp), (vp−1, up)},
an edge hub set of S ′(Pp), |S6| = p− 1. Then m(S ′(Pp)− S7) = |S1|+ p− |S6|, hence,

(11) |S7|+m(S ′(Pp)−S7) = |S6|+ |S1|+ |S1|+p−|S6| = 2|S1|+p > |S|+m(S ′(Pp)−S).
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Thus, from the above discussion and (9), (10) and (11), it follows that |S|+m(S ′(Pp)−
S) is minimum. Then, from (8) and the minimality of |S|+m(S ′(Pp)− S),

(12)

EHI(S ′(Pp) = min{|X|+m(S ′(Pp)−X) : X is an edge hub set}

= |S|+m(S ′(Pp)− S)

= p+ dp
i
e+ 2i− 3.

�

Theorem 2.4. For p ≥ 3,

EHI(S ′(Cp)) =


2p, if p = 4, 6 ;
p− 1 + d2

√
2pe, if p is odd;

p+ dp
i
e+ 2i, if p is even, 2i2 ≤ p ≤ 2((i+ 1)2 − 2), i ∈ Z+/{1}.

Proof. Let {u1, u2, ..., up} be the vertices of cycle Cp and {v1, v2, ..., vp} be the new ver-
tices corresponding to {u1, u2, ..., up}which are added to obtain S ′(Cp). The following
cases are available:
Case 1: For p is odd, consider S1 = {(u1, u2), (u2, u3), ..., (up−1, up)}, an edge hub set
of S ′(Cp), thus |S1| = p − 1 and G − S1 = C2p + e, where e is an edge vpv1 shown
as Figure 1. From the definition of edge integrity of a cycle C2p, m(C2p − S) ≥ 3,
where S is an edge-set. So we can use the same method for find I ′(C2p + e), this
means that I ′(C2p + e) = I ′(C2p) such that e = (v1, vp). Let S2 = {ei = (vi, ui), 1 ≤
i ≤ p : ei ∈ I ′ − set}. Take E1 = {ei : ei ∈ I ′ − set of C2p}, so |S2| = |E1|. Consider
S = S1 ∪ S2. Then S is an edge hub set of S ′(Cp), and |S| = |S1| + |S2| = |S1| + |E1|
and S ′(Cp)− S = C2p − E1, so m(S ′(Cp)− S) = m(C2p − E1). By Theorem 1.1,

(13)

|S|+m(S ′(Cp)− S) = |S1|+ |E1|+m(C2p − E1)

= |S1|+ I ′(C2p)

= p− 1 + d2
√

2pe.

v v v v
v

vv
v ssr

v1

u1 v2 u2

v3

u3up

vp

Figure 1: C2p + e

Now the following cases are discussed for the minimality of |S|+m(S ′(Cp)−S). If S3 is
any edge hub set of S ′(Cp) such that S3 = S ′∪S2,where S ′ = {(v1, v2), (v2, v3), ..., (vp−1, vp), (vp, v1)},
|S ′| = p. This implies that

(14) |S3|+m(S ′(Cp)− S3) = p+ d2
√

2pe > |S|+m(S ′(Cp)− S).
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If the set S5 = S4 ∪ S2, where S4 ⊂ S1 with |S4| < p− 1 is considered as an edge hub
set, then there does not exists a path between some edges in S ′(Cp), so the set S is
the minimum an edge hub set. Hence from the above discussion and (14), we get
that |S|+m(S ′(Cp)− S) is minimum. Thus, from equation (13) and the minimality
of |S|+m(S ′(Cp)− S),

(15)

EHI(S ′(Cp)) = min{|X|+m(S ′(Cp)− S) : X is an edge hub set)}

= |S|+m(S ′(Cp)− S)

= p− 1 + d2
√

2pe.

Case 2: For p is even, We have the following subcases:
Subcase 2.1: For p = 4, consider S = {(u1, u2), (u2, u3), (u3, u4), (u4, u1)}, an edge hub
set of S ′(C4), |S| = 4 and S ′(C4) − S = 2C4. So m(S ′(C4) − S) = 4. This implies that
EHI(S ′(C4)) ≤ |S| + m(S ′(C4) − S) = 8. Clearly does not exist any edge hub set S1

of S ′(C4) such that |S1|+m(S ′(C4)−S1) < |S|+m(S ′(C4)−S). HenceEHI(S ′(C4)) = 8.

Subcase 2.2: For p = 6, consider S = {(u1, u2), (u2, u3), (u3, u4), (u4, u5), (u5, u6), (u6, u1)},
an edge hub set of S ′(C6), |S| = 6 andm(S ′(C6)−S) = 6.This implies thatEHI(S ′(C6)) ≤
|S| + m(S ′(C6) − S) = 12. Clearly does not exist any edge hub set S1 of S ′(C6) such
that |S1|+m(S ′(C6)− S1) < |S|+m(S ′(C6)− S). Hence EHI(S ′(C6)) = 12.

Subcase 2.3: For p ≥ 8, let i ∈ Z+/{1}.
Consider S1 = {(u1, u2), (u2, u3), (u3, u4), ..., (up−1, up), (up, u1)}, an edge hub set of S ′(Cp),
|S1| = p and S ′(C4) − S1 = 2Cp, and m(S ′(Cp) − S1) = p. Let S2 = {ek = (vk, uj) : 1 ≤
k, j ≤ p, ej = (un, um) : 1 ≤ n,m ≤ p}. Take E1 = {ek, ej : ek, ej ∈ I ′ − set of 2Cp}.
If 8 ≤ p ≤ 16, in this case, we choose two edges from each component, so |S| = 4,

and m(2Cp − S) = dp
2
e, where i denotes to the number of edges removed from 2Cp

and i = b
√

p
2
c. For p = 8, |S1| = 8 and S ′(C8) − S1 = 2C8, So m(S ′(C8) − S1) =

8, I ′(2C8) = p
2

+ 2. In this case, we delete two edges of each component C8 and we get
four components of order 4. Hence I ′(2C8) = |S2| + m(2C8 − S2) = 8. In general, for
2i2 ≤ p ≤ 2((i+ 1)2 − 2), such that i ∈ Z+/{1} ,

(16) I ′(2Cp) = dp
i
e+ 2i.

Consider S = S1 ∪ S2, then S is also an edge hub set of S ′(Cp), |S| = |S1| + |S2| =

|S1|+ |E1| and S ′(Cp)− S = 2Cp −E1, So m(S ′(Cp)− S) = m(2Cp −E1). By Equation
(16),

(17)

|S|+m(S ′(Cp)− S) = |S1|+ |E1|+m(C2p − E1)

= |S1|+ I ′(2Cp)

= p+ dp
i
e+ 2i.
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To show |S| + m(S ′(Cp)− S) is minimum, consider S3 = S1, |S3| = p and m(S ′(Cp)−
S3) = p, this implies that

(18) |S3|+m(S ′(Cp)− S3) = 2p > |S|+m(S ′(Cp)− S).

Consider S5 = S4 ∪ S1, where S4 = {(v1, u2), (u2, v3), ..., (up−2, vp−1), (vp−1, up), (up, v1)},
an edge hub set of S ′(Cp) such that |S4| = p and S ′(Cp)−S5 = Cp, thenm(S ′(Cp)−S5) =

p. Hence,

(19) |S5|+m(S ′(Cp)− S5) = |S4|+ |S1|+ p = 3p > |S|+m(S ′(Cp)− S).

Thus, from the above argumentation and (18) and (19), we obtain that |S|+m(S ′(Cp)−
S) is minimum. Then, from equation (17) and minimality of |S|+m(S ′(Cp)− S),

(20)

EHI(S ′(Cp) = min{|X|+m(S ′(Cp)−X) : X is an edge hub set}

= |S|+m(S ′(Cp)− S)

= p+ dp
i
e+ 2i.

�

3. THE EDGE HUB-INTEGRITY OF Duplication of Graph Elements

Lemma 3.1. Let (Pp)v be a graph obtained from Pp by duplication of each edge by
vertex. Then he(Pp)v = p− 1, p ≥ 3.

Theorem 3.1. Let (Pp)v be a graph obtained from Pp by duplication of each edge by
vertex. Then EHI((Pp)v = p+ d2

√
2p− 1e − 2.

Proof. Let (Pp)v be a graph obtained by duplication of each edge (vi, vi+1) of path
Pp, for (1 ≤ i ≤ p− 1) by vertex wi as in Figure 2,

x xx x r r r x xx
x x x x x

�
�
�� \

\
\\

v1 v2 v3 v4 vp−2 vp−1 vp

w1 w2 w3 wp−2 wp−1

Figure 2: (Pp)v

Hence, |V ((Pp)v)| = 2p−1 and |E((Pp)v)| = 3p−3. Consider S1 = {(v1, v2), (v2, v3), ..., (vp−1, vp)},
an edge hub set of (Pp)v, and |S1| = p− 1, then m((Pp)v − S1) = 2p− 1.

Let S2 = {ek = (vk, wk) ∪ (wp−1, vp) : 1 ≤ k ≤ p − 1, and ek ∈ I ′ − set of P2p−1}. Take
E1 = {ek : ek ∈ I ′ − set of P2p−1}, then |S2| = |E1|. Consider S = S1 ∪ S2, S is also an
edge hub set of (Pp)v, |S| = |S1| + |S2| = |S1| + |E1| and (Pp)v − S = P2p−1 − E1, thus
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m((Pp)v − S) = m(P2p−1 − E1). By Theorem 1.1,

(21)

|S|+m((Pp)v − S) = |S1|+ |E1|+m(P2p−1 − E1)

= |S1|+ I ′(P2p−1) = p− 1 + d2
√

2p− 1e − 1

= p+ d2
√

2p− 1e − 2.

Now, the following cases are discussed :
Case 1. If S3 is any edge hub set of (Pp)v which is not containing S1 or S2 as a proper
subset and |S3| = k < 3p− 3. Thus,

(22) |S3|+m((Pp)v − S3) > |S|+m((Pp)v − S).

Case 2. Consider S4 = {(v1, w1), (v1, v2), (v2, w2), (v3, w3), ..., (vp−1, wp−1), (vp−1, vp)}, an
edge hub set of (Pp)v, |S4| = 2p− 2, then m((Pp)v − S4) = 2. This implies that

(23) |S4|+m((Pp)v − S4) = 2p > |S|+m((Pp)v − S).

Hence, from the above discussion and (22) and (23), it lead to that |S|+m((Pp)v−S)

is minimum. Hence, from equation (21) and the minimality of |S|+m((Pp)v − S),

(24)

EHI((Pp)v) = min{|X|+m((Pp)v − S) : X is an edge hub set)}

= |S|+m((Pp)v − S)

= p+ d2
√

2p− 1e − 2.

�

Lemma 3.2. Let (Pp)e be a graph obtained from Pp by duplication of each vertex by
an edge. Then he((Pp)e) = 2p− 1.

Theorem 3.2. Let (Pp)e be a graph obtained from Pp by duplication of each vertex
by an edge. Then EHI((Pp)e) = 2p+ 2.

Proof. Let (Pp)e be a graph obtained by duplication of each vertex vi of path Pp by
an edge (u2i−1, u2i)(1 ≤ i ≤ p) as shown in Figure 3. Then the number of vertices of
(Pp)e is 3p and |E((Pp)e)| = 4p− 1.

v vv v v v





�
�

�
�

@@

@
@r r r

u3 u4 u5 u6 u7 u8 u2p−3 u2p−2

v1 v2 v3 v4
vp−1

vp

Figure 3: (Pp)e
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Consider S = {(u1, v1), (v1, v2), (v2, u3), (v2, v3), ..., (vp−1, vp), (vp, v2p−1)}, an edge hub
set of (Pp)e, then |S| = 2p− 1, and m((Pp)e− S) = 3. This implies that, EHI((Pp)e) ≤
|S|+m((Pp)e−S) = 2p+2. For showing the number |S|+m((Pp)e−S) is minimum, the
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minimality of both |S| and m((Pp)e−S) is taken into consideration. The minimality
of |S| is guaranteed as S is he-set from Lemma 3.2. It remains to show that if S1 is
any edge hub set other than S, then

(25) |S1|+m((Pp)e − S1) ≥ 2p+ 2.

In case if S1 is any edge hub set other than S andm((Pp)e−S1) = 2, then |S1| ≥ 2p+2

and

(26) |S1|+m((Pp)e − S1) = 2p+ 4 > |S|+m((Pp)e − S),

now, if m((Pp)e − S1) = 1, then |S1| ≥ 4p− 1 > 2p+ 2, so

(27) |S1|+m((Pp)e − S1) > 2p+ 2,

finally, if m((Pp)e − S1) ≥ 3, then trivially

(28) |S1|+m((Pp)e − S1) ≥ 2p+ 2.

Hence for any edge hub set S1, |S1| + m((Pp)e − S1) ≥ 2p + 2. From (25), (26), (27)
and (28), EHI((Pp)e) = 2p+ 2. �

Lemma 3.3. Let (Cp)v be a graph obtained from Cp by duplication of each edge by
vertex. Then he((Cp)v) = p− 1, p ≥ 3.

Theorem 3.3. Let (Cp)v be a graph obtained from Cp by duplication of each edge by
vertex. Then EHI((Cp)v) = p− 1 + d2

√
2pe, p ≥ 3.

Proof. Let (Cp)v be a graph obtained by duplication of each edge (vi, vi+1) of a cycle
Cp, for (1 ≤ i ≤ p−1) by vertex ui and edge (vp, v1) by vertex up. Then |V ((Cp)v)| = 2p

and |E((Cp)v)| = 3p. Consider S = {(v1, v2), (v2, v3), (v3, v4), ..., (vp−1, vp)}, an edge hub
set of (Cp)v, then |S| = p− 1 and (Cp)v−S = C2p + e, where e is an edge (vp, v1) shown
in Figure 1 in Theorem 2.4, and the proof is similar to that the proof of Theorem
2.4. Hence, EHI((Cp)v) = p− 1 + d2

√
2pe. �

Lemma 3.4. Let (Cp)e be a graph obtained from Cp by duplication of each vertex by
an edge. Then he((Cp)e) = 2p− 1.

Theorem 3.4. Let (Cp)e be a graph obtained from Cp by duplication of each vertex
by an edge. Then EHI((Cp)e) = 2p+ 3.

Proof. Let (Cp)e be a graph obtained by duplication of vertices vi of a cycle Cp by an
edge (u2i−1, u2i), 1 ≤ i ≤ p.

Consider S = {(v1, v2), (v2, v3), (v3, v4), ..., (vp, v1)}∪{(v1, u2), (v2, u4), (v3, u6), ..., (vp, u2p)},
an edge hub set of (Cp)e, |S| = 2p, then m((Cp)e − S) = 3. This implies that

(29) EHI((Cp)e) ≤ |S|+m((Cp)e − S) = 2p+ 3.
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To show that the number |S| + m((Cp)e − S) is minimum. Consider S1 is any edge
hub set other than S and m((Cp)e − S1) = 2, then |S1| ≥ 3p ≥ 2p+ 3, thus

(30) |S1|+m((Cp)e − S1) > 2p+ 3.

If S2 is any edge hub set other than S and S1 withm((Cp)e−S2) = 1, then |S2| ≥ 4p >

2p+ 3, thus

(31) |S2|+m((Cp)e − S2) > 2p+ 3.

Finally, if m((Cp)e − S4) ≥ 3, then trivially

(32) |S4|+m((Cp)e − S4) ≥ 2p+ 3.

Thus for any edge hub set S1, |S1|+m((Cp)e−S1) ≥ 2p+ 3. From (30), (31), and (32),
EHI((Cp)e) = 2p+ 3. �

Lemma 3.5. Let (K1,p−1)e be a graph obtained from star graphK1,p−1 by duplication
of each vertex by an edge. Then he((K1,p−1)e) = 2p− 1.

Theorem 3.5. Let (K1,p−1)e be a graph obtained from star graph K1,p−1 by duplica-
tion of each vertex by an edge. Then EHI((K1,p−1)e) = 2p+ 2.

Proof. Let (K1,p−1)e be a graph obtained by duplication of vertices {v0, v1, ..., vp−1} of
star graph K1,p−1 by an edge (u2i, u2i+1), 0 ≤ i ≤ p− 1.

Consider S = {(v0, v1), (v0, v2), (v0, v3), (v0, vp−1), (v1, u2), (v2, u4), ..., (vp−1, u2p)}, an edge
hub set of (K1,p−1)e such that |S| = 2p− 1, then m((K1,p−1)e − S) = 3, which implies
that

(33) EHI((K1,p−1)e) ≤ |S|+m((K1,p−1)e − S) = 2p+ 2.

For showing the number |S|+m((K1,p−1)e − S) is minimum, the minimality of both
|S| andm((K1,p−1)e−S) is taken into consideration. The minimality of |S| is ensured
as S is he-set from Lemma 3.5, it remains to show that if S1 is any edge hub set other
than S and m((K1,p−1)e − S1) = 2. Then |S1| ≥ 3p− 1, hence

(34) |S1|+m((K1,p−1)e − S1) > 2p+ 2.

If m((K1,p−1)e − S1) = 1, then |S1| ≥ 4p− 1, hence

(35) |S1|+m((K1,p−1)e − S1) > 2p+ 2.

Finally, if m((K1,p−1)e − S1) ≥ 3, then trivially

(36) |S1|+m((K1,p−1)e − S1) ≥ 2p+ 2.

Hence for any edge hub set S1, |S1|+m((K1,p−1)e−S1) ≥ 2p+ 2. From (33), (34), (35)
and (36), EHI((K1,p−1)e) = 2p+ 2. �
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Lemma 3.6. Let (K1,p−1)v be a graph obtained by duplication of each edge of star
K1,p−1 by vertex. Then he((K1,p−1)v) = p− 1.

Theorem 3.6. Let (K1,p−1)v be a graph obtained by duplication of each edge of star
K1,p−1 by vertex. Then EHI((K1,p−1)v) = 2p.

Proof. Let (K1,p−1)v be a graph obtained by duplication of each edge (v, vi) of star
K1,p−1 by vertex ui, 1 ≤ i ≤ p − 1. The number of vertices of (K1,p−1)v is 2p − 1

and the number of edges is 3p − 3. Consider S = {(v, v1), (v, v2), ..., (v, vp−1)} ∪
{(v, u1), (v, u2), ..., (v, up−1)}, an edge hub set of (K1,p−1)v such that |S| = 2p− 2, then
m((K1,p−1)v − S) = 2 which implies that

(37) EHI((K1,p−1)v) ≤ |S|+m((K1,p−1)v − S) = 2p.

To show the number |S|+m((K1,p−1)v−S) is minimum, it is assumed that S1 is any
edge hub set other than S with m((K1,p−1)v − S1) = 1, then |S1| ≥ 2p+ 1 > 2p, which
implies that |S1|+m((K1,p−1)v − S1) ≥ 2p+ 2. If m((K1,p−1)v − S1) ≥ 2, thus trivially
|S1|+m((K1,p−1)v − S1) ≥ 2p. Hence, for any edge hub set S1,

(38) |S1|+m((K1,p−1)v − S1) ≥ 2p.

From (37) and (38), EHI((K1,p−1)v) = 2p.

�

4. Conclusion

The results presented in this paper complement the results from [9]. Here we
have investigated edge hub-integrity of splitting graph and duplication of an edge
by vertex and duplication of vertex by an edge of of path, cycle and star graphs. To
investigate similar results for different graph families obtained by various graph
operations is an open area of research.
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