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Abstract. Let G = (V,E) be a connected graph. The eccentricity e(u) of a vertex u ∈
V (G), is the maximum distance from it to another vertex of G. The eccentric wight of G,

ew(G), is defined as
∑
x∈E

f(x), where f : E −→ {0, 1} is a function and f(uv) = |e(u)− e(v)|

for all uv ∈ E(G). In this paper, we compute the eccentric weight of several classes of

graphs. Some bounds for ew(G) are established. The eccentric wight of Join and Cartesian

product of graphs are obtained.
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1. Introduction

Let G = (V,E) be a simple connected graph with n vertices and m edges. For a vertex

u ∈ V , deg(u) denotes the degree of u. For vertices u, v ∈ V , the distance d(u, v) is defined

as the length of a shortest path between them. The eccentricity e(u) of a vertex u in G is

the maximum distance between u and v for all v in G. The radius r(G) is the minimum

eccentricity of the vertices. A vertex u is a central vertex if e(u) = r(G), and center of

G is the set of all central vertices and is denoted by Z(G). The diameter diam(G), in G

is the maximum distance between any pair of vertices of the graph. If G is disconnected,

diam(G) =∞. For graph theoretic terminology, we refer to [4].

A graph G is said to be self-centred if e(u) = e(v) for all u, v ∈ V (G) [2].

A graph is called a weighted graph if each edge e is assigned a non-negative number w(e),

called the weight of e [1].

A graph without cycles is called an acyclic graph. A connected graph without cycles is

said to be a tree. A double star is the tree obtained from two disjoint stars K1,n and K1,m by
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connecting their centers. A graph is called unicyclic if it is connected and contains exactly

one cycle. A graph is unicyclic if and only if it is connected and has size equal to its order.

Consider a communication network modelled by a graph with vertices representing the

nodes of the network and edges representing the links between them. One might want to

minimise the average, taken over all the nodes in the system, of the maximum time delay of

a message emanating from it. This is the average eccentricity of the corresponding graph.

For disjoint graphs G1 and G2, the join G = G1 + G2 is the graph G with V (G) =

V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1) and v ∈ V (G2)}. Let us

denote by G− v the graph obtained from G by removing the vertex v ∈?V (G) and all edges

incident to v.

A connected subgraph B of G is called a block if B has no cut-vertex and every subgraph

B′ ⊆ G with B ⊂ B′ has at least one cut-vertex. A connected graph G is called a block

graph if every block in G is complete.

2. The eccentric weight of graphs

Definition. Let G be a connected graph. The eccentric wight of G, ew(G), is defined as∑
x∈E

f(x), where f : E −→ {0, 1} is a function and f(uv) = |e(u)− e(v)| for all uv ∈ E(G).

Since every pair of adjacent vertices of G have eccentricity difference zero or one, we obtain

the obvious bound, 0 ≤ ew(G) ≤ m. The lower bound attains for complete graph Kn and

the upper bound attains for a star K1,m.

Theorem 2.1. For any connected graph G, ew(G) = 0, if and only if G is self-centred.

Proof. If ew(G) = 0 for a connected graph G, then f(uv) = 0 for all uv ∈ E(G) and hence

e(u) = e(v) for all u, v ∈ V (G). Thus, G is self-centred.

Conversely, since G is self-centred graph, it follows that e(u) = e(v) for all u, v ∈ V (G) and

so f(uv) = 0 for all uv ∈ E(G). Thus, ew(G) = 0.

We now proceed to compute ew(G) for some standard graphs.

Remark 2.2.

(1) For any cycle Cn, ew(Cn) = 0.

(2) For any path Pn,

ew(Pn) =

{
n− 1, if n is odd ;

n− 2, if n is even.

(3) For any double star Sr,s, ew(Sr,s) = r + s.

(4) For any complete bipartite graph Kr,s, ew(Kr,s) = 0
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(5) For the wheel W1,n, n ≥ 3, ew(W1,n) = n.

Theorem 2.3. For any connected graph G, ew(G) ≤ m− |E(〈Z(G)〉)|.

Proof. Since 〈Z(G)〉 is self-centred, ew(〈Z(G)〉) = 0. Thus ew(G) ≤ m− |E(〈Z(G)〉)|.

Corollary 2.4. For any G(n,m) graph. If ew(G) = m, then 〈Z(G)〉 is totally disconnected.

The converse of Corollary 2.4 is not true. For example, consider the graph G shown in

Figure 1 〈Z(G)〉 = 2K1, but ew(G) 6= m.
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Observation 2.5. Let G ∼= Km1,m2,...,mk
be the complete k-partite graph, then ew(G) = 0

Theorem 2.6. If G1 and G2 are disjoint connected graphs having no full degree vertex, then,

ew(G1 + G2) = 0.

Proof. Suppose that G1 and G2 have no full degree vertex. Then e(ui) ≥ 2 for all ui ∈ V (G1)

and e(vi) ≥ 2 for all vi ∈ V (G2). But in G1 + G2, e(ui) = e(vi) = 2 for all ui ∈ V (G1) and

vi ∈ V (G2). Since d(ui, vi) = 1, d(ui, uj) = 2 and d(vi, vj) = 2 for all ui, uj ∈ V (G1) and

vi, vj ∈ V (G2), f(uv) = 0 for all uv ∈ E(G1 + G2). Thus, ew(G1 + G2) = 0.

In general, if G = G1 + G2 + ... + Gk such that Gi, 1 ≤ i ≤ k has no full degree vertex,

then ew(G) = 0.

3. Composite graphs

The Cartesian product G1�G2�...�Gk of graphs G1, G2, ..., Gk has the vertex set V (G1)×
V (G2)×...×V (Gk), two vertices (u1, u2, ..., uk) and (v1, v2, ..., vk) being adjacent if they differ

in exactly one position, say in i-th, and uivi is an edge of Gi. It is well known (see [5]) that

for G = G1�G2�...�Gk and its two vertices u = (u1, u2, ..., uk) and v = (v1, v2, ..., vk) we

have

e
G1�G2

(u1, u2) = e
G1

(u1) + e
G2

(u2).
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Theorem 3.1. For graphs G and H, we have

ew(G�H) = |H|ew(G) + |G|ew(H).

Proof. For graphs G and H, we have

ew(G�H) =
∑

(u1,v1),(u2,v2)∈(G�H)

|e
G�H

(u1, v1)− e
G�H

(u2, v2)|

= |H|ew(G) + |G|ew(H).

From Theorem 3.1, we have the following Remark.

Remark 3.2.

(1) ew(Cr�Cs) = 0

(2) ew(Pr�Ps) = r.ew(Ps) + s.ew(Pr)

(3) ew(K1,r�K1,s) = 2rs.

(4) ew(W1,r�W1,s) = 2rs.

Theorem 3.3. If G(n,m) is a graph with ∆(G) < m− 1, then ew(G + K1) = n.

Proof. Let G be a graph with ∆(G) < m − 1. By the definition of G + K1, in G + K1,

e(u) = 1, u ∈ K1 and e(vi) = 2 for all vi ∈ V (G), 1 ≤ i ≤ n, Therefore, f(uvi) = 1 for all

uvi ∈ E(G + K1), 1 ≤ i ≤ n and f(vivj) = 0 for all vivj ∈ E(G + K1), 1 ≤ i, j ≤ n. Thus,

ew(G + K1) = n.

Theorem 3.4. If G has k full degree vertices, then ew(G) = k(n− k).

Proof. Let V (G) = {vi: 1 ≤ i ≤ n} and let k be the number of full degree vertices in G.

If vj, 1 ≤ j ≤ k is the set of full degree vertices in G, then e(vj) = 1, for all vj ∈ V (G),

1 ≤ j ≤ k and e(vi) = 2, for all vi ∈ V (G), k + 1 ≤ i ≤ n. Therefore, f(vivj) = 0 for all

vivj ∈ E(G), 1 ≤ i, j ≤ k and f(vivj) = 1 for all vivj ∈ E(G), k + 1 ≤ i, j ≤ n. Thus,

ew(G) = k(n− k).

Corollary 3.5. If G ∼= Kn − e, ew(G) = 2(n− 2).

Theorem 3.6. If G1 is a graph with n1 vertices having k1 full degree vertices and G2 is a

graph with n2 vertices having k2 full degree vertices, then

ew(G1 + G2) = (k1 + k2)(n− (k1 + k2))

.
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Proof. Let G1 having k1 full degree vertices and G2 having k2 full degree vertices. If V (G1) =

{1 ≤ ui ≤ n1} and V (G2) = {1 ≤ vi ≤ n2}, then e(ui) = 1, 1 ≤ i ≤ k1, ui ∈ V (G1) and

e(vi) = 1, 1 ≤ i ≤ k2, vi ∈ V (G2). Therefore, e(ui) = 2, k1 + 1 ≤ i ≤ n1, ui ∈ V (G1) and

e(vi) = 2, k2 +1 ≤ i ≤ n2, vi ∈ V (G2). Since G1 +G2 is a graph of order n1 +n2 with k1 +k2

full degree vertices, it follows that, by Theorem 3.3, ew(G1 + G2) = (k1 + k2)(n− (k1 + k2)).

In general, if G = G1 + G2 + ... + Gp such that Gi, 1 ≤ i ≤ p is a graph with ni vertices

having ki full degree vertices, then

ew(G) =

p∑
i=1

ki

(
p∑

i=1

ni −
p∑

i=1

ki)

)
.

We observe that, for any positive integer n, there are at least two non isomorphic graphs

G1 and G2 such that ew(G1) = ew(G2). For example ew(K1,r) = ew(W1,r) = r.

Proposition 3.7. For any positive integer n, n ≥ 3, there exists a graph G(2n,m) such that

ew(G) = n = m.

Proof. Take Cn with vertex set {v1, v2, ..., vn} and take a set of vertices vn+1, vn+2, ..., v2n.

Add the edges v1vn+1, v2vn+2, ..., vnv2n. In G(2n,m), e(vi) = bn
2
c+ 1 for all i, 1 ≤ i ≤ n and

e(vi) = bn
2
c + 2 for all i, n + 1 ≤ i ≤ 2n. Therefore, f(vivj) = 0 for all vivj ∈ E(Cn) and

f(vivj) = 1 for all vivj 6∈ E(Cn). Thus, ew(G) = n = m.

Theorem 3.8. For any unicyclic graph G, m−p ≤ ew(G), where Cp is the only cycle in G.

Proof. Since G(n,m) is a unicyclic graph, n = m. There are m − p + 1 blocks in G say

B1 = Cp, B2, ..., Bm−p+1. We consider the following cases.

Case 1: Z(G) = {v}. We consider the following subcases.

Case 1.1: v ∈ V (G− Cp). Then e(x) 6= e(y) for any adjacent vertices x, y ∈ V (Bi), i 6= 1.

Therefore, f(xy) = 1 for all xy ∈ E(G − Cp). Now, if f(xy) = 0 for all xy ∈ E(Cp), then

ew(G) = m−p and if Cp contains at least one edge xy with f(xy) = 1, then m−p < ew(G).

Case 1.2: v ∈ V (Cp). Then f(xy) = 1 for all xy ∈ E(Bi), i 6= 1 and there exists two vertices

w,w′ ∈ V (Cp) such that v adjacent to both w and w′. Therefore, f(vw) = f(vw′) = 1. Thus,

ew(G) ≥ m− p + 2 > m− p.

Case 2: Z(G) = 2. Let u, v ∈ Z(G). We consider the following subcases.

Case 2.1: u, v ∈ V (Bi), i 6= 1, 2 (say) and uv ∈ E(G). Then f(uv) = 0 and f(xy) = 1

for all xy ∈ E(Bi), i 6= 1, 2. If f(xy) = 0 for all xy ∈ E(B1), then e(x) = e(y) for all

x, y ∈ V (B1), which is a contradiction to the fact that G is unicyclic. Therefore, f(xy) = 1

for at least one edge xy ∈ E(Cp). Thus, ew(G) ≥ m− p.

Case 2.2: u, v ∈ V (Cp). We consider the following subcases.
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Case 2.2.1: uv ∈ E(Cp). Then f(uv) = 0 and f(xy) = 1 for all xy ∈ E(Bi), i 6= 1.

Since G is unicyclic, it follows that there are at least two edges xx′, yy′ ∈ E(Cp) such that

f(xx′) = 1 = f(yy′). Thus, ew(G) ≥ m− p.

Case 2.2.2: uv 6∈ E(Cp). Then f(xy) = 1 for all xy ∈ E(Bi), i 6= 1 and there are two

vertices x, y in Cp such that f(ux) = 1 = f(vy). Therefore, ew(G) ≥ m− p.

Case 2.3: u, v ∈ Z(G) and v /∈ V (Cp). Then uv ∈ E(B2). Therefore, there exists at least

one edge ww′ ∈ E(Cp) such that f(ww′) = 1 and for every xy ∈ E(Bi), i 6= 1, 2, f(xy) = 1.

Thus, ew(G) ≥ m− p.

Case 3: |Z(G)| ≥ 3. We consider the following subcases.

Case 3.1: |Z(G)| = p. Then V (Cp) is center in G. Therefore, f(ww′) = 1 for all ww′ ∈
E(Bi), i 6= 1 and f(uv) = 0 for all uv ∈ E(B1). Hence, ew(G) = m− p.

Case 3.2: |Z(G)| < p. Then f(xy) = 1 for all xy ∈ E(Bi), i 6= 1 and for at least one edge

uv ∈ E(B1), we have f(uv) = 1. Therefore, ew(G) ≥ m − p. Hence, from all the above

cases, ew(G) ≥ m− p. Thus, m− p ≤ ew(G).

Theorem 3.9. If G is self-centred graph, then ew(G− v) ≥ ew(G).

Proof. Let G be a self-centred graph. Then ew(G) = 0. If G − v is still self-centred, then

ew(G−v) = ew(G) = 0 and if G−v is not self-centred, then ew(G−v) > ew(G). Therefore,

ew(G− v) ≥ ew(G).
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[10] G. Yu, L. Feng, A. Ilić, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal.

Appl., 375 (2011), 99-107.

121


