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Abstract. Magill proved that the remainders of two locally compact Hausdorff spaces in their Stone-Čech compactifi-
cations are homeomorphic if and only if the lattices of their Hausdorff compactifications are lattice isomorphic. His
construction for compactifications are explicitely discussed through the partitions of their Stone-Čech compactifications.
Partitions in a Stone-Čech compactification which lead to Hausdorff compactifications are characterized in this article.
Embeddings of certain upper semi-lattices of compactifications into lattices of compactifications are constructed.
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1. Introduction

Let X be a completely regular Hausdorff space and α1X and α2X be two Hausdorff compactifications of
X . These two compactifications may be compared by an order relation: α1X ≥ α2X if and only if there is a
continuous function h1 : α1X → α2X such that h1(x) = x for all x ∈ X . The collectionK(X) of all Hausdorff
compactifications of a Tychonoff space X forms a complete upper semi-lattice under the natural order defined
above. It is known that for a Tychonoff spaceX ,K(X) is a lattice if and only ifX is locally compact (see: theorem
4.3 (e) in [2]). Magill [1] proved that the remainders βX \X and βY \ Y of X and Y are homeomorphic if
and only if K(X) and K(Y ) are lattice isomorphic, where X and Y are locally compact spaces. Rayburn [3]
considered non locally compact points and obtained some extensions of Magill’s results. These two articles are
fundamental articles for studies on lattice structure on compactifications and topological structure of remainders.
Magill furnished indirectly a construction for all Hausdorff compactifications of a given Tychonoff space. This
construction is based on partitions in their Stone-Čech compactifications and this is explained in the first section.
Every partition of a Stone-Čech compactification by compact subsets always leads to a compactification, which is
the corresponding quotient space. A characterization for partitions which lead to Hausdorff compactifications is
discussed in the second section. If Y is the collection of all locally compact points of a given Tychonoff space
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X and if Y is dense in X , then the upper semi-lattice K(X) can be embedded into the lattice K(Y ). This is
explained in the third section.

2. Magill’s Construction

LetK(X) be the collection of all Hausdorff compactifications of a Tychonoff spaceX and βX be its Stone-Čech
compactification. For every αX ∈ K(X), there is a continuous map, called Čech map, fα : βX → αX such that
fα(x) = x for all x ∈ X . Also {f−1

α (y) : y ∈ αX} forms a partiton in βX , where each f−1
α (y) is a compact subset

of βX , when y ∈ αX . Moreover {x} is in this partition, for every x ∈ X . This is justified by the following lemma.

Lemma 2.1. Let α1X , α2X be two Hausdorff compactifications of X such that α1X ≥ α2X . Let f : α1X → α2X be the

natural continuous onto mapping such that f(x) = x, for every x ∈ X . Thenf−1(x) = {x}, for every x ∈ X .

Proof. On the contrary assume that, there is an element y ∈ f−1(x) such that y 6= x, for some x ∈ X . Then
there are two disjoint open neighbourhoods Ux, Uy of x, y in α1X , respectively. For Ux ∩X , find an open
neighbourhood Vx of x in α2X such that Vx ∩X = Ux ∩X . Since f(y) = x ∈ Vx, find an open neighbourhood
Wy of y in α1X such that y ∈Wy ⊆ Uy and f(Wy) ⊆ Vx. ThenWy ∩X = f(Wy ∩X) ⊆ Vx ∩X = Ux ∩X . Thus
Ux ∩Wy ∩X 6= φ. This contradicts the fact that Ux ∩Wy ∩X = φ. This proves the lemma. �

On the other hand, consider a partition π of βX such that

(i) Every member of π is a compact subset of βX .
(ii) {x} ∈ π, for every x ∈ X .

Now consider the quotient space βX/πwith the quotient topology induced by a quotient map f : βX → βX/π.
Since the quotient map is continuous and βX is compact, f is surjective and βX/π is a compact space. Also βX/π
is a compactification of X , because X is dense in βX/π. This is a construction of Magill[1] for compactifications.
But this compactification may not be Hausdorff unless π is a Hausdorff partition of βX . That is, βX/π is made
into a Hausdorff space under the quotient topology.

Lemma 2.2. Let X be a Hausdorff space and {Ki}i∈I be a collection of mutually disjoint non empty compact subsets of

X and it is locally finite in X . Then, for any fixed Km, there is an open set U such that U contains Km and U does not

intersect any of theKj , j 6= m.

Proof. Let x ∈ Km. Since {Ki}i∈I is locally finite, there is an open set U of x which intersects only finite number
ofKi’s. Suppose U intersects onlyKi1 ,Ki2 ..........Kin other thanKm. Then Ux = U \

in∪
k=i1

Kk does not intersect
none of the Ki’s other than Km. Then {Ux : x ∈ Km} is an open cover for Km. Since Km is compact, there is
finite subcover {Ux1 , Ux2 , . . . , Uxp} forKm. Let Γ be the collection of allKi which are intersected by the members
of this finite subcollection, except Km. Write G =

p
∪
i=1

Uxi . Let U = G\ ∪
Ki∈Γ

Ki. Then U is an open set containing
Km which does not intersectKi, i 6= m. �

Theorem 2.3. Let X be a Tychonoff space and αX be any Hausdorff compactification of X . Let {Ki}i∈I be a collection

of mutually disjoint non empty compact subsets of αX \X such that it is locally finite in αX . Then there is a Hausdorff
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compactification γX = (αX \ ∪
i∈I

Ki) ∪ {pi : i ∈ I} of X , where pi are distinct and pi /∈ αX , and there is a continuous

mapping h : αX → γX such that h(x) = x, for x /∈ ∪
i∈I

Ki and h(x) = pi, for x ∈ Ki.

Proof. Let γX = (αX \ ∪
i∈I

Ki) ∪ {pi : i ∈ I} and Y = (αX \ ∪
i∈I

Ki) where pi are distinct, and pi /∈ αX . Define a
map h : αX → γX by h(x) = x if x ∈ Y and h(x) = pi if x ∈ Ki. Let γX have the quotient topology under the
quotient map h. Since αX is compact, γX is compact. Let U be an open set in γX . Then h−1(U) is an open set
in αX which intersects X so that h(h−1(U)) = U intersects h(X) = X . Hence X is dense in γX . To prove the
Hausdorffness, we have to consider the following three cases for any x, y ∈ γX such that x 6= y.

(i) x ∈ γX \ Y and y ∈ γX \ Y .
(ii) x ∈ Y and y ∈ γX \ Y .

(iii) x ∈ Y and y ∈ Y .

Case (i):

Let x ∈ γX \ Y and y ∈ γX \ Y . Then x = pi and y = pj , i 6= j. Since αX is normal, we can find open
sets V and W in αX such that Ki ⊆ V and Kj ⊆ W and V ∩W = φ. Since {Ki : i ∈ I} is locally finite
in αX , we can find open sets V1 and W1 such that Ki ⊆ V1 and Kj ⊆ W1 and V1 and W1 does not intersect
any of the Ks’s other than Ki and Kj , respectively. Then V ∩V1 and W ∩W1 are open sets in αX such that
(V ∩V1)∩(W ∩W1) = (V ∩W )∩(V1 ∩W1) = φ. Let V2 = V ∩V1 and W2 = W ∩W1. Let V ? = h(V2) and
W ? = h(W2). Since h−1(V ?) = V2 and h−1(W ?) = W2, V ? andW ? are disjoint open sets in γX such that x ∈ V ?

and y ∈W ?.
Case (ii):

Let x ∈ Y and y ∈ γX \ Y . Then y = pj for some j ∈ I . Since αX is normal, we can find open sets V and
W in αX such that x ∈ V , Kj ⊆ W and V ∩W = φ. Since {Ki}i∈I is locally finite, there is an open set U of x
which intersects only finite number of Kk’s. Suppose U intersects Ki1 ,Ki2 ..........Kin . Then U1 = U \

in∪
k=i1

Kk

does not intersect none of theKk’s. Similarly, find an open set U2 containingKj , but not containing otherKk’s.
Let V1 = h(U1 ∩V ) andW1 = h(U2 ∩W ). Since h−1(V1) = U1 ∩V and h−1(W1) = U2 ∩W , V1 andW1 are open
sets in γX containing x and pj , respectively such that their intersection is empty.
Case (iii):

Let x ∈ Y and y ∈ Y . Since {Ki}i∈I is locally finite, there exist disjoint open sets U and V in αX containing x
and y, respectively such that they intersect only finite number ofKi’s. Suppose U intersectsKi1 ,Ki2 ..........Kin

and V intersectsKj1 ,Kj2 ..........Kjm . Since αX is Hausdorff, there exist disjoint open sets U1 and V1 such that
x ∈ U1 and y ∈ V1. Let U2 = (U \

in∪
k=i1

Kk)∩U1 and V2 = (V \
jm
∪

k=j1
Kk)∩V1. Since h(U2) = U2 and h(V2) = V2, U2

and V2 are disjoint open sets in γX containing x and y, respectively. Hence γX is a Hausdorff compactification
of X . �

Remark 2.4. This theorem 2.3 generalizes the lemma 2 in [1]. IfKi are selected in αX = X ∪(αX \X), then theorem 2.3

is true except the fact that γX is just a compact Hausdorff space; but not a compactification of X .
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3. Hausdorff partitions

Hausdorff partitons lead to Hausdorff compactifications. A characterization for Hausdorff partitions is
obtained in this section.

Let X be a Tychonoff space with its Stone-Čech compactification βX . Let π be a partition of βX such that
(i) Every member of π is a compact subset of βX .

(ii) {x} ∈ π, for every x ∈ X .
Then we have the following theorem.

Theorem 3.1. Let X be a Tychonoff space and π be a partition of its Stone-Čech compactification βX . Then βX/π is a

Hausdorff compactification of X under the quotient topology if and only if for every A ∈ π and for every open subset U of

βX such that A ⊆ U , there is an open subset V of βX such that (i) A ⊆ V ⊆ U (ii) V is a union of members of π.

Proof. Let f : βX → βX/π be the quotient map and βX/π be endowed with the quotient topology.
Suppose βX/π is Hausdorff. LetA ∈ π and U be an open subset of βX such thatA ⊆ U . Then βX \U is closed

and hence is a compact subset of βX . Since f is continuous, f(βX \ U) is compact. Since βX/π is Hausdorff,
f(βX \ U) is closed in βX/π. Moreover f(A) is a singleton subset of βX/π and it is contained in the open set
(βX/π) \ f(βX \U). Choose V = f−1((βX/π) \ (f(βX \U))). Then V is an open subset of βX such that (i) and
(ii) are true.

Conversely, assume that for every A ∈ π and for every open subset U of βX such that A ⊆ U , there is an open
subset V of βX such that (i) and (ii) are true. Let us fix two distinct points u1 and u2 in βX/π. Let A1 = f−1(u1)

and A2 = f−1(u2). Since f is continuous, A1 and A2 are closed subsets of βX . Since βX is normal, there are
disjoint open subsets U1 and U2 in βX such that A1 ⊆ U1 and A2 ⊆ U2. By assumption, there are disjoint open
subsets V1 and V2 of βX such that A1 ⊆ V1 ⊆ U1 and A2 ⊆ V2 ⊆ U2 and V1 and V2 are unions of members of π.
Now f(V1) and f(V2) are disjoint open subsets of βX/π such that u1 ∈ f(V1) and u2 ∈ f(V2). This proves that
βX/π is Hausdorff. This completes the proof of the theorem. �

In the previous theorem βX may be replaced by any other compactification αX of X .

4. Embedding into Lattices

A point in a Tychonoff space X is locally compact in X if it has a compact neighbourhood in X . Let Y be the
collection of all locally compact points of a Tychonoff space X . Suppose Y is dense in X . ( For example, let X be
the closed unit disc without some points on the unit circle and Y be an open unit disc in the Euclidean plane).
Then Y is dense in βX and Y is locally compact. So Y is open in βX (see: theorem 4.3 in [2]). The collection
K(X) of all Hausdorff compactificaions ofX is a complete upper semi-lattice. Since Y is locally compact,K(Y ) is
a complete lattice. NowK(X) is considered as a subset ofK(Y ), because every Hausdorff compactification ofX
is a Hausdorff compactification of Y . This identification is an order preserving map. The construction explained
in section 1 reveals that this order preserving map also preserves join. Note that the join of two Hausdorff
compactifications given by two partitions π1, π2 of βX is given by the partition {A ∩B : A ∈ π1, B ∈ π2} \ {φ}.
So we have the following theorem.
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Theorem 4.1. If Y is the set of all locally compact points of a Tychonoff space X and if Y is dense in X , then the complete

upper semi-latticeK(X) can be embedded into the latticeK(Y ) by an order preserving map which also preserves join.
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